File size: 21,019 Bytes
fb7c603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright (c) 2024, Tri Dao, Albert Gu.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat, pack, unpack

try:
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
    causal_conv1d_fn, causal_conv1d_update = None, None

try:
    from causal_conv1d.causal_conv1d_varlen import causal_conv1d_varlen_states
except ImportError:
    causal_conv1d_varlen_states = None

from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated


from mamba_ssm.distributed.tensor_parallel import ColumnParallelLinear, RowParallelLinear
from mamba_ssm.distributed.distributed_utils import all_reduce, reduce_scatter

from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined


class Mamba2(nn.Module):
    def __init__(
        self,
        config,
        conv_init=None,
        d_ssm=None,  # If not None, we only apply SSM on this many dimensions, the rest uses gated MLP
        ngroups=1,
        A_init_range=(1, 16),
        D_has_hdim=False,
        rmsnorm=True,
        norm_before_gate=False,
        dt_min=0.001,
        dt_max=0.1,
        dt_init_floor=1e-4,
        dt_limit=(0.0, float("inf")),
        bias=False,
        conv_bias=True,
        # Fused kernel and sharding options
        chunk_size=256,
        use_mem_eff_path=False, # True,
        layer_idx=None,  # Absorb kwarg for general module
        process_group=None,
        sequence_parallel=True,
        device=None,
        dtype=None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        
        self.config = config
        self.d_model = config.hidden_size
        self.d_state = config.mamba_d_state
        self.d_conv = config.mamba_d_conv

        self.conv_init = conv_init
        self.expand = config.mamba_expand
        self.process_group = process_group
        self.sequence_parallel = sequence_parallel
        self.world_size = 1 if process_group is None else process_group.size()
        self.local_rank = 0 if process_group is None else process_group.rank()
        self.d_inner = (self.expand * self.d_model) // self.world_size
        assert self.d_inner * self.world_size == self.expand * self.d_model
        self.headdim = config.mamba2_headdim
        self.d_ssm = self.d_inner if d_ssm is None else d_ssm // self.world_size
        assert ngroups % self.world_size == 0
        self.ngroups = ngroups // self.world_size
        assert self.d_ssm % self.headdim == 0
        self.nheads = self.d_ssm // self.headdim
        self.D_has_hdim = D_has_hdim
        self.rmsnorm = rmsnorm
        self.norm_before_gate = norm_before_gate
        self.dt_limit = dt_limit
        self.activation = "silu"
        self.chunk_size = chunk_size
        self.use_mem_eff_path = use_mem_eff_path
        self.layer_idx = layer_idx

        assert (self.d_model * self.expand / self.headdim) % 8 == 0

        # Order: [z, x, B, C, dt]
        d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
        if self.process_group is None:
            self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
        else:
            self.in_proj = ColumnParallelLinear(self.d_model, d_in_proj * self.world_size, bias=bias,
                                                process_group=self.process_group, sequence_parallel=self.sequence_parallel,
                                                **factory_kwargs)

        conv_dim = self.d_ssm + 2 * self.ngroups * self.d_state
        self.conv1d = nn.Conv1d(
            in_channels=conv_dim,
            out_channels=conv_dim,
            bias=conv_bias,
            kernel_size=self.d_conv,
            groups=conv_dim,
            padding=self.d_conv - 1,
            **factory_kwargs,
        )
        if self.conv_init is not None:
            nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)

        self.act = nn.SiLU()

        # Initialize log dt bias
        dt = torch.exp(
            torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        )
        dt = torch.clamp(dt, min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        
        self.dt_bias = nn.Parameter(inv_dt)
        # Just to be explicit. Without this we already don't put wd on dt_bias because of the check
        # name.endswith("bias") in param_grouping.py
        self.dt_bias._no_weight_decay = True

        assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
        A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
        A_log = torch.log(A).to(dtype=dtype)
        self.A_log = nn.Parameter(A_log)
        self.A_log._no_weight_decay = True

        # D "skip" parameter
        self.D = nn.Parameter(torch.ones(self.d_ssm if self.D_has_hdim else self.nheads, device=device))
        self.D._no_weight_decay = True

        if self.rmsnorm:
            assert RMSNormGated is not None
            self.norm = RMSNormGated(self.d_ssm, eps=1e-5, norm_before_gate=self.norm_before_gate,
                                     group_size=self.d_ssm // ngroups, **factory_kwargs)

        if self.process_group is None:
            self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
        else:
            self.out_proj = RowParallelLinear(self.d_inner * self.world_size, self.d_model, bias=bias,
                                              process_group=self.process_group, sequence_parallel=self.sequence_parallel,
                                              **factory_kwargs)

            
    def forward(self, hidden_states, attention_mask=None, past_key_value=None, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None):
        """
        hidden_states: (batch, seqlen, hidden_dim) if seqlen=None.
            If seqlen is not None, hidden_states is (batch * seqlen, hidden_dim). This is so that when we
            split hidden_states during sequence parallel, we split the batch * seqlen dimension
            (in case batch is small).
        Returns: same shape as u
        """
        # assert past_key_value is None, "Not implemented yet!!!"

        seqlen_og = seqlen
        if seqlen is None:
            batch, seqlen, dim = hidden_states.shape
        else:
            batch_seqlen, dim = hidden_states.shape
            batch = batch_seqlen // seqlen

        conv_state, ssm_state = None, None

        if inference_params is not None:
            inference_batch = cu_seqlens.shape[0] - 1 if cu_seqlens is not None else batch
            conv_state, ssm_state = self._get_states_from_cache(inference_params, inference_batch)

            if inference_params.seqlen_offset > 0:
                # The states are updated inplace
                out, _, _ = self.step(hidden_states, conv_state, ssm_state)
                return out, past_key_value

        zxbcdt = self.in_proj(hidden_states)  # (B, L, d_in_proj) or (B * L, d_in_proj)

        if seqlen_og is not None:
            zxbcdt = rearrange(zxbcdt, "(b l) d -> b l d", l=seqlen)
        # If the model is loaded in fp16, without the .float() here, A might be -inf
        A = -torch.exp(self.A_log.float())  # (nheads) or (d_inner, d_state)
        dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
        if self.use_mem_eff_path and inference_params is None:
            out = mamba_split_conv1d_scan_combined(
                zxbcdt,
                rearrange(self.conv1d.weight, "d 1 w -> d w"),
                self.conv1d.bias,
                self.dt_bias,
                A,
                D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
                chunk_size=self.chunk_size,
                seq_idx=seq_idx,
                activation=self.activation,
                rmsnorm_weight=self.norm.weight if self.rmsnorm else None,
                rmsnorm_eps=self.norm.eps if self.rmsnorm else 1e-6,
                outproj_weight=self.out_proj.weight,
                outproj_bias=self.out_proj.bias,
                headdim=None if self.D_has_hdim else self.headdim,
                ngroups=self.ngroups,
                norm_before_gate=self.norm_before_gate,
                **dt_limit_kwargs,
            )
            if seqlen_og is not None:
                out = rearrange(out, "b l d -> (b l) d")
            if self.process_group is not None:
                reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
                out = reduce_fn(out, self.process_group)
        else:
            d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
            z0, x0, z, xBC, dt = torch.split(
                zxbcdt,
                [d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
                dim=-1
            )

            if conv_state is not None:
                if cu_seqlens is None:
                    # If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
                    # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
                    xBC_t = rearrange(xBC, "b l d -> b d l")
                    conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0)))  # Update state (B D W)
                else:
                    assert causal_conv1d_varlen_states is not None, "varlen inference requires causal_conv1d package"
                    assert batch == 1, "varlen inference only supports batch dimension 1"
                    conv_varlen_states = causal_conv1d_varlen_states(
                        xBC.squeeze(0), cu_seqlens, state_len=conv_state.shape[-1]
                    )
                    conv_state.copy_(conv_varlen_states)
            assert self.activation in ["silu", "swish"]
            if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
                assert seq_idx is None, "varlen conv1d requires the causal_conv1d package"
                xBC = self.act(
                    self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, -(self.dconv - 1):]
                )  # (B, L, self.d_ssm + 2 * ngroups * d_state)
            else:
                xBC = causal_conv1d_fn(
                    xBC.transpose(1, 2),
                    rearrange(self.conv1d.weight, "d 1 w -> d w"),
                    bias=self.conv1d.bias,
                    activation=self.activation,
                    # seq_idx=seq_idx,
                ).transpose(1, 2)

            x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
            

            y = mamba_chunk_scan_combined(
                rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
                dt,
                A,
                rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
                rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
                chunk_size=self.chunk_size,
                # D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
                D=self.D,
                z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
                dt_bias=self.dt_bias,
                dt_softplus=True,
                seq_idx=seq_idx,
                cu_seqlens=cu_seqlens,
                **dt_limit_kwargs,
                return_final_states=ssm_state is not None,
                return_varlen_states=cu_seqlens is not None and inference_params is not None,
            )
            if ssm_state is not None:
                y, last_state, *rest = y
                if cu_seqlens is None:
                    ssm_state.copy_(last_state)
                else:
                    varlen_states = rest[0]
                    ssm_state.copy_(varlen_states)
            y = rearrange(y, "b l h p -> b l (h p)")
            if self.rmsnorm:
                y_full = y
                z_full = z

                y = self.norm(y_full, z_full)
            if d_mlp > 0:
                y = torch.cat([F.silu(z0) * x0, y], dim=-1)
            if seqlen_og is not None:
                y = rearrange(y, "b l d -> (b l) d")
                
            out = self.out_proj(y)

        return out, past_key_value


    def step(self, hidden_states, conv_state, ssm_state):
        dtype = hidden_states.dtype
        # Remove single token limitation - now supports hidden_states.shape[1] > 1
        batch_size, seq_len, _ = hidden_states.shape
        
        if seq_len == 1:
            # Single token case - keep existing optimized path
            zxbcdt = self.in_proj(hidden_states.squeeze(1))  # (B 2D)
        else:
            # Multi-token case - process without squeezing
            zxbcdt = self.in_proj(hidden_states)  # (B L 2D)
            
        d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
        
        if seq_len == 1:
            z0, x0, z, xBC, dt = torch.split(
                zxbcdt,
                [d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
                dim=-1
            )
        else:
            z0, x0, z, xBC, dt = torch.split(
                zxbcdt,
                [d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
                dim=-1
            )

        # Conv step - handle both single and multi-token cases
        if seq_len == 1:
            # Single token optimized path
            if causal_conv1d_update is None:
                conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1))  # Update state (B D W)
                conv_state[:, :, -1] = xBC
                xBC = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1)  # (B D)
                if self.conv1d.bias is not None:
                    xBC = xBC + self.conv1d.bias
                xBC = self.act(xBC).to(dtype=dtype)
            else:
                xBC = causal_conv1d_update(
                    xBC,
                    conv_state,
                    rearrange(self.conv1d.weight, "d 1 w -> d w"),
                    self.conv1d.bias,
                    self.activation,
                )
        else:
            # Multi-token case - update conv_state and process sequence
            # Update conv_state with the new sequence
            xBC_t = rearrange(xBC, "b l d -> b d l")
            conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0)))  # Update state (B D W)
            
            # Process convolution for the full sequence
            if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
                xBC = self.act(
                    self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, -(self.d_conv - 1):]
                )  # (B, L, self.d_ssm + 2 * ngroups * d_state)
            else:
                xBC = causal_conv1d_fn(
                    xBC.transpose(1, 2),
                    rearrange(self.conv1d.weight, "d 1 w -> d w"),
                    bias=self.conv1d.bias,
                    activation=self.activation,
                ).transpose(1, 2)

        x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
        A = -torch.exp(self.A_log.float())  # (nheads,)

        # SSM step - handle both single and multi-token cases
        if seq_len == 1:
            # Single token optimized path
            if selective_state_update is None:
                assert self.ngroups == 1, "Only support ngroups=1 for this inference code path"
                # Discretize A and B
                dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype))  # (batch, nheads)
                dA = torch.exp(dt * A)  # (batch, nheads)
                x = rearrange(x, "b (h p) -> b h p", p=self.headdim)
                dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
                ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
                y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C)
                y = y + rearrange(self.D.to(dtype), "h -> h 1") * x
                y = rearrange(y, "b h p -> b (h p)")
                if not self.rmsnorm:
                    y = y * self.act(z)  # (B D)
            else:
                A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to(dtype=torch.float32)
                dt = repeat(dt, "b h -> b h p", p=self.headdim)
                dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim)
                D = repeat(self.D, "h -> h p", p=self.headdim)
                B = rearrange(B, "b (g n) -> b g n", g=self.ngroups)
                C = rearrange(C, "b (g n) -> b g n", g=self.ngroups)
                x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim)
                if not self.rmsnorm:
                    z = rearrange(z, "b (h p) -> b h p", p=self.headdim)
                y = selective_state_update(
                    ssm_state, x_reshaped, dt, A, B, C, D, z=z if not self.rmsnorm else None,
                    dt_bias=dt_bias, dt_softplus=True
                )
                y = rearrange(y, "b h p -> b (h p)")
        else:
            # Multi-token case - use mamba_chunk_scan_combined similar to forward method
            dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
            
            y = mamba_chunk_scan_combined(
                rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
                dt,
                A,
                rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
                rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
                chunk_size=self.chunk_size,
                D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
                z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
                dt_bias=self.dt_bias,
                dt_softplus=True,
                **dt_limit_kwargs,
                return_final_states=True,
            )
            # Extract final state and update ssm_state
            y, final_ssm_state = y
            ssm_state.copy_(final_ssm_state)
            y = rearrange(y, "b l h p -> b l (h p)")
            
        if self.rmsnorm:
            y = self.norm(y, z)
        if d_mlp > 0:
            y = torch.cat([F.silu(z0) * x0, y], dim=-1)
        out = self.out_proj(y)
        
        # Ensure output shape consistency
        if seq_len == 1 and out.dim() == 2:
            out = out.unsqueeze(1)  # (B, 1, D)
            
        return out, conv_state, ssm_state
    

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        device = self.out_proj.weight.device
        conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
        conv_state = torch.zeros(
            batch_size, self.d_conv, self.conv1d.weight.shape[0], device=device, dtype=conv_dtype
        ).transpose(1, 2)
        ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype
        ssm_state = torch.zeros(
            batch_size, self.nheads, self.headdim, self.d_state, device=device, dtype=ssm_dtype
        )
        return conv_state, ssm_state

    def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
        assert self.layer_idx is not None
        if self.layer_idx not in inference_params.key_value_memory_dict:
            batch_shape = (batch_size,)
            conv_state = torch.zeros(
                batch_size,
                self.d_conv,
                self.conv1d.weight.shape[0],
                device=self.conv1d.weight.device,
                dtype=self.conv1d.weight.dtype,
            ).transpose(1, 2)
            ssm_state = torch.zeros(
                batch_size,
                self.nheads,
                self.headdim,
                self.d_state,
                device=self.in_proj.weight.device,
                dtype=self.in_proj.weight.dtype,
            )
            inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
        else:
            conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
            # TODO: What if batch size changes between generation, and we reuse the same states?
            if initialize_states:
                conv_state.zero_()
                ssm_state.zero_()
        return conv_state, ssm_state