mkurman commited on
Commit
9c49010
·
verified ·
1 Parent(s): 703f4de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -154
README.md CHANGED
@@ -1,199 +1,156 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
133
 
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
 
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
 
 
 
 
 
 
 
 
166
 
167
- #### Software
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
174
 
175
- **BibTeX:**
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
1
  ---
2
+ base_model: ibm-granite/granite-4.0-micro
3
  library_name: transformers
4
+ pipeline_tag: text-generation
5
+ license: apache-2.0
6
+ language:
7
+ - en
8
+ tags:
9
+ - medical
10
+ - instruction-tuned
11
+ - jepa-llm
12
+ - grpo
13
+ - dpo-like
14
+ - personas
15
+ - mergekit
16
+ - arcee-fusion
17
+ - openmed
18
  ---
19
 
20
+ # openmed-community/granite-4.0-micro-OpenMed
21
 
22
+ **Granite 4.0 Micro (≈3B) tuned for medical education & instruction following.**
23
+ Recipe: **JEPA-LLM SFT on medmcqa-hard + personas augmentation → GRPO on medmcqa-hard**; finalized with **Arcee Fusion** merge back into the IBM base.
24
 
25
+ > ⚠️ **Medical safety**
26
+ > This model is **not** a clinician and may hallucinate. **Do not** use for diagnosis or treatment. Use under qualified medical supervision only.
27
 
28
+ ---
29
 
30
+ ## TL;DR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ - **Base:** [`ibm-granite/granite-4.0-micro`](https://huggingface.co/ibm-granite/granite-4.0-micro) 3B long-context instruct model (Apache-2.0). Includes a structured chat template and tool-calling examples.
33
+ - **Training (high-level):**
34
+ 1) **JEPA-LLM SFT (400 steps, bs=64)** on **`mkurman/medmcqa-hard`** plus **instruction-following personas** from **`allenai/tulu-3-sft-personas-instruction-following`**.
35
+ 2) **GRPO** (group-relative PPO) on **`mkurman/medmcqa-hard`**, bs **64/128**, **8 generations per item** (critic-free RL optimizing verifiable correctness).
36
+ 3) **Model merge:** **Arcee MergeKit** with `merge_method: arcee_fusion` to preserve base calibration while keeping domain gains.
37
+ - **Infra:** Trained/evaluated on **AMD Instinct MI300X** via **Hot AISLE** credits — thanks!
38
 
39
+ ---
40
 
41
+ ## What’s inside
42
 
43
+ ### 1) JEPA-LLM stage (supervised)
44
+ - **JEPA-LLM** objective, see repo: [mkurman/jepa-llm](https://github.com/mkurman/jepa-llm), used as an auxiliary signal during SFT to bias toward stable, representation-level learning rather than pure next-token fitting; run for **400 steps** on **MedMCQA-hard** with **Personas augmentation** from **Tulu-3 personas** (adds constraint-following behaviors and improves coverage of IFEval-style requirements).
45
 
46
+ ### 2) GRPO stage (reinforcement learning)
47
+ - **GRPO** replaces the critic with group baselines, enabling efficient multi-sample training; we generate **8 candidates per item** and reward answer correctness / format checks.
48
 
49
+ ### 3) Merge & finalize
50
+ - **Arcee Fusion** in **MergeKit** to selectively fuse with the original Granite 4.0 Micro (avoids over-averaging from naive merges and tends to keep base calibration).
51
 
52
+ ---
53
 
54
+ ## Intended use & limitations
55
 
56
+ **Intended:** medical **research**, concept review, exam-style Q&A, instruction-following research, and tool-augmented demos.
57
+ **Out of scope:** autonomous clinical decisions, prescription generation, or guideline updates without retrieval/RAG.
58
 
59
+ ---
60
 
61
+ ## Results
62
 
63
+ | Metric | granite-4.0-micro-OpenMed | granite-4.0-micro |
64
+ | ----------------------------| -------------------------: | ------------------------: |
65
+ | mmlu | **63.17** | 62.48 |
66
+ | leaderboard_mmlu_pro | **33.06** | 32.78 |
67
 
68
+ | leaderboard_ifeval | granite-4.0-micro-OpenMed | granite-4.0-micro |
69
+ | ----------------------------| -------------------------: | ------------------------: |
70
+ | inst_level_loose_acc | **85.97** | 85.25 |
71
+ | inst_level_strict_acc | **84.05** | 82.97 |
72
+ | prompt_level_loose_acc | **79.67** | 78.74 |
73
+ | prompt_level_strict_acc | **77.45** | 76.16 |
74
 
 
75
 
76
+ **Author’s harness notes:** EleutherAI `lm-evaluation-harness` with Granite’s chat template and batch size 8.
77
 
78
+ ---
79
 
80
+ ## Quickstart (Transformers)
81
 
82
+ ```python
83
+ from transformers import AutoTokenizer, AutoModelForCausalLM
84
+ import torch
85
 
86
+ model_id = "openmed-community/granite-4.0-micro-OpenMed"
87
+ tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
88
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
89
 
90
+ messages = [
91
+ {"role": "system", "content": "You are a careful medical assistant. Cite sources and warn this is not medical advice."},
92
+ {"role": "user", "content": "Cellulitis vs erysipelas: give 3 bullet differences and 1 caution."}
93
+ ]
94
+ prompt = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
95
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
96
+ out = model.generate(**inputs, max_new_tokens=256, do_sample=False)
97
+ print(tok.decode(out[0], skip_special_tokens=True))
98
+ ````
99
 
100
+ > **Tool-calling:** Granite’s card includes function-calling examples;
101
+ >
102
+ ---
103
 
104
+ ## Reproduce key evals (example)
105
 
106
+ ```bash
107
+ # Classic MMLU (5-shot typical)
108
+ lm_eval --model hf \
109
+ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \
110
+ --tasks mmlu --batch_size 8 --apply-chat-template
111
 
112
+ # MMLU-Pro (10-choice, harder)
113
+ lm_eval --model hf \
114
+ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \
115
+ --tasks leaderboard_mmlu_pro --batch_size 8 --apply-chat-template
116
 
117
+ # IFEVAL (verifiable instruction following)
118
+ lm_eval --model hf \
119
+ --model_args pretrained=openmed-community/granite-4.0-micro-OpenMed,parallelize=True \
120
+ --tasks leaderboard_ifeval --batch_size 8 --apply-chat-template
121
+ ```
122
 
123
+ ---
124
 
125
+ ## Data & training notes
126
 
127
+ * **MedMCQA-Hard (train split)** for domain supervision and RL rewards;.
128
+ * **Tulu-3 personas** for instruction-following with constraint taxonomy inspired by IFEVAL.
129
+ * **JEPA-LLM**: based on the emerging **LLM-JEPA** objective (representation-space training). See the paper for context and motivation.
130
+ * **GRPO**: efficient for multi-sample training.
131
+ * **Privacy:** no PHI to the best of our knowledge; please report issues.
132
 
133
+ ---
134
 
135
+ ## Commentary on results
136
 
137
+ > **Why gains are modest:** Granite-4.0-Micro is already a **well-calibrated, strongly aligned** 3B instruct model with robust instruction-following and tool-use out of the box. In that regime, **headroom on popular benchmarks is limited**, and naive tuning often **degrades** base behaviors (calibration, safety, IF). The combination used here—**JEPA-LLM** (to stabilize representations), **personas SFT** (to preserve IF constraints), **GRPO** with **verifiable rewards**, and **Arcee Fusion**—appears to **nudge** the model to measurable improvements **without sacrificing** base calibration, but the effect sizes remain small, which is consistent with Granite’s strong baseline. In short: *we’re operating near the model’s alignment ceiling; targeted gains are possible, sweeping jumps are unlikely without larger capacity or richer supervision.*
138
 
139
+ ---
140
 
141
+ ## Acknowledgments
142
 
143
+ * **IBM Granite** team for the base model & docs (Apache-2.0).
144
+ * **AllenAI Tulu-3** for personas datasets.
145
+ * **Arcee** for MergeKit and **Arcee Fusion**.
146
+ * **Hot Aisle** for MI300X credits :heart:, link: [https://hotaisle.xyz/](https://hotaisle.xyz/).
147
 
148
+ ---
149
 
150
+ ## Citation
151
 
152
+ * IBM Granite 4.0 Micro model card [1](https://huggingface.co/ibm-granite/granite-4.0-micro).
153
+ * MedMCQA-Hard [2](https://huggingface.co/datasets/mkurman/medmcqa-hard).
154
+ * Tulu-3 personas dataset [3](https://huggingface.co/datasets/allenai/tulu-3-sft-personas-instruction-following).
155
+ * LLM-JEPA paper [4](https://arxiv.org/abs/2509.14252) and our implementation repository [5](https://github.com/mkurman/jepa-llm).
156
+ * MergeKit & Arcee Fusion [6](https://github.com/arcee-ai/mergekit).