DP-TLDM: Differentially Private Tabular Latent Diffusion Model
Abstract
DPTLDM combines an autoencoder with a latent diffusion model to generate high-quality, privacy-preserving synthetic tabular data using differential privacy techniques.
Synthetic data from generative models emerges as the privacy-preserving data sharing solution. Such a synthetic data set shall resemble the original data without revealing identifiable private information. Till date, the prior focus on limited types of tabular synthesizers and a small number of privacy attacks, particularly on Generative Adversarial Networks, and overlooks membership inference attacks and defense strategies, i.e., differential privacy. Motivated by the conundrum of keeping high data quality and low privacy risk of synthetic data tables, we propose DPTLDM, Differentially Private Tabular Latent Diffusion Model, which is composed of an autoencoder network to encode the tabular data and a latent diffusion model to synthesize the latent tables. Following the emerging f-DP framework, we apply DP-SGD to train the auto-encoder in combination with batch clipping and use the separation value as the privacy metric to better capture the privacy gain from DP algorithms. Our empirical evaluation demonstrates that DPTLDM is capable of achieving a meaningful theoretical privacy guarantee while also significantly enhancing the utility of synthetic data. Specifically, compared to other DP-protected tabular generative models, DPTLDM improves the synthetic quality by an average of 35% in data resemblance, 15% in the utility for downstream tasks, and 50% in data discriminability, all while preserving a comparable level of privacy risk.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper