The Anti-Ouroboros Effect: Emergent Resilience in Large Language Models from Recursive Selective Feedback
Abstract
Research demonstrates that selective feedback mechanisms can reverse performance decay in large language models, showing improved stability and quality over multiple generations.
The stability of recursively trained large language models (LLMs) is a foundational problem for AI safety. Prevailing theory predicts model collapse, a progressive degradation when models are trained on their own output. We challenge this narrative by introducing a selective feedback mechanism. Contrary to expectation, instead of merely slowing decay, our experiments provide strong evidence that this pressure reverses it, inducing a statistically significant performance improvement in a Gemma 2B model on a complex summarization task. We name this phenomenon the Anti-Ouroboros Effect. We contrast this with a foundational experiment using a simple classifier, where the theoretical degenerative loop was validated, highlighting the unique dynamics of high-dimensional models. Our findings establish that systemic resilience can be an emergent property of LLMs under simple selection pressure, suggesting a powerful and scalable principle for developing safer and more robust AI systems. Across five generations, a quality-filtered condition improved by 6.6% in ROUGE-L F1 score, whereas an unfiltered control degraded by 3.5% and a random-filter control degraded by 4.2%
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper