M3-TTS: Multi-modal DiT Alignment & Mel-latent for Zero-shot High-fidelity Speech Synthesis
Abstract
A novel non-autoregressive text-to-speech system uses a multi-modal diffusion transformer architecture with joint diffusion layers for cross-modal alignment and a mel-vae codec to improve efficiency and naturalness.
Non-autoregressive (NAR) text-to-speech synthesis relies on length alignment between text sequences and audio representations, constraining naturalness and expressiveness. Existing methods depend on duration modeling or pseudo-alignment strategies that severely limit naturalness and computational efficiency. We propose M3-TTS, a concise and efficient NAR TTS paradigm based on multi-modal diffusion transformer (MM-DiT) architecture. M3-TTS employs joint diffusion transformer layers for cross-modal alignment, achieving stable monotonic alignment between variable-length text-speech sequences without pseudo-alignment requirements. Single diffusion transformer layers further enhance acoustic detail modeling. The framework integrates a mel-vae codec that provides 3* training acceleration. Experimental results on Seed-TTS and AISHELL-3 benchmarks demonstrate that M3-TTS achieves state-of-the-art NAR performance with the lowest word error rates (1.36\% English, 1.31\% Chinese) while maintaining competitive naturalness scores. Code and demos will be available at https://wwwwxp.github.io/M3-TTS.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper