MirrorBench: An Extensible Framework to Evaluate User-Proxy Agents for Human-Likeness
Abstract
Large language models are evaluated as user simulators through a reproducible benchmark framework that assesses their ability to generate human-like conversational responses across diverse tasks.
Large language models (LLMs) are increasingly used as human simulators, both for evaluating conversational systems and for generating fine-tuning data. However, naive "act-as-a-user" prompting often yields verbose, unrealistic utterances, underscoring the need for principled evaluation of so-called user proxy agents. We present MIRRORBENCH, a reproducible, extensible benchmarking framework that evaluates user proxies solely on their ability to produce human-like user utterances across diverse conversational tasks, explicitly decoupled from downstream task success. MIRRORBENCH features a modular execution engine with typed interfaces, metadata-driven registries, multi-backend support, caching, and robust observability. The system supports pluggable user proxies, datasets, tasks, and metrics, enabling researchers to evaluate arbitrary simulators under a uniform, variance-aware harness. We include three lexical-diversity metrics (MATTR, YULE'S K, and HD-D) and three LLM-judge-based metrics (GTEval, Pairwise Indistinguishability, and Rubric-and-Reason). Across four open datasets, MIRRORBENCH yields variance-aware results and reveals systematic gaps between user proxies and real human users. The framework is open source and includes a simple command-line interface for running experiments, managing configurations and caching, and generating reports. The framework can be accessed at https://github.com/SAP/mirrorbench.
Community
MirrorBench is an automatic, extensible Framework to Evaluate User-Proxy Agents for Human-Likeness. It provides a modular architecture to benchmark different User-Proxy Agents against a variety of realism metrics. MirrorBench is designed to be extensible, allowing researchers and developers to bring their own agents and metrics into the framework.
GitHub Repo: https://github.com/SAP/mirrorbench
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper