AutoBinder Agent: An MCP-Based Agent for End-to-End Protein Binder Design
Abstract
An agentic drug design framework uses Large Language Models and Model Context Protocol to coordinate diverse AI tools and databases for end-to-end protein binder generation with improved reproducibility and extensibility.
Modern AI technologies for drug discovery are distributed across heterogeneous platforms-including web applications, desktop environments, and code libraries-leading to fragmented workflows, inconsistent interfaces, and high integration overhead. We present an agentic end-to-end drug design framework that leverages a Large Language Model (LLM) in conjunction with the Model Context Protocol (MCP) to dynamically coordinate access to biochemical databases, modular toolchains, and task-specific AI models. The system integrates four state-of-the-art components: MaSIF (MaSIF-site and MaSIF-seed-search) for geometric deep learning-based identification of protein-protein interaction (PPI) sites, Rosetta for grafting protein fragments onto protein backbones to form mini proteins, ProteinMPNN for amino acid sequences redesign, and AlphaFold3 for near-experimental accuracy in complex structure prediction. Starting from a target structure, the framework supports de novo binder generation via surface analysis, scaffold grafting and pose construction, sequence optimization, and structure prediction. Additionally, by replacing rigid, script-based workflows with a protocol-driven, LLM-coordinated architecture, the framework improves reproducibility, reduces manual overhead, and ensures extensibility, portability, and auditability across the entire drug design process.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper