Agent Skills: A Data-Driven Analysis of Claude Skills for Extending Large Language Model Functionality
Abstract
Agent skills extend large language model (LLM) agents with reusable, program-like modules that define triggering conditions, procedural logic, and tool interactions. As these skills proliferate in public marketplaces, it is unclear what types are available, how users adopt them, and what risks they pose. To answer these questions, we conduct a large-scale, data-driven analysis of 40,285 publicly listed skills from a major marketplace. Our results show that skill publication tends to occur in short bursts that track shifts in community attention. We also find that skill content is highly concentrated in software engineering workflows, while information retrieval and content creation account for a substantial share of adoption. Beyond content trends, we uncover a pronounced supply-demand imbalance across categories, and we show that most skills remain within typical prompt budgets despite a heavy-tailed length distribution. Finally, we observe strong ecosystem homogeneity, with widespread intent-level redundancy, and we identify non-trivial safety risks, including skills that enable state-changing or system-level actions. Overall, our findings provide a quantitative snapshot of agent skills as an emerging infrastructure layer for agents and inform future work on skill reuse, standardization, and safety-aware design.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper