PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis
Abstract
A self-training framework called PLLM is presented for synthesizing CAD programs from unlabeled 3D shapes by iteratively generating and refining program-shape pairs without requiring paired training data.
Recovering Computer-Aided Design (CAD) programs from 3D geometries is a widely studied problem. Recent advances in large language models (LLMs) have enabled progress in CAD program synthesis, but existing methods rely on supervised training with paired shape-program data, which is often unavailable. We introduce PLLM, a self-training framework for CAD program synthesis from unlabeled 3D shapes. Given a pre-trained CAD-capable LLM and a shape dataset, PLLM iteratively samples candidate programs, selects high-fidelity executions, and augments programs to construct synthetic program-shape pairs for fine-tuning. We experiment on adapting CAD-Recode from DeepCAD to the unlabeled ABC dataset show consistent improvements in geometric fidelity and program diversity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper