Train Less, Learn More: Adaptive Efficient Rollout Optimization for Group-Based Reinforcement Learning
Abstract
Adaptive Efficient Rollout Optimization (AERO) enhances Group Relative Policy Optimization by using adaptive rollout strategies, selective rejection, and Bayesian posterior maintenance to improve compute efficiency in reinforcement learning fine-tuning of language models.
Reinforcement learning (RL) plays a central role in large language model (LLM) post-training. Among existing approaches, Group Relative Policy Optimization (GRPO) is widely used, especially for RL with verifiable rewards (RLVR) fine-tuning. In GRPO, each query prompts the LLM to generate a group of rollouts with a fixed group size N. When all rollouts in a group share the same outcome, either all correct or all incorrect, the group-normalized advantages become zero, yielding no gradient signal and wasting fine-tuning compute. We introduce Adaptive Efficient Rollout Optimization (AERO), an enhancement of GRPO. AERO uses an adaptive rollout strategy, applies selective rejection to strategically prune rollouts, and maintains a Bayesian posterior to prevent zero-advantage dead zones. Across three model configurations (Qwen2.5-Math-1.5B, Qwen2.5-7B, and Qwen2.5-7B-Instruct), AERO improves compute efficiency without sacrificing performance. Under the same total rollout budget, AERO reduces total training compute by about 48% while shortening wall-clock time per step by about 45% on average. Despite the substantial reduction in compute, AERO matches or improves Pass@8 and Avg@8 over GRPO, demonstrating a practical, scalable, and compute-efficient strategy for RL-based LLM alignment.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper