Papers
arxiv:2602.15257

How to Train Your Long-Context Visual Document Model

Published on Feb 16
Authors:

Abstract

A large-scale study of long-context vision-language models demonstrates superior performance on document-level visual question answering through systematic training methods and synthetic data pipelines.

AI-generated summary

We present the first comprehensive, large-scale study of training long-context vision language models up to 344K context, targeting long-document visual question answering with measured transfer to long-context text. While several such strong are open-weight, namely Qwen3 VL and GLM 4.5/6V, their training recipes and data pipelines are not reproducible. We systematically study continued pretraining, supervised finetuning, and preference optimization for 24B and 32B parameter models, backed by extensive LC evaluations and ablations to bridge this gap, and achieve state-of-the-art performance on MMLongBenchDoc for both parameter scales. In addition to this, our key findings include: (i) training on context lengths that match evaluation context lengths outperforms training on longer contexts, (ii) training and evaluating with page indices provides a simple, high-impact boost to long-document performance, (iii) our synthetic data pipelines enable self-improvement via continued pretraining and supervised finetuning, and (iv) we extend the known text-to-visual long context transfer to the reverse, showing that visual long context training transfers to long-context text performance. We also release MMLBD-C, a manually corrected version of MMLongBenchDoc to reduce erroneous and low quality examples in the benchmark.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.15257 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.