new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data

In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation

  • 7 authors
·
Jan 30

General Scales Unlock AI Evaluation with Explanatory and Predictive Power

Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)

  • 26 authors
·
Mar 8, 2025

The X-ray Integral Field Unit at the end of the Athena reformulation phase

The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4' field of view (compared to 5' before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027.

  • 282 authors
·
Feb 15, 2025