- Competing in a Complex Hidden Role Game with Information Set Monte Carlo Tree Search Advances in intelligent game playing agents have led to successes in perfect information games like Go and imperfect information games like Poker. The Information Set Monte Carlo Tree Search (ISMCTS) family of algorithms outperforms previous algorithms using Monte Carlo methods in imperfect information games. In this paper, Single Observer Information Set Monte Carlo Tree Search (SO-ISMCTS) is applied to Secret Hitler, a popular social deduction board game that combines traditional hidden role mechanics with the randomness of a card deck. This combination leads to a more complex information model than the hidden role and card deck mechanics alone. It is shown in 10108 simulated games that SO-ISMCTS plays as well as simpler rule based agents, and demonstrates the potential of ISMCTS algorithms in complicated information set domains. 1 authors · May 14, 2020
- AI Agents for the Dhumbal Card Game: A Comparative Study This study evaluates Artificial Intelligence (AI) agents for Dhumbal, a culturally significant multiplayer card game with imperfect information, through a systematic comparison of rule-based, search-based, and learning-based strategies. We formalize Dhumbal's mechanics and implement diverse agents, including heuristic approaches (Aggressive, Conservative, Balanced, Opportunistic), search-based methods such as Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS), and reinforcement learning approaches including Deep Q-Network (DQN) and Proximal Policy Optimization (PPO), and a random baseline. Evaluation involves within-category tournaments followed by a cross-category championship. Performance is measured via win rate, economic outcome, Jhyap success, cards discarded per round, risk assessment, and decision efficiency. Statistical significance is assessed using Welch's t-test with Bonferroni correction, effect sizes via Cohen's d, and 95% confidence intervals (CI). Across 1024 simulated rounds, the rule-based Aggressive agent achieves the highest win rate (88.3%, 95% CI: [86.3, 90.3]), outperforming ISMCTS (9.0%) and PPO (1.5%) through effective exploitation of Jhyap declarations. The study contributes a reproducible AI framework, insights into heuristic efficacy under partial information, and open-source code, thereby advancing AI research and supporting digital preservation of cultural games. 1 authors · Oct 10, 2025