new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

kMaX-DeepLab: k-means Mask Transformer

The rise of transformers in vision tasks not only advances network backbone designs, but also starts a brand-new page to achieve end-to-end image recognition (e.g., object detection and panoptic segmentation). Originated from Natural Language Processing (NLP), transformer architectures, consisting of self-attention and cross-attention, effectively learn long-range interactions between elements in a sequence. However, we observe that most existing transformer-based vision models simply borrow the idea from NLP, neglecting the crucial difference between languages and images, particularly the extremely large sequence length of spatially flattened pixel features. This subsequently impedes the learning in cross-attention between pixel features and object queries. In this paper, we rethink the relationship between pixels and object queries and propose to reformulate the cross-attention learning as a clustering process. Inspired by the traditional k-means clustering algorithm, we develop a k-means Mask Xformer (kMaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our kMaX-DeepLab achieves a new state-of-the-art performance on COCO val set with 58.0% PQ, Cityscapes val set with 68.4% PQ, 44.0% AP, and 83.5% mIoU, and ADE20K val set with 50.9% PQ and 55.2% mIoU without test-time augmentation or external dataset. We hope our work can shed some light on designing transformers tailored for vision tasks. TensorFlow code and models are available at https://github.com/google-research/deeplab2 A PyTorch re-implementation is also available at https://github.com/bytedance/kmax-deeplab

  • 8 authors
·
Jul 8, 2022

Towards Improved Input Masking for Convolutional Neural Networks

The ability to remove features from the input of machine learning models is very important to understand and interpret model predictions. However, this is non-trivial for vision models since masking out parts of the input image typically causes large distribution shifts. This is because the baseline color used for masking (typically grey or black) is out of distribution. Furthermore, the shape of the mask itself can contain unwanted signals which can be used by the model for its predictions. Recently, there has been some progress in mitigating this issue (called missingness bias) in image masking for vision transformers. In this work, we propose a new masking method for CNNs we call layer masking in which the missingness bias caused by masking is reduced to a large extent. Intuitively, layer masking applies a mask to intermediate activation maps so that the model only processes the unmasked input. We show that our method (i) is able to eliminate or minimize the influence of the mask shape or color on the output of the model, and (ii) is much better than replacing the masked region by black or grey for input perturbation based interpretability techniques like LIME. Thus, layer masking is much less affected by missingness bias than other masking strategies. We also demonstrate how the shape of the mask may leak information about the class, thus affecting estimates of model reliance on class-relevant features derived from input masking. Furthermore, we discuss the role of data augmentation techniques for tackling this problem, and argue that they are not sufficient for preventing model reliance on mask shape. The code for this project is publicly available at https://github.com/SriramB-98/layer_masking

  • 2 authors
·
Nov 26, 2022

FaceXFormer: A Unified Transformer for Facial Analysis

In this work, we introduce FaceXformer, an end-to-end unified transformer model for a comprehensive range of facial analysis tasks such as face parsing, landmark detection, head pose estimation, attributes recognition, and estimation of age, gender, race, and landmarks visibility. Conventional methods in face analysis have often relied on task-specific designs and preprocessing techniques, which limit their approach to a unified architecture. Unlike these conventional methods, our FaceXformer leverages a transformer-based encoder-decoder architecture where each task is treated as a learnable token, enabling the integration of multiple tasks within a single framework. Moreover, we propose a parameter-efficient decoder, FaceX, which jointly processes face and task tokens, thereby learning generalized and robust face representations across different tasks. To the best of our knowledge, this is the first work to propose a single model capable of handling all these facial analysis tasks using transformers. We conducted a comprehensive analysis of effective backbones for unified face task processing and evaluated different task queries and the synergy between them. We conduct experiments against state-of-the-art specialized models and previous multi-task models in both intra-dataset and cross-dataset evaluations across multiple benchmarks. Additionally, our model effectively handles images "in-the-wild," demonstrating its robustness and generalizability across eight different tasks, all while maintaining the real-time performance of 37 FPS.

  • 4 authors
·
Mar 19, 2024

PEM: Prototype-based Efficient MaskFormer for Image Segmentation

Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.

  • 7 authors
·
Feb 29, 2024

XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation

Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D.

  • 5 authors
·
Nov 20, 2024

Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation

Recent open-vocabulary segmentation methods adopt mask generators to predict segmentation masks and leverage pre-trained vision-language models, e.g., CLIP, to classify these masks via mask pooling. Although these approaches show promising results, it is counterintuitive that accurate masks often fail to yield accurate classification results through pooling CLIP image embeddings within the mask regions. In this paper, we reveal the performance limitations of mask pooling and introduce Mask-Adapter, a simple yet effective method to address these challenges in open-vocabulary segmentation. Compared to directly using proposal masks, our proposed Mask-Adapter extracts semantic activation maps from proposal masks, providing richer contextual information and ensuring alignment between masks and CLIP. Additionally, we propose a mask consistency loss that encourages proposal masks with similar IoUs to obtain similar CLIP embeddings to enhance models' robustness to varying predicted masks. Mask-Adapter integrates seamlessly into open-vocabulary segmentation methods based on mask pooling in a plug-and-play manner, delivering more accurate classification results. Extensive experiments across several zero-shot benchmarks demonstrate significant performance gains for the proposed Mask-Adapter on several well-established methods. Notably, Mask-Adapter also extends effectively to SAM and achieves impressive results on several open-vocabulary segmentation datasets. Code and models are available at https://github.com/hustvl/MaskAdapter.

  • 5 authors
·
Dec 5, 2024

Regularized Mask Tuning: Uncovering Hidden Knowledge in Pre-trained Vision-Language Models

Prompt tuning and adapter tuning have shown great potential in transferring pre-trained vision-language models (VLMs) to various downstream tasks. In this work, we design a new type of tuning method, termed as regularized mask tuning, which masks the network parameters through a learnable selection. Inspired by neural pathways, we argue that the knowledge required by a downstream task already exists in the pre-trained weights but just gets concealed in the upstream pre-training stage. To bring the useful knowledge back into light, we first identify a set of parameters that are important to a given downstream task, then attach a binary mask to each parameter, and finally optimize these masks on the downstream data with the parameters frozen. When updating the mask, we introduce a novel gradient dropout strategy to regularize the parameter selection, in order to prevent the model from forgetting old knowledge and overfitting the downstream data. Experimental results on 11 datasets demonstrate the consistent superiority of our method over previous alternatives. It is noteworthy that we manage to deliver 18.73% performance improvement compared to the zero-shot CLIP via masking an average of only 2.56% parameters. Furthermore, our method is synergistic with most existing parameter-efficient tuning methods and can boost the performance on top of them. Project page can be found here (https://wuw2019.github.io/R-AMT/).

  • 9 authors
·
Jul 27, 2023

Stare at What You See: Masked Image Modeling without Reconstruction

Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training. By reconstructing masked image patches from a small portion of visible image regions, MAE forces the model to infer semantic correlation within an image. Recently, some approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance. However, unlike the low-level features such as pixel values, we argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.This raises one question: is reconstruction necessary in Masked Image Modeling (MIM) with a teacher model? In this paper, we propose an efficient MIM paradigm named MaskAlign. MaskAlign simply learns the consistency of visible patch features extracted by the student model and intact image features extracted by the teacher model. To further advance the performance and tackle the problem of input inconsistency between the student and teacher model, we propose a Dynamic Alignment (DA) module to apply learnable alignment. Our experimental results demonstrate that masked modeling does not lose effectiveness even without reconstruction on masked regions. Combined with Dynamic Alignment, MaskAlign can achieve state-of-the-art performance with much higher efficiency. Code and models will be available at https://github.com/OpenPerceptionX/maskalign.

  • 7 authors
·
Nov 16, 2022

Taming Generative Synthetic Data for X-ray Prohibited Item Detection

Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.

  • 6 authors
·
Nov 19, 2025 2

Efficient Transformer Encoders for Mask2Former-style models

Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.

  • 6 authors
·
Apr 23, 2024

OmniBooth: Learning Latent Control for Image Synthesis with Multi-modal Instruction

We present OmniBooth, an image generation framework that enables spatial control with instance-level multi-modal customization. For all instances, the multimodal instruction can be described through text prompts or image references. Given a set of user-defined masks and associated text or image guidance, our objective is to generate an image, where multiple objects are positioned at specified coordinates and their attributes are precisely aligned with the corresponding guidance. This approach significantly expands the scope of text-to-image generation, and elevates it to a more versatile and practical dimension in controllability. In this paper, our core contribution lies in the proposed latent control signals, a high-dimensional spatial feature that provides a unified representation to integrate the spatial, textual, and image conditions seamlessly. The text condition extends ControlNet to provide instance-level open-vocabulary generation. The image condition further enables fine-grained control with personalized identity. In practice, our method empowers users with more flexibility in controllable generation, as users can choose multi-modal conditions from text or images as needed. Furthermore, thorough experiments demonstrate our enhanced performance in image synthesis fidelity and alignment across different tasks and datasets. Project page: https://len-li.github.io/omnibooth-web/

  • 9 authors
·
Oct 7, 2024 2

OneFormer: One Transformer to Rule Universal Image Segmentation

Universal Image Segmentation is not a new concept. Past attempts to unify image segmentation in the last decades include scene parsing, panoptic segmentation, and, more recently, new panoptic architectures. However, such panoptic architectures do not truly unify image segmentation because they need to be trained individually on the semantic, instance, or panoptic segmentation to achieve the best performance. Ideally, a truly universal framework should be trained only once and achieve SOTA performance across all three image segmentation tasks. To that end, we propose OneFormer, a universal image segmentation framework that unifies segmentation with a multi-task train-once design. We first propose a task-conditioned joint training strategy that enables training on ground truths of each domain (semantic, instance, and panoptic segmentation) within a single multi-task training process. Secondly, we introduce a task token to condition our model on the task at hand, making our model task-dynamic to support multi-task training and inference. Thirdly, we propose using a query-text contrastive loss during training to establish better inter-task and inter-class distinctions. Notably, our single OneFormer model outperforms specialized Mask2Former models across all three segmentation tasks on ADE20k, CityScapes, and COCO, despite the latter being trained on each of the three tasks individually with three times the resources. With new ConvNeXt and DiNAT backbones, we observe even more performance improvement. We believe OneFormer is a significant step towards making image segmentation more universal and accessible. To support further research, we open-source our code and models at https://github.com/SHI-Labs/OneFormer

  • 6 authors
·
Nov 10, 2022

Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget

As scaling laws in generative AI push performance, they also simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to address this bottleneck by demonstrating very low-cost training of large-scale T2I diffusion transformer models. As the computational cost of transformers increases with the number of patches in each image, we propose to randomly mask up to 75% of the image patches during training. We propose a deferred masking strategy that preprocesses all patches using a patch-mixer before masking, thus significantly reducing the performance degradation with masking, making it superior to model downscaling in reducing computational cost. We also incorporate the latest improvements in transformer architecture, such as the use of mixture-of-experts layers, to improve performance and further identify the critical benefit of using synthetic images in micro-budget training. Finally, using only 37M publicly available real and synthetic images, we train a 1.16 billion parameter sparse transformer with only \1,890 economical cost and achieve a 12.7 FID in zero-shot generation on the COCO dataset. Notably, our model achieves competitive FID and high-quality generations while incurring 118\times lower cost than stable diffusion models and 14\times lower cost than the current state-of-the-art approach that costs 28,400. We aim to release our end-to-end training pipeline to further democratize the training of large-scale diffusion models on micro-budgets.

  • 5 authors
·
Jul 22, 2024 1

AxFormer: Accuracy-driven Approximation of Transformers for Faster, Smaller and more Accurate NLP Models

Transformers have greatly advanced the state-of-the-art in Natural Language Processing (NLP) in recent years, but present very large computation and storage requirements. We observe that the design process of Transformers (pre-train a foundation model on a large dataset in a self-supervised manner, and subsequently fine-tune it for different downstream tasks) leads to task-specific models that are highly over-parameterized, adversely impacting both accuracy and inference efficiency. We propose AxFormer, a systematic framework that applies accuracy-driven approximations to create optimized transformer models for a given downstream task. AxFormer combines two key optimizations -- accuracy-driven pruning and selective hard attention. Accuracy-driven pruning identifies and removes parts of the fine-tuned transformer that hinder performance on the given downstream task. Sparse hard-attention optimizes attention blocks in selected layers by eliminating irrelevant word aggregations, thereby helping the model focus only on the relevant parts of the input. In effect, AxFormer leads to models that are more accurate, while also being faster and smaller. Our experiments on GLUE and SQUAD tasks show that AxFormer models are up to 4.5% more accurate, while also being up to 2.5X faster and up to 3.2X smaller than conventional fine-tuned models. In addition, we demonstrate that AxFormer can be combined with previous efforts such as distillation or quantization to achieve further efficiency gains.

  • 4 authors
·
Oct 7, 2020

X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation

In recent times, automatic text-to-3D content creation has made significant progress, driven by the development of pretrained 2D diffusion models. Existing text-to-3D methods typically optimize the 3D representation to ensure that the rendered image aligns well with the given text, as evaluated by the pretrained 2D diffusion model. Nevertheless, a substantial domain gap exists between 2D images and 3D assets, primarily attributed to variations in camera-related attributes and the exclusive presence of foreground objects. Consequently, employing 2D diffusion models directly for optimizing 3D representations may lead to suboptimal outcomes. To address this issue, we present X-Dreamer, a novel approach for high-quality text-to-3D content creation that effectively bridges the gap between text-to-2D and text-to-3D synthesis. The key components of X-Dreamer are two innovative designs: Camera-Guided Low-Rank Adaptation (CG-LoRA) and Attention-Mask Alignment (AMA) Loss. CG-LoRA dynamically incorporates camera information into the pretrained diffusion models by employing camera-dependent generation for trainable parameters. This integration enhances the alignment between the generated 3D assets and the camera's perspective. AMA loss guides the attention map of the pretrained diffusion model using the binary mask of the 3D object, prioritizing the creation of the foreground object. This module ensures that the model focuses on generating accurate and detailed foreground objects. Extensive evaluations demonstrate the effectiveness of our proposed method compared to existing text-to-3D approaches. Our project webpage: https://xmuxiaoma666.github.io/Projects/X-Dreamer .

  • 8 authors
·
Nov 30, 2023 2

ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders

Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework, offering remarkable performance across a wide range of downstream tasks. To increase the difficulty of the pretext task and learn richer visual representations, existing works have focused on replacing standard random masking with more sophisticated strategies, such as adversarial-guided and teacher-guided masking. However, these strategies depend on the input data thus commonly increasing the model complexity and requiring additional calculations to generate the mask patterns. This raises the question: Can we enhance MAE performance beyond random masking without relying on input data or incurring additional computational costs? In this work, we introduce a simple yet effective data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise. Drawing inspiration from color noise in image processing, we explore four types of filters to yield mask patterns with different spatial and semantic priors. ColorMAE requires no additional learnable parameters or computational overhead in the network, yet it significantly enhances the learned representations. We provide a comprehensive empirical evaluation, demonstrating our strategy's superiority in downstream tasks compared to random masking. Notably, we report an improvement of 2.72 in mIoU in semantic segmentation tasks relative to baseline MAE implementations.

  • 3 authors
·
Jul 17, 2024 2

FMix: Enhancing Mixed Sample Data Augmentation

Mixed Sample Data Augmentation (MSDA) has received increasing attention in recent years, with many successful variants such as MixUp and CutMix. By studying the mutual information between the function learned by a VAE on the original data and on the augmented data we show that MixUp distorts learned functions in a way that CutMix does not. We further demonstrate this by showing that MixUp acts as a form of adversarial training, increasing robustness to attacks such as Deep Fool and Uniform Noise which produce examples similar to those generated by MixUp. We argue that this distortion prevents models from learning about sample specific features in the data, aiding generalisation performance. In contrast, we suggest that CutMix works more like a traditional augmentation, improving performance by preventing memorisation without distorting the data distribution. However, we argue that an MSDA which builds on CutMix to include masks of arbitrary shape, rather than just square, could further prevent memorisation whilst preserving the data distribution in the same way. To this end, we propose FMix, an MSDA that uses random binary masks obtained by applying a threshold to low frequency images sampled from Fourier space. These random masks can take on a wide range of shapes and can be generated for use with one, two, and three dimensional data. FMix improves performance over MixUp and CutMix, without an increase in training time, for a number of models across a range of data sets and problem settings, obtaining a new single model state-of-the-art result on CIFAR-10 without external data. Finally, we show that a consequence of the difference between interpolating MSDA such as MixUp and masking MSDA such as FMix is that the two can be combined to improve performance even further. Code for all experiments is provided at https://github.com/ecs-vlc/FMix .

  • 6 authors
·
Feb 27, 2020

MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask

Click-Through Rate(CTR) estimation has become one of the most fundamental tasks in many real-world applications and it's important for ranking models to effectively capture complex high-order features. Shallow feed-forward network is widely used in many state-of-the-art DNN models such as FNN, DeepFM and xDeepFM to implicitly capture high-order feature interactions. However, some research has proved that addictive feature interaction, particular feed-forward neural networks, is inefficient in capturing common feature interaction. To resolve this problem, we introduce specific multiplicative operation into DNN ranking system by proposing instance-guided mask which performs element-wise product both on the feature embedding and feed-forward layers guided by input instance. We also turn the feed-forward layer in DNN model into a mixture of addictive and multiplicative feature interactions by proposing MaskBlock in this paper. MaskBlock combines the layer normalization, instance-guided mask, and feed-forward layer and it is a basic building block to be used to design new ranking model under various configurations. The model consisting of MaskBlock is called MaskNet in this paper and two new MaskNet models are proposed to show the effectiveness of MaskBlock as basic building block for composing high performance ranking systems. The experiment results on three real-world datasets demonstrate that our proposed MaskNet models outperform state-of-the-art models such as DeepFM and xDeepFM significantly, which implies MaskBlock is an effective basic building unit for composing new high performance ranking systems.

  • 3 authors
·
Feb 9, 2021

Mask TextSpotter v3: Segmentation Proposal Network for Robust Scene Text Spotting

Recent end-to-end trainable methods for scene text spotting, integrating detection and recognition, showed much progress. However, most of the current arbitrary-shape scene text spotters use region proposal networks (RPN) to produce proposals. RPN relies heavily on manually designed anchors and its proposals are represented with axis-aligned rectangles. The former presents difficulties in handling text instances of extreme aspect ratios or irregular shapes, and the latter often includes multiple neighboring instances into a single proposal, in cases of densely oriented text. To tackle these problems, we propose Mask TextSpotter v3, an end-to-end trainable scene text spotter that adopts a Segmentation Proposal Network (SPN) instead of an RPN. Our SPN is anchor-free and gives accurate representations of arbitrary-shape proposals. It is therefore superior to RPN in detecting text instances of extreme aspect ratios or irregular shapes. Furthermore, the accurate proposals produced by SPN allow masked RoI features to be used for decoupling neighboring text instances. As a result, our Mask TextSpotter v3 can handle text instances of extreme aspect ratios or irregular shapes, and its recognition accuracy won't be affected by nearby text or background noise. Specifically, we outperform state-of-the-art methods by 21.9 percent on the Rotated ICDAR 2013 dataset (rotation robustness), 5.9 percent on the Total-Text dataset (shape robustness), and achieve state-of-the-art performance on the MSRA-TD500 dataset (aspect ratio robustness). Code is available at: https://github.com/MhLiao/MaskTextSpotterV3

  • 5 authors
·
Jul 18, 2020

Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection

Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.

  • 8 authors
·
Sep 8, 2021

X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs

Recent advancements in Multimodal Large Language Models (MLLMs) have revolutionized the field of vision-language understanding by integrating visual perception capabilities into Large Language Models (LLMs). The prevailing trend in this field involves the utilization of a vision encoder derived from vision-language contrastive learning (CL), showing expertise in capturing overall representations while facing difficulties in capturing detailed local patterns. In this work, we focus on enhancing the visual representations for MLLMs by combining high-frequency and detailed visual representations, obtained through masked image modeling (MIM), with semantically-enriched low-frequency representations captured by CL. To achieve this goal, we introduce X-Former which is a lightweight transformer module designed to exploit the complementary strengths of CL and MIM through an innovative interaction mechanism. Specifically, X-Former first bootstraps vision-language representation learning and multimodal-to-multimodal generative learning from two frozen vision encoders, i.e., CLIP-ViT (CL-based) and MAE-ViT (MIM-based). It further bootstraps vision-to-language generative learning from a frozen LLM to ensure visual features from X-Former can be interpreted by the LLM. To demonstrate the effectiveness of our approach, we assess its performance on tasks demanding detailed visual understanding. Extensive evaluations indicate that X-Former excels in visual reasoning tasks involving both structural and semantic categories in the GQA dataset. Assessment on fine-grained visual perception benchmark further confirms its superior capabilities in visual understanding.

  • 8 authors
·
Jul 18, 2024

RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization

Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.

  • 7 authors
·
Aug 12, 2025

Mask^2DiT: Dual Mask-based Diffusion Transformer for Multi-Scene Long Video Generation

Sora has unveiled the immense potential of the Diffusion Transformer (DiT) architecture in single-scene video generation. However, the more challenging task of multi-scene video generation, which offers broader applications, remains relatively underexplored. To bridge this gap, we propose Mask^2DiT, a novel approach that establishes fine-grained, one-to-one alignment between video segments and their corresponding text annotations. Specifically, we introduce a symmetric binary mask at each attention layer within the DiT architecture, ensuring that each text annotation applies exclusively to its respective video segment while preserving temporal coherence across visual tokens. This attention mechanism enables precise segment-level textual-to-visual alignment, allowing the DiT architecture to effectively handle video generation tasks with a fixed number of scenes. To further equip the DiT architecture with the ability to generate additional scenes based on existing ones, we incorporate a segment-level conditional mask, which conditions each newly generated segment on the preceding video segments, thereby enabling auto-regressive scene extension. Both qualitative and quantitative experiments confirm that Mask^2DiT excels in maintaining visual consistency across segments while ensuring semantic alignment between each segment and its corresponding text description. Our project page is https://tianhao-qi.github.io/Mask2DiTProject.

  • 9 authors
·
Mar 25, 2025 2

Prompt-Guided Mask Proposal for Two-Stage Open-Vocabulary Segmentation

We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.

  • 6 authors
·
Dec 13, 2024

Multi-Scale Representations by Varying Window Attention for Semantic Segmentation

Multi-scale learning is central to semantic segmentation. We visualize the effective receptive field (ERF) of canonical multi-scale representations and point out two risks in learning them: scale inadequacy and field inactivation. A novel multi-scale learner, varying window attention (VWA), is presented to address these issues. VWA leverages the local window attention (LWA) and disentangles LWA into the query window and context window, allowing the context's scale to vary for the query to learn representations at multiple scales. However, varying the context to large-scale windows (enlarging ratio R) can significantly increase the memory footprint and computation cost (R^2 times larger than LWA). We propose a simple but professional re-scaling strategy to zero the extra induced cost without compromising performance. Consequently, VWA uses the same cost as LWA to overcome the receptive limitation of the local window. Furthermore, depending on VWA and employing various MLPs, we introduce a multi-scale decoder (MSD), VWFormer, to improve multi-scale representations for semantic segmentation. VWFormer achieves efficiency competitive with the most compute-friendly MSDs, like FPN and MLP decoder, but performs much better than any MSDs. For instance, using nearly half of UPerNet's computation, VWFormer outperforms it by 1.0%-2.5% mIoU on ADE20K. With little extra overhead, ~10G FLOPs, Mask2Former armed with VWFormer improves by 1.0%-1.3%. The code and models are available at https://github.com/yan-hao-tian/vw

  • 3 authors
·
Apr 25, 2024

Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding

Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.

  • 10 authors
·
Mar 18, 2025

HAT: Hybrid Attention Transformer for Image Restoration

Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising. However, we find that these networks can only utilize a limited spatial range of input information through attribution analysis. This implies that the potential of Transformer is still not fully exploited in existing networks. In order to activate more input pixels for better restoration, we propose a new Hybrid Attention Transformer (HAT). It combines both channel attention and window-based self-attention schemes, thus making use of their complementary advantages. Moreover, to better aggregate the cross-window information, we introduce an overlapping cross-attention module to enhance the interaction between neighboring window features. In the training stage, we additionally adopt a same-task pre-training strategy to further exploit the potential of the model for further improvement. Extensive experiments have demonstrated the effectiveness of the proposed modules. We further scale up the model to show that the performance of the SR task can be greatly improved. Besides, we extend HAT to more image restoration applications, including real-world image super-resolution, Gaussian image denoising and image compression artifacts reduction. Experiments on benchmark and real-world datasets demonstrate that our HAT achieves state-of-the-art performance both quantitatively and qualitatively. Codes and models are publicly available at https://github.com/XPixelGroup/HAT.

  • 7 authors
·
Sep 11, 2023

The Need for Speed: Pruning Transformers with One Recipe

We introduce the One-shot Pruning Technique for Interchangeable Networks (OPTIN) framework as a tool to increase the efficiency of pre-trained transformer architectures without requiring re-training. Recent works have explored improving transformer efficiency, however often incur computationally expensive re-training procedures or depend on architecture-specific characteristics, thus impeding practical wide-scale adoption. To address these shortcomings, the OPTIN framework leverages intermediate feature distillation, capturing the long-range dependencies of model parameters (coined trajectory), to produce state-of-the-art results on natural language, image classification, transfer learning, and semantic segmentation tasks without re-training. Given a FLOP constraint, the OPTIN framework will compress the network while maintaining competitive accuracy performance and improved throughput. Particularly, we show a leq 2% accuracy degradation from NLP baselines and a 0.5% improvement from state-of-the-art methods on image classification at competitive FLOPs reductions. We further demonstrate the generalization of tasks and architecture with comparative performance using Mask2Former for semantic segmentation and cnn-style networks. OPTIN presents one of the first one-shot efficient frameworks for compressing transformer architectures that generalizes well across different class domains, in particular: natural language and image-related tasks, without re-training.

  • 2 authors
·
Mar 26, 2024

DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing

Recent advances in diffusion models have introduced a new era of text-guided image manipulation, enabling users to create realistic edited images with simple textual prompts. However, there is significant concern about the potential misuse of these methods, especially in creating misleading or harmful content. Although recent defense strategies, which introduce imperceptible adversarial noise to induce model failure, have shown promise, they remain ineffective against more sophisticated manipulations, such as editing with a mask. In this work, we propose DiffusionGuard, a robust and effective defense method against unauthorized edits by diffusion-based image editing models, even in challenging setups. Through a detailed analysis of these models, we introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process. This approach significantly improves the efficiency and effectiveness of adversarial noises. We also introduce a mask-augmentation technique to enhance robustness against various masks during test time. Finally, we introduce a comprehensive benchmark designed to evaluate the effectiveness and robustness of methods in protecting against privacy threats in realistic scenarios. Through extensive experiments, we show that our method achieves stronger protection and improved mask robustness with lower computational costs compared to the strongest baseline. Additionally, our method exhibits superior transferability and better resilience to noise removal techniques compared to all baseline methods. Our source code is publicly available at https://github.com/choi403/DiffusionGuard.

  • 6 authors
·
Oct 8, 2024

The Missing Point in Vision Transformers for Universal Image Segmentation

Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.

  • 6 authors
·
May 26, 2025

Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models

Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

  • 5 authors
·
Sep 29, 2025

Replace Anyone in Videos

The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.

  • 10 authors
·
Sep 29, 2024

Astroformer: More Data Might not be all you need for Classification

Recent advancements in areas such as natural language processing and computer vision rely on intricate and massive models that have been trained using vast amounts of unlabelled or partly labeled data and training or deploying these state-of-the-art methods to resource constraint environments has been a challenge. Galaxy morphologies are crucial to understanding the processes by which galaxies form and evolve. Efficient methods to classify galaxy morphologies are required to extract physical information from modern-day astronomy surveys. In this paper, we introduce Astroformer, a method to learn from less amount of data. We propose using a hybrid transformer-convolutional architecture drawing much inspiration from the success of CoAtNet and MaxViT. Concretely, we use the transformer-convolutional hybrid with a new stack design for the network, a different way of creating a relative self-attention layer, and pair it with a careful selection of data augmentation and regularization techniques. Our approach sets a new state-of-the-art on predicting galaxy morphologies from images on the Galaxy10 DECals dataset, a science objective, which consists of 17736 labeled images achieving 94.86% top-1 accuracy, beating the current state-of-the-art for this task by 4.62%. Furthermore, this approach also sets a new state-of-the-art on CIFAR-100 and Tiny ImageNet. We also find that models and training methods used for larger datasets would often not work very well in the low-data regime.

  • 1 authors
·
Apr 3, 2023

ResFormer: Scaling ViTs with Multi-Resolution Training

Vision Transformers (ViTs) have achieved overwhelming success, yet they suffer from vulnerable resolution scalability, i.e., the performance drops drastically when presented with input resolutions that are unseen during training. We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions effectively, especially novel ones in testing, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes. We conduct extensive experiments for image classification on ImageNet. The results provide strong quantitative evidence that ResFormer has promising scaling abilities towards a wide range of resolutions. For instance, ResFormer-B-MR achieves a Top-1 accuracy of 75.86% and 81.72% when evaluated on relatively low and high resolutions respectively (i.e., 96 and 640), which are 48% and 7.49% better than DeiT-B. We also demonstrate, moreover, ResFormer is flexible and can be easily extended to semantic segmentation, object detection and video action recognition. Code is available at https://github.com/ruitian12/resformer.

  • 6 authors
·
Dec 1, 2022

FlexCAD: Unified and Versatile Controllable CAD Generation with Fine-tuned Large Language Models

Recently, there is a growing interest in creating computer-aided design (CAD) models based on user intent, known as controllable CAD generation. Existing work offers limited controllability and needs separate models for different types of control, reducing efficiency and practicality. To achieve controllable generation across all CAD construction hierarchies, such as sketch-extrusion, extrusion, sketch, face, loop and curve, we propose FlexCAD, a unified model by fine-tuning large language models (LLMs). First, to enhance comprehension by LLMs, we represent a CAD model as a structured text by abstracting each hierarchy as a sequence of text tokens. Second, to address various controllable generation tasks in a unified model, we introduce a hierarchy-aware masking strategy. Specifically, during training, we mask a hierarchy-aware field in the CAD text with a mask token. This field, composed of a sequence of tokens, can be set flexibly to represent various hierarchies. Subsequently, we ask LLMs to predict this masked field. During inference, the user intent is converted into a CAD text with a mask token replacing the part the user wants to modify, which is then fed into FlexCAD to generate new CAD models. Comprehensive experiments on public dataset demonstrate the effectiveness of FlexCAD in both generation quality and controllability. Code will be available at https://github.com/microsoft/FlexCAD.

  • 5 authors
·
Nov 5, 2024

Generalized Decoding for Pixel, Image, and Language

We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.

  • 14 authors
·
Dec 21, 2022 1

VMFormer: End-to-End Video Matting with Transformer

Video matting aims to predict the alpha mattes for each frame from a given input video sequence. Recent solutions to video matting have been dominated by deep convolutional neural networks (CNN) for the past few years, which have become the de-facto standard for both academia and industry. However, they have inbuilt inductive bias of locality and do not capture global characteristics of an image due to the CNN-based architectures. They also lack long-range temporal modeling considering computational costs when dealing with feature maps of multiple frames. In this paper, we propose VMFormer: a transformer-based end-to-end method for video matting. It makes predictions on alpha mattes of each frame from learnable queries given a video input sequence. Specifically, it leverages self-attention layers to build global integration of feature sequences with short-range temporal modeling on successive frames. We further apply queries to learn global representations through cross-attention in the transformer decoder with long-range temporal modeling upon all queries. In the prediction stage, both queries and corresponding feature maps are used to make the final prediction of alpha matte. Experiments show that VMFormer outperforms previous CNN-based video matting methods on the composited benchmarks. To our best knowledge, it is the first end-to-end video matting solution built upon a full vision transformer with predictions on the learnable queries. The project is open-sourced at https://chrisjuniorli.github.io/project/VMFormer/

  • 6 authors
·
Aug 26, 2022

InterFormer: Real-time Interactive Image Segmentation

Interactive image segmentation enables annotators to efficiently perform pixel-level annotation for segmentation tasks. However, the existing interactive segmentation pipeline suffers from inefficient computations of interactive models because of the following two issues. First, annotators' later click is based on models' feedback of annotators' former click. This serial interaction is unable to utilize model's parallelism capabilities. Second, in each interaction step, the model handles the invariant image along with the sparse variable clicks, resulting in a process that's highly repetitive and redundant. For efficient computations, we propose a method named InterFormer that follows a new pipeline to address these issues. InterFormer extracts and preprocesses the computationally time-consuming part i.e. image processing from the existing process. Specifically, InterFormer employs a large vision transformer (ViT) on high-performance devices to preprocess images in parallel, and then uses a lightweight module called interactive multi-head self attention (I-MSA) for interactive segmentation. Furthermore, the I-MSA module's deployment on low-power devices extends the practical application of interactive segmentation. The I-MSA module utilizes the preprocessed features to efficiently response to the annotator inputs in real-time. The experiments on several datasets demonstrate the effectiveness of InterFormer, which outperforms previous interactive segmentation models in terms of computational efficiency and segmentation quality, achieve real-time high-quality interactive segmentation on CPU-only devices. The code is available at https://github.com/YouHuang67/InterFormer.

  • 7 authors
·
Apr 6, 2023 2

Learning with Unmasked Tokens Drives Stronger Vision Learners

Masked image modeling (MIM) has become a leading self-supervised learning strategy. MIMs such as Masked Autoencoder (MAE) learn strong representations by randomly masking input tokens for the encoder to process, with the decoder reconstructing the masked tokens to the input. However, MIM pre-trained encoders often exhibit a limited attention span, attributed to MIM's sole focus on regressing masked tokens only, which may impede the encoder's broader context learning. To tackle the limitation, we improve MIM by explicitly incorporating unmasked tokens into the training process. Specifically, our method enables the encoder to learn from broader context supervision, allowing unmasked tokens to experience broader contexts while the decoder reconstructs masked tokens. Thus, the encoded unmasked tokens are equipped with extensive contextual information, empowering masked tokens to leverage the enhanced unmasked tokens for MIM. As a result, our simple remedy trains more discriminative representations revealed by achieving 84.2% top-1 accuracy with ViT-B on ImageNet-1K with 0.6%p gain. We attribute the success to the enhanced pre-training method, as evidenced by the singular value spectrum and attention analyses. Finally, our models achieve significant performance gains at the downstream semantic segmentation and fine-grained visual classification tasks; and on diverse robust evaluation metrics. Code is available at https://github.com/naver-ai/lut

naver-ai NAVER AI Lab
·
Oct 20, 2023