Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSchema-learning and rebinding as mechanisms of in-context learning and emergence
In-context learning (ICL) is one of the most powerful and most unexpected capabilities to emerge in recent transformer-based large language models (LLMs). Yet the mechanisms that underlie it are poorly understood. In this paper, we demonstrate that comparable ICL capabilities can be acquired by an alternative sequence prediction learning method using clone-structured causal graphs (CSCGs). Moreover, a key property of CSCGs is that, unlike transformer-based LLMs, they are {\em interpretable}, which considerably simplifies the task of explaining how ICL works. Specifically, we show that it uses a combination of (a) learning template (schema) circuits for pattern completion, (b) retrieving relevant templates in a context-sensitive manner, and (c) rebinding of novel tokens to appropriate slots in the templates. We go on to marshall evidence for the hypothesis that similar mechanisms underlie ICL in LLMs. For example, we find that, with CSCGs as with LLMs, different capabilities emerge at different levels of overparameterization, suggesting that overparameterization helps in learning more complex template (schema) circuits. By showing how ICL can be achieved with small models and datasets, we open up a path to novel architectures, and take a vital step towards a more general understanding of the mechanics behind this important capability.
LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models
Extracting structured information from unstructured text is crucial for modeling real-world processes, but traditional schema mining relies on semi-structured data, limiting scalability. This paper introduces schema-miner, a novel tool that combines large language models with human feedback to automate and refine schema extraction. Through an iterative workflow, it organizes properties from text, incorporates expert input, and integrates domain-specific ontologies for semantic depth. Applied to materials science--specifically atomic layer deposition--schema-miner demonstrates that expert-guided LLMs generate semantically rich schemas suitable for diverse real-world applications.
Schema-adaptable Knowledge Graph Construction
Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to dynamic scenarios or domains, whereas a new type of knowledge emerges. This necessitates a system that can handle evolving schema automatically to extract information for KGC. To address this need, we propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training. We first split and convert existing datasets based on three principles to build a benchmark, i.e., horizontal schema expansion, vertical schema expansion, and hybrid schema expansion; then investigate the schema-adaptable performance of several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We further propose a simple yet effective baseline dubbed AdaKGC, which contains schema-enriched prefix instructor and schema-conditioned dynamic decoding to better handle evolving schema. Comprehensive experimental results illustrate that AdaKGC can outperform baselines but still have room for improvement. We hope the proposed work can deliver benefits to the community. Code and datasets will be available in https://github.com/zjunlp/AdaKGC.
Rethinking Schema Linking: A Context-Aware Bidirectional Retrieval Approach for Text-to-SQL
Schema linking -- the process of aligning natural language questions with database schema elements -- is a critical yet underexplored component of Text-to-SQL systems. While recent methods have focused primarily on improving SQL generation, they often neglect the retrieval of relevant schema elements, which can lead to hallucinations and execution failures. In this work, we propose a context-aware bidirectional schema retrieval framework that treats schema linking as a standalone problem. Our approach combines two complementary strategies: table-first retrieval followed by column selection, and column-first retrieval followed by table selection. It is further augmented with techniques such as question decomposition, keyword extraction, and keyphrase extraction. Through comprehensive evaluations on challenging benchmarks such as BIRD and Spider, we demonstrate that our method significantly improves schema recall while reducing false positives. Moreover, SQL generation using our retrieved schema consistently outperforms full-schema baselines and closely approaches oracle performance, all without requiring query refinement. Notably, our method narrows the performance gap between full and perfect schema settings by 50\%. Our findings highlight schema linking as a powerful lever for enhancing Text-to-SQL accuracy and efficiency.
Schema for In-Context Learning
In-Context Learning (ICL) enables transformer-based language models to adapt to new tasks by conditioning on demonstration examples. However, traditional example-driven in-context learning lacks explicit modules for knowledge retrieval and transfer at the abstraction level. Inspired by cognitive science, specifically schema theory, which holds that humans interpret new information by activating pre-existing mental frameworks (schemas) to structure understanding, we introduce SCHEMA ACTIVATED IN CONTEXT LEARNING (SA-ICL). This framework extracts the representation of the building blocks of cognition for the reasoning process instilled from prior examples, creating an abstracted schema, a lightweight, structured template of key inferential steps and their relationships, which is then used to augment a model's reasoning process when presented with a novel question. We demonstrate that a broad range of large language models (LLMs) lack the capacity to form and utilize internal schema-based learning representations implicitly, but instead benefit significantly from explicit schema-based scaffolding. Across chemistry and physics questions from the GPQA dataset, our experiments show that SA-ICL consistently boosts performance, up to 36.19 percent, when the single demonstration example is of high quality, which simultaneously reduces reliance on the number of demonstrations and enhances interpretability. SCHEMA ACTIVATED IN CONTEXT LEARNING not only bridges disparate ICL strategies ranging from pattern priming to Chain-of-Thought prompting, but also paves a new path for enhancing human-like reasoning in LLMs.
Schema as Parameterized Tools for Universal Information Extraction
Universal information extraction (UIE) primarily employs an extractive generation approach with large language models (LLMs), typically outputting structured information based on predefined schemas such as JSON or tables. UIE suffers from a lack of adaptability when selecting between predefined schemas and on-the-fly schema generation within the in-context learning paradigm, especially when there are numerous schemas to choose from. In this paper, we propose a unified adaptive text-to-structure generation framework, called Schema as Parameterized Tools (SPT), which reimagines the tool-calling capability of LLMs by treating predefined schemas as parameterized tools for tool selection and parameter filling. Specifically, our SPT method can be applied to unify closed, open, and on-demand IE tasks by adopting Schema Retrieval by fetching the relevant schemas from a predefined pool, Schema Filling by extracting information and filling slots as with tool parameters, or Schema Generation by synthesizing new schemas with uncovered cases. Experiments show that the SPT method can handle four distinct IE tasks adaptively, delivering robust schema retrieval and selection performance. SPT also achieves comparable extraction performance to LoRA baselines and current leading UIE systems with significantly fewer trainable parameters.
LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign
Magneto: Combining Small and Large Language Models for Schema Matching
Recent advances in language models opened new opportunities to address complex schema matching tasks. Schema matching approaches have been proposed that demonstrate the usefulness of language models, but they have also uncovered important limitations: Small language models (SLMs) require training data (which can be both expensive and challenging to obtain), and large language models (LLMs) often incur high computational costs and must deal with constraints imposed by context windows. We present Magneto, a cost-effective and accurate solution for schema matching that combines the advantages of SLMs and LLMs to address their limitations. By structuring the schema matching pipeline in two phases, retrieval and reranking, Magneto can use computationally efficient SLM-based strategies to derive candidate matches which can then be reranked by LLMs, thus making it possible to reduce runtime without compromising matching accuracy. We propose a self-supervised approach to fine-tune SLMs which uses LLMs to generate syntactically diverse training data, and prompting strategies that are effective for reranking. We also introduce a new benchmark, developed in collaboration with domain experts, which includes real biomedical datasets and presents new challenges to schema matching methods. Through a detailed experimental evaluation, using both our new and existing benchmarks, we show that Magneto is scalable and attains high accuracy for datasets from different domains.
Matchmaker: Self-Improving Large Language Model Programs for Schema Matching
Schema matching -- the task of finding matches between attributes across disparate data sources with different tables and hierarchies -- is critical for creating interoperable machine learning (ML)-ready data. Addressing this fundamental data-centric problem has wide implications, especially in domains like healthcare, finance and e-commerce -- but also has the potential to benefit ML models more generally, by increasing the data available for ML model training. However, schema matching is a challenging ML task due to structural/hierarchical and semantic heterogeneity between different schemas. Previous ML approaches to automate schema matching have either required significant labeled data for model training, which is often unrealistic or suffer from poor zero-shot performance. To this end, we propose Matchmaker - a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring. Matchmaker also self-improves in a zero-shot manner without the need for labeled demonstrations via a novel optimization approach, which constructs synthetic in-context demonstrations to guide the language model's reasoning process. Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches, highlighting its potential to accelerate data integration and interoperability of ML-ready data.
SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos
We study the problem of procedure planning in instructional videos, which aims to make a goal-oriented sequence of action steps given partial visual state observations. The motivation of this problem is to learn a structured and plannable state and action space. Recent works succeeded in sequence modeling of steps with only sequence-level annotations accessible during training, which overlooked the roles of states in the procedures. In this work, we point out that State CHangEs MAtter (SCHEMA) for procedure planning in instructional videos. We aim to establish a more structured state space by investigating the causal relations between steps and states in procedures. Specifically, we explicitly represent each step as state changes and track the state changes in procedures. For step representation, we leveraged the commonsense knowledge in large language models (LLMs) to describe the state changes of steps via our designed chain-of-thought prompting. For state change tracking, we align visual state observations with language state descriptions via cross-modal contrastive learning, and explicitly model the intermediate states of the procedure using LLM-generated state descriptions. Experiments on CrossTask, COIN, and NIV benchmark datasets demonstrate that our proposed SCHEMA model achieves state-of-the-art performance and obtains explainable visualizations.
Schema-Driven Information Extraction from Heterogeneous Tables
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
Schema-Guided Dialogue State Tracking Task at DSTC8
This paper gives an overview of the Schema-Guided Dialogue State Tracking task of the 8th Dialogue System Technology Challenge. The goal of this task is to develop dialogue state tracking models suitable for large-scale virtual assistants, with a focus on data-efficient joint modeling across domains and zero-shot generalization to new APIs. This task provided a new dataset consisting of over 16000 dialogues in the training set spanning 16 domains to highlight these challenges, and a baseline model capable of zero-shot generalization to new APIs. Twenty-five teams participated, developing a range of neural network models, exceeding the performance of the baseline model by a very high margin. The submissions incorporated a variety of pre-trained encoders and data augmentation techniques. This paper describes the task definition, dataset and evaluation methodology. We also summarize the approach and results of the submitted systems to highlight the overall trends in the state-of-the-art.
Induce, Edit, Retrieve: Language Grounded Multimodal Schema for Instructional Video Retrieval
Schemata are structured representations of complex tasks that can aid artificial intelligence by allowing models to break down complex tasks into intermediate steps. We propose a novel system that induces schemata from web videos and generalizes them to capture unseen tasks with the goal of improving video retrieval performance. Our system proceeds in three major phases: (1) Given a task with related videos, we construct an initial schema for a task using a joint video-text model to match video segments with text representing steps from wikiHow; (2) We generalize schemata to unseen tasks by leveraging language models to edit the text within existing schemata. Through generalization, we can allow our schemata to cover a more extensive range of tasks with a small amount of learning data; (3) We conduct zero-shot instructional video retrieval with the unseen task names as the queries. Our schema-guided approach outperforms existing methods for video retrieval, and we demonstrate that the schemata induced by our system are better than those generated by other models.
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
SMUTF: Schema Matching Using Generative Tags and Hybrid Features
We introduce SMUTF, a unique approach for large-scale tabular data schema matching (SM), which assumes that supervised learning does not affect performance in open-domain tasks, thereby enabling effective cross-domain matching. This system uniquely combines rule-based feature engineering, pre-trained language models, and generative large language models. In an innovative adaptation inspired by the Humanitarian Exchange Language, we deploy 'generative tags' for each data column, enhancing the effectiveness of SM. SMUTF exhibits extensive versatility, working seamlessly with any pre-existing pre-trained embeddings, classification methods, and generative models. Recognizing the lack of extensive, publicly available datasets for SM, we have created and open-sourced the HDXSM dataset from the public humanitarian data. We believe this to be the most exhaustive SM dataset currently available. In evaluations across various public datasets and the novel HDXSM dataset, SMUTF demonstrated exceptional performance, surpassing existing state-of-the-art models in terms of accuracy and efficiency, and} improving the F1 score by 11.84% and the AUC of ROC by 5.08%.
Graph schemas as abstractions for transfer learning, inference, and planning
Transferring latent structure from one environment or problem to another is a mechanism by which humans and animals generalize with very little data. Inspired by cognitive and neurobiological insights, we propose graph schemas as a mechanism of abstraction for transfer learning. Graph schemas start with latent graph learning where perceptually aliased observations are disambiguated in the latent space using contextual information. Latent graph learning is also emerging as a new computational model of the hippocampus to explain map learning and transitive inference. Our insight is that a latent graph can be treated as a flexible template -- a schema -- that models concepts and behaviors, with slots that bind groups of latent nodes to the specific observations or groundings. By treating learned latent graphs (schemas) as prior knowledge, new environments can be quickly learned as compositions of schemas and their newly learned bindings. We evaluate graph schemas on two previously published challenging tasks: the memory & planning game and one-shot StreetLearn, which are designed to test rapid task solving in novel environments. Graph schemas can be learned in far fewer episodes than previous baselines, and can model and plan in a few steps in novel variations of these tasks. We also demonstrate learning, matching, and reusing graph schemas in more challenging 2D and 3D environments with extensive perceptual aliasing and size variations, and show how different schemas can be composed to model larger and more complex environments. To summarize, our main contribution is a unified system, inspired and grounded in cognitive science, that facilitates rapid transfer learning of new environments using schemas via map-induction and composition that handles perceptual aliasing.
NewsScope: Schema-Grounded Cross-Domain News Claim Extraction with Open Models
Automated news verification requires structured claim extraction, but existing approaches either lack schema compliance or generalize poorly across domains. This paper presents NewsScope, a cross-domain dataset, benchmark, and fine-tuned model for schema-grounded news claim extraction. The dataset contains 455 articles across politics, health, science/environment, and business, consisting of 395 in-domain articles and 60 out-of-source articles for generalization testing. LLaMA 3.1 8B was fine-tuned using LoRA on 315 training examples and evaluated on held-out in-domain (80 articles) and out-of-source (60 articles) test sets. Human evaluation on 400 claims shows NewsScope achieves 89.4% human-evaluated accuracy compared to GPT-4o-mini's 93.7% (p=0.07). NewsScope outperforms GPT-4o-mini on political claims (94.3% vs. 87.8%). A numeric grounding filter further improves accuracy to 91.6%, narrowing the gap to 2.1 percentage points. Inter-annotator agreement studies (160 claims) confirm labeling reliability (94.6% positive agreement on SUPPORTED judgments). The open-weight model enables offline deployment at approximately 15 on-demand compute (or 0 on free tiers). Code and benchmark are publicly released.
SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness.
Preview, Attend and Review: Schema-Aware Curriculum Learning for Multi-Domain Dialog State Tracking
Existing dialog state tracking (DST) models are trained with dialog data in a random order, neglecting rich structural information in a dataset. In this paper, we propose to use curriculum learning (CL) to better leverage both the curriculum structure and schema structure for task-oriented dialogs. Specifically, we propose a model-agnostic framework called Schema-aware Curriculum Learning for Dialog State Tracking (SaCLog), which consists of a preview module that pre-trains a DST model with schema information, a curriculum module that optimizes the model with CL, and a review module that augments mispredicted data to reinforce the CL training. We show that our proposed approach improves DST performance over both a transformer-based and RNN-based DST model (TripPy and TRADE) and achieves new state-of-the-art results on WOZ2.0 and MultiWOZ2.1.
SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
In text-to-SQL task, seq-to-seq models often lead to sub-optimal performance due to limitations in their architecture. In this paper, we present a simple yet effective approach that adapts transformer-based seq-to-seq model to robust text-to-SQL generation. Instead of inducing constraint to decoder or reformat the task as slot-filling, we propose to train seq-to-seq model with Schema aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These denoising objectives acts as the auxiliary tasks for better modeling the structural data in S2S generation. In addition, we improve and propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of seq-to-seq model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. The results indicate that the capacity of vanilla seq-to-seq architecture for text-to-SQL may have been under-estimated.
Improving Text-to-SQL with Schema Dependency Learning
Text-to-SQL aims to map natural language questions to SQL queries. The sketch-based method combined with execution-guided (EG) decoding strategy has shown a strong performance on the WikiSQL benchmark. However, execution-guided decoding relies on database execution, which significantly slows down the inference process and is hence unsatisfactory for many real-world applications. In this paper, we present the Schema Dependency guided multi-task Text-to-SQL model (SDSQL) to guide the network to effectively capture the interactions between questions and schemas. The proposed model outperforms all existing methods in both the settings with or without EG. We show the schema dependency learning partially cover the benefit from EG and alleviates the need for it. SDSQL without EG significantly reduces time consumption during inference, sacrificing only a small amount of performance and provides more flexibility for downstream applications.
Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset
Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting.
Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
Research on parsing language to SQL has largely ignored the structure of the database (DB) schema, either because the DB was very simple, or because it was observed at both training and test time. In Spider, a recently-released text-to-SQL dataset, new and complex DBs are given at test time, and so the structure of the DB schema can inform the predicted SQL query. In this paper, we present an encoder-decoder semantic parser, where the structure of the DB schema is encoded with a graph neural network, and this representation is later used at both encoding and decoding time. Evaluation shows that encoding the schema structure improves our parser accuracy from 33.8% to 39.4%, dramatically above the current state of the art, which is at 19.7%.
WinoPron: Revisiting English Winogender Schemas for Consistency, Coverage, and Grammatical Case
While measuring bias and robustness in coreference resolution are important goals, such measurements are only as good as the tools we use to measure them. Winogender Schemas (Rudinger et al., 2018) are an influential dataset proposed to evaluate gender bias in coreference resolution, but a closer look reveals issues with the data that compromise its use for reliable evaluation, including treating different pronominal forms as equivalent, violations of template constraints, and typographical errors. We identify these issues and fix them, contributing a new dataset: WinoPron. Using WinoPron, we evaluate two state-of-the-art supervised coreference resolution systems, SpanBERT, and five sizes of FLAN-T5, and demonstrate that accusative pronouns are harder to resolve for all models. We also propose a new method to evaluate pronominal bias in coreference resolution that goes beyond the binary. With this method, we also show that bias characteristics vary not just across pronoun sets (e.g., he vs. she), but also across surface forms of those sets (e.g., him vs. his).
OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
Think Inside the JSON: Reinforcement Strategy for Strict LLM Schema Adherence
In this paper, we address the challenge of enforcing strict schema adherence in large language model (LLM) generation by leveraging LLM reasoning capabilities. Building on the DeepSeek R1 reinforcement learning framework, our approach trains structured reasoning skills of a 1.5B parameter model through a novel pipeline that combines synthetic reasoning dataset construction with custom reward functions under Group Relative Policy Optimization (GRPO). Specifically, we first perform R1 reinforcement learning on a 20K sample unstructured-to-structured dataset, mirroring the original DeepSeek R1 methods, to establish core reasoning abilities. Subsequently, we performed supervised fine-tuning on a separate 10K reasoning sample dataset, focusing on refining schema adherence for downstream tasks. Despite the relatively modest training scope, requiring approximately 20 hours on an 8xH100 GPU cluster for GRPO training and 3 hours on 1xA100 for SFT, our model demonstrates robust performance in enforcing schema consistency. We compare our ThinkJSON approach against the original DeepSeek R1 (671B), distilled versions of DeepSeek R1 (Qwen-1.5B and Qwen-7B), and Gemini 2.0 Flash (70B), showcasing its effectiveness in real-world applications. Our results underscore the practical utility of a resource-efficient framework for schema-constrained text generation.
RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering
With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-Scale Databases
The task of converting natural language queries into SQL queries is intricate, necessitating a blend of precise techniques for an accurate translation. The DIN-SQL (Decomposed-In-Context SQL) methodology represents a significant development in this domain. This paper introduces DFIN (Decomposed Focused-In-Context), an innovative extension of DIN-SQL that enhances Text-to-SQL conversion by addressing schema linking errors, which are a major source of inaccuracies. DFIN uniquely alternates between prompting techniques and Retrieval-Augmented Generation (RAG), adapting to the size and complexity of the database schema. A preprocessing phase embeds database definitions and leverages annotated files, akin to those in the BIRD dataset, facilitating the runtime retrieval of pertinent schema information. This strategy significantly reduces the token count for schema linking prompts, enabling the use of a standard GPT-4 model over its larger context variant, thus handling large-scale databases more effectively and economically. Our evaluation on the BIRD dataset, a challenging real-world benchmark, demonstrates that DFIN not only scales efficiently but also improves accuracy, achieving a score of 51.69. This improvement surpasses DIN-SQL method (the current third-place), which is the highest-ranked model employing in-context learning rather than fine-tuning, previously scoring 50.72. The advancement of DFIN underscores the evolving capabilities of in-context learning methodologies combined with advanced language models, offering a promising avenue for future research in complex Text-to-SQL conversion tasks.
IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus
Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.
BreakFun: Jailbreaking LLMs via Schema Exploitation
The proficiency of Large Language Models (LLMs) in processing structured data and adhering to syntactic rules is a capability that drives their widespread adoption but also makes them paradoxically vulnerable. In this paper, we investigate this vulnerability through BreakFun, a jailbreak methodology that weaponizes an LLM's adherence to structured schemas. BreakFun employs a three-part prompt that combines an innocent framing and a Chain-of-Thought distraction with a core "Trojan Schema"--a carefully crafted data structure that compels the model to generate harmful content, exploiting the LLM's strong tendency to follow structures and schemas. We demonstrate this vulnerability is highly transferable, achieving an average success rate of 89% across 13 foundational and proprietary models on JailbreakBench, and reaching a 100% Attack Success Rate (ASR) on several prominent models. A rigorous ablation study confirms this Trojan Schema is the attack's primary causal factor. To counter this, we introduce the Adversarial Prompt Deconstruction guardrail, a defense that utilizes a secondary LLM to perform a "Literal Transcription"--extracting all human-readable text to isolate and reveal the user's true harmful intent. Our proof-of-concept guardrail demonstrates high efficacy against the attack, validating that targeting the deceptive schema is a viable mitigation strategy. Our work provides a look into how an LLM's core strengths can be turned into critical weaknesses, offering a fresh perspective for building more robustly aligned models.
A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention
Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: https://github.com/C4AI/gap-text2sql.
CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset
The cross-domain text-to-SQL task aims to build a system that can parse user questions into SQL on complete unseen databases, and the single-domain text-to-SQL task evaluates the performance on identical databases. Both of these setups confront unavoidable difficulties in real-world applications. To this end, we introduce the cross-schema text-to-SQL task, where the databases of evaluation data are different from that in the training data but come from the same domain. Furthermore, we present CSS, a large-scale CrosS-Schema Chinese text-to-SQL dataset, to carry on corresponding studies. CSS originally consisted of 4,340 question/SQL pairs across 2 databases. In order to generalize models to different medical systems, we extend CSS and create 19 new databases along with 29,280 corresponding dataset examples. Moreover, CSS is also a large corpus for single-domain Chinese text-to-SQL studies. We present the data collection approach and a series of analyses of the data statistics. To show the potential and usefulness of CSS, benchmarking baselines have been conducted and reported. Our dataset is publicly available at https://huggingface.co/datasets/zhanghanchong/css.
RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-SQL
One of the recent best attempts at Text-to-SQL is the pre-trained language model. Due to the structural property of the SQL queries, the seq2seq model takes the responsibility of parsing both the schema items (i.e., tables and columns) and the skeleton (i.e., SQL keywords). Such coupled targets increase the difficulty of parsing the correct SQL queries especially when they involve many schema items and logic operators. This paper proposes a ranking-enhanced encoding and skeleton-aware decoding framework to decouple the schema linking and the skeleton parsing. Specifically, for a seq2seq encoder-decode model, its encoder is injected by the most relevant schema items instead of the whole unordered ones, which could alleviate the schema linking effort during SQL parsing, and its decoder first generates the skeleton and then the actual SQL query, which could implicitly constrain the SQL parsing. We evaluate our proposed framework on Spider and its three robustness variants: Spider-DK, Spider-Syn, and Spider-Realistic. The experimental results show that our framework delivers promising performance and robustness. Our code is available at https://github.com/RUCKBReasoning/RESDSQL.
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4-79.1%, which are 15-35% below human performance of 94.0%, depending on the amount of the training data allowed. Furthermore, we establish new state-of-the-art results on five related benchmarks - WSC (90.1%), DPR (93.1%), COPA (90.6%), KnowRef (85.6%), and Winogender (97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.
Scaling Text2SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers
Most modern Text2SQL systems prompt large language models (LLMs) with entire schemas -- mostly column information -- alongside the user's question. While effective on small databases, this approach fails on real-world schemas that exceed LLM context limits, even for commercial models. The recent Spider 2.0 benchmark exemplifies this with hundreds of tables and tens of thousands of columns, where existing systems often break. Current mitigations either rely on costly multi-step prompting pipelines or filter columns by ranking them against user's question independently, ignoring inter-column structure. To scale existing systems, we introduce \toolname, an open-source, LLM-efficient schema filtering framework that compacts Text2SQL prompts by (i) ranking columns with a query-aware LLM encoder enriched with values and metadata, (ii) reranking inter-connected columns via a lightweight graph transformer over functional dependencies, and (iii) selecting a connectivity-preserving sub-schema with a Steiner-tree heuristic. Experiments on real datasets show that \toolname achieves near-perfect recall and higher precision than CodeS, SchemaExP, Qwen rerankers, and embedding retrievers, while maintaining sub-second median latency and scaling to schemas with 23,000+ columns. Our source code is available at https://github.com/thanhdath/grast-sql.
TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching
Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.
E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL
Translating Natural Language Queries into Structured Query Language (Text-to-SQL or NLQ-to-SQL) is a critical task extensively studied by both the natural language processing and database communities, aimed at providing a natural language interface to databases (NLIDB) and lowering the barrier for non-experts. Despite recent advancements made through the use of Large Language Models (LLMs), significant challenges remain. These include handling complex database schemas, resolving ambiguity in user queries, and generating SQL queries with intricate structures that accurately reflect the user's intent. In this work, we introduce E-SQL, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation. E-SQL enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question and SQL construction plan, bridging the gap between the query and the database structure. The pipeline leverages candidate predicate augmentation to mitigate erroneous or incomplete predicates in generated SQLs. Comprehensive evaluations on the BIRD benchmark illustrate that E-SQL achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set. A further observation from our experiments reveals that incorporating schema filtering into the translation pipeline does not have a positive impact on performance when the most advanced proprietary LLMs are used. Additionally, our experiments with small LLMs highlight the importance and positive impact of enriched questions on their performance. Without fine-tuning, single-prompt SQL generation using enriched questions with DeepSeek Coder 7B Instruct 1.5v achieves 56.45% execution accuracy on the BIRD development set.
FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema
In the quest to facilitate the deep intelligence of Large Language Models (LLMs) accessible in final-end user-bot interactions, the art of prompt crafting emerges as a critical yet complex task for the average user. Contrast to previous model-oriented yet instruction-agnostic Automatic Prompt Optimization methodologies, yielding polished results for predefined target models while suffering rapid degradation with out-of-box models, we present Free-form Instruction-oriented Prompt Optimization (FIPO). This approach is supported by our large-scale prompt preference dataset and employs a modular fine-tuning schema. The FIPO schema reimagines the optimization process into manageable modules, anchored by a meta prompt that dynamically adapts content. This allows for the flexible integration of the raw task instruction, the optional instruction response, and the optional ground truth to produce finely optimized task prompts. The FIPO preference dataset is meticulously constructed using the optimal and suboptimal LLMs, undergoing rigorous cross-verification by human experts and analytical models. Applying the insights from the data with Tulu2 models and fine-tuning strategies, we validate the efficacy of FIPO schema across five public benchmarks. Codes, data and scripts are here: https://github.com/LuJunru/FIPO_Project.
Exploring Spatial Schema Intuitions in Large Language and Vision Models
Despite the ubiquity of large language models (LLMs) in AI research, the question of embodiment in LLMs remains underexplored, distinguishing them from embodied systems in robotics where sensory perception directly informs physical action. Our investigation navigates the intriguing terrain of whether LLMs, despite their non-embodied nature, effectively capture implicit human intuitions about fundamental, spatial building blocks of language. We employ insights from spatial cognitive foundations developed through early sensorimotor experiences, guiding our exploration through the reproduction of three psycholinguistic experiments. Surprisingly, correlations between model outputs and human responses emerge, revealing adaptability without a tangible connection to embodied experiences. Notable distinctions include polarized language model responses and reduced correlations in vision language models. This research contributes to a nuanced understanding of the interplay between language, spatial experiences, and the computations made by large language models. More at https://cisnlp.github.io/Spatial_Schemas/
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual elements. In response, we propose a two-stage process for effective coverage during retrieval. First, we instruct an LLM to hallucinate a minimal DB schema deemed adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination x2013 generally considered a nuisance x2013 turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce three benchmarks. Two semi-synthetic datasets are derived from the union of schemas in two well-known datasets, SPIDER and BIRD, resulting in 4502 and 798 schema elements respectively. A real-life benchmark called SocialDB is sourced from an actual large data warehouse comprising 17844 schema elements. We show that our method1 leads to significantly higher recall than SOTA retrieval-based augmentation methods.
SGD-QA: Fast Schema-Guided Dialogue State Tracking for Unseen Services
Dialogue state tracking is an essential part of goal-oriented dialogue systems, while most of these state tracking models often fail to handle unseen services. In this paper, we propose SGD-QA, a simple and extensible model for schema-guided dialogue state tracking based on a question answering approach. The proposed multi-pass model shares a single encoder between the domain information and dialogue utterance. The domain's description represents the query and the dialogue utterance serves as the context. The model improves performance on unseen services by at least 1.6x compared to single-pass baseline models on the SGD dataset. SGD-QA shows competitive performance compared to state-of-the-art multi-pass models while being significantly more efficient in terms of memory consumption and training performance. We provide a thorough discussion on the model with ablation study and error analysis.
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historical user inputs. In this work, in addition to using encoders to capture historical information of user inputs, we propose a database schema interaction graph encoder to utilize historicalal information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
When translating natural language questions into SQL queries to answer questions from a database, contemporary semantic parsing models struggle to generalize to unseen database schemas. The generalization challenge lies in (a) encoding the database relations in an accessible way for the semantic parser, and (b) modeling alignment between database columns and their mentions in a given query. We present a unified framework, based on the relation-aware self-attention mechanism, to address schema encoding, schema linking, and feature representation within a text-to-SQL encoder. On the challenging Spider dataset this framework boosts the exact match accuracy to 57.2%, surpassing its best counterparts by 8.7% absolute improvement. Further augmented with BERT, it achieves the new state-of-the-art performance of 65.6% on the Spider leaderboard. In addition, we observe qualitative improvements in the model's understanding of schema linking and alignment. Our implementation will be open-sourced at https://github.com/Microsoft/rat-sql.
X-SQL: reinforce schema representation with context
In this work, we present X-SQL, a new network architecture for the problem of parsing natural language to SQL query. X-SQL proposes to enhance the structural schema representation with the contextual output from BERT-style pre-training model, and together with type information to learn a new schema representation for down-stream tasks. We evaluated X-SQL on the WikiSQL dataset and show its new state-of-the-art performance.
A Surprisingly Robust Trick for Winograd Schema Challenge
The Winograd Schema Challenge (WSC) dataset WSC273 and its inference counterpart WNLI are popular benchmarks for natural language understanding and commonsense reasoning. In this paper, we show that the performance of three language models on WSC273 strongly improves when fine-tuned on a similar pronoun disambiguation problem dataset (denoted WSCR). We additionally generate a large unsupervised WSC-like dataset. By fine-tuning the BERT language model both on the introduced and on the WSCR dataset, we achieve overall accuracies of 72.5% and 74.7% on WSC273 and WNLI, improving the previous state-of-the-art solutions by 8.8% and 9.6%, respectively. Furthermore, our fine-tuned models are also consistently more robust on the "complex" subsets of WSC273, introduced by Trichelair et al. (2018).
CircuitLM: A Multi-Agent LLM-Aided Design Framework for Generating Circuit Schematics from Natural Language Prompts
Generating accurate circuit schematics from high-level natural language descriptions remains a persistent challenge in electronics design, as large language models (LLMs) frequently hallucinate in granular details, violate electrical constraints, and produce non-machine-readable outputs. We present CircuitLM, a novel multi-agent LLM-aided circuit design pipeline that translates user prompts into structured, visually interpretable CircuitJSON schematics through five sequential stages: (i) LLM-based component identification, (ii) canonical pinout retrieval, (iii) chain-of-thought reasoning by an electronics expert agent, (iv) JSON schematic synthesis, and (v) force-directed SVG visualization. Anchored by a curated, embedding-powered component knowledge base. While LLMs often violate electrical constraints, CircuitLM bridges this gap by grounding generation in a verified and dynamically extensible component database, initially comprising 50 components. To ensure safety, we incorporate a hybrid evaluation framework, namely Dual-Metric Circuit Validation (DMCV), validated against human-expert assessments, which achieves high fidelity in microcontroller-centric designs. We evaluate the system on 100 diverse embedded-systems prompts across six LLMs and introduce DMCV to assess both structural and electrical validity. This work bridges natural language input to deployable hardware designs, enabling reliable circuit prototyping by non-experts. Our code and data will be made public upon acceptance.
Beyond Pixels: Visual Metaphor Transfer via Schema-Driven Agentic Reasoning
A visual metaphor constitutes a high-order form of human creativity, employing cross-domain semantic fusion to transform abstract concepts into impactful visual rhetoric. Despite the remarkable progress of generative AI, existing models remain largely confined to pixel-level instruction alignment and surface-level appearance preservation, failing to capture the underlying abstract logic necessary for genuine metaphorical generation. To bridge this gap, we introduce the task of Visual Metaphor Transfer (VMT), which challenges models to autonomously decouple the "creative essence" from a reference image and re-materialize that abstract logic onto a user-specified target subject. We propose a cognitive-inspired, multi-agent framework that operationalizes Conceptual Blending Theory (CBT) through a novel Schema Grammar ("G"). This structured representation decouples relational invariants from specific visual entities, providing a rigorous foundation for cross-domain logic re-instantiation. Our pipeline executes VMT through a collaborative system of specialized agents: a perception agent that distills the reference into a schema, a transfer agent that maintains generic space invariance to discover apt carriers, a generation agent for high-fidelity synthesis and a hierarchical diagnostic agent that mimics a professional critic, performing closed-loop backtracking to identify and rectify errors across abstract logic, component selection, and prompt encoding. Extensive experiments and human evaluations demonstrate that our method significantly outperforms SOTA baselines in metaphor consistency, analogy appropriateness, and visual creativity, paving the way for automated high-impact creative applications in advertising and media. Source code will be made publicly available.
Implementing Systemic Thinking for Automatic Schema Matching: An Agent-Based Modeling Approach
Several approaches are proposed to deal with the problem of the Automatic Schema Matching (ASM). The challenges and difficulties caused by the complexity and uncertainty characterizing both the process and the outcome of Schema Matching motivated us to investigate how bio-inspired emerging paradigm can help with understanding, managing, and ultimately overcoming those challenges. In this paper, we explain how we approached Automatic Schema Matching as a systemic and Complex Adaptive System (CAS) and how we modeled it using the approach of Agent-Based Modeling and Simulation (ABMS). This effort gives birth to a tool (prototype) for schema matching called Reflex-SMAS. A set of experiments demonstrates the viability of our approach on two main aspects: (i) effectiveness (increasing the quality of the found matchings) and (ii) efficiency (reducing the effort required for this efficiency). Our approach represents a significant paradigm-shift, in the field of Automatic Schema Matching.
MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema
We introduce the MultiLang Code Parser Dataset (MLCPD), a large-scale, language-agnostic dataset unifying syntactic and structural representations of code across ten major programming languages. MLCPD contains over seven million parsed source files normalized under our proposed universal Abstract Syntax Tree (AST) schema, enabling consistent cross-language reasoning, structural learning, and multilingual software analysis. Unlike existing corpora that focus purely on token-level code or isolated parsers, MLCPD provides both hierarchical tree representations and rich metadata for every file, ensuring lossless syntactic coverage and structural uniformity. Each entry includes a normalized schema, language-level metadata, and abstracted node semantics stored in Parquet format for scalable retrieval. Empirical analyses reveal strong cross-language structural regularities-demonstrating that syntactic graphs from languages as diverse as Python, Java, and Go can be aligned under a shared schema. We release the dataset publicly on Hugging Face and the accompanying codebase on GitHub, which includes complete pipelines for dataset reproduction, grammar compilation, and a visualization tool for exploring the unified AST across languages. Together, these resources establish MLCPD as an open, reproducible foundation for future research in cross-language representation learning and program analysis.
AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 92\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
RexUniNLU: Recursive Method with Explicit Schema Instructor for Universal NLU
Information Extraction (IE) and Text Classification (CLS) serve as the fundamental pillars of NLU, with both disciplines relying on analyzing input sequences to categorize outputs into pre-established schemas. However, there is no existing encoder-based model that can unify IE and CLS tasks from this perspective. To fully explore the foundation shared within NLU tasks, we have proposed a Recursive Method with Explicit Schema Instructor for Universal NLU. Specifically, we firstly redefine the true universal information extraction (UIE) with a formal formulation that covers almost all extraction schemas, including quadruples and quintuples which remain unsolved for previous UIE models. Then, we expands the formulation to all CLS and multi-modal NLU tasks. Based on that, we introduce RexUniNLU, an universal NLU solution that employs explicit schema constraints for IE and CLS, which encompasses all IE and CLS tasks and prevent incorrect connections between schema and input sequence. To avoid interference between different schemas, we reset the position ids and attention mask matrices. Extensive experiments are conducted on IE, CLS in both English and Chinese, and multi-modality, revealing the effectiveness and superiority. Our codes are publicly released.
RexUIE: A Recursive Method with Explicit Schema Instructor for Universal Information Extraction
Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. However, previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), which fall short of being authentic UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model's generalization and performance in low-resource scenarios. In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves State-of-the-Art results on the tasks of extracting complex schemas.
S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing. The state-of-the-art graph-based encoder has been successfully used in this task but does not model the question syntax well. In this paper, we propose S^2SQL, injecting Syntax to question-Schema graph encoder for Text-to-SQL parsers, which effectively leverages the syntactic dependency information of questions in text-to-SQL to improve the performance. We also employ the decoupling constraint to induce diverse relational edge embedding, which further improves the network's performance. Experiments on the Spider and robustness setting Spider-Syn demonstrate that the proposed approach outperforms all existing methods when pre-training models are used, resulting in a performance ranks first on the Spider leaderboard.
Can Multimodal Foundation Models Understand Schematic Diagrams? An Empirical Study on Information-Seeking QA over Scientific Papers
This paper introduces MISS-QA, the first benchmark specifically designed to evaluate the ability of models to interpret schematic diagrams within scientific literature. MISS-QA comprises 1,500 expert-annotated examples over 465 scientific papers. In this benchmark, models are tasked with interpreting schematic diagrams that illustrate research overviews and answering corresponding information-seeking questions based on the broader context of the paper. We assess the performance of 18 frontier multimodal foundation models, including o4-mini, Gemini-2.5-Flash, and Qwen2.5-VL. We reveal a significant performance gap between these models and human experts on MISS-QA. Our analysis of model performance on unanswerable questions and our detailed error analysis further highlight the strengths and limitations of current models, offering key insights to enhance models in comprehending multimodal scientific literature.
From Isolated Conversations to Hierarchical Schemas: Dynamic Tree Memory Representation for LLMs
Recent advancements in large language models have significantly improved their context windows, yet challenges in effective long-term memory management remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-structured memory representation to optimize the organization, retrieval, and integration of information, akin to human cognitive schemas. MemTree organizes memory hierarchically, with each node encapsulating aggregated textual content, corresponding semantic embeddings, and varying abstraction levels across the tree's depths. Our algorithm dynamically adapts this memory structure by computing and comparing semantic embeddings of new and existing information to enrich the model's context-awareness. This approach allows MemTree to handle complex reasoning and extended interactions more effectively than traditional memory augmentation methods, which often rely on flat lookup tables. Evaluations on benchmarks for multi-turn dialogue understanding and document question answering show that MemTree significantly enhances performance in scenarios that demand structured memory management.
GCAgent: Long-Video Understanding via Schematic and Narrative Episodic Memory
Long-video understanding remains a significant challenge for Multimodal Large Language Models (MLLMs) due to inherent token limitations and the complexity of capturing long-term temporal dependencies. Existing methods often fail to capture the global context and complex event relationships necessary for deep video reasoning. To address this, we introduce GCAgent, a novel Global-Context-Aware Agent framework that achieves comprehensive long-video understanding. Our core innovation is the Schematic and Narrative Episodic Memory. This memory structurally models events and their causal and temporal relations into a concise, organized context, fundamentally resolving the long-term dependency problem. Operating in a multi-stage Perception-Action-Reflection cycle, our GCAgent utilizes a Memory Manager to retrieve relevant episodic context for robust, context-aware inference. Extensive experiments confirm that GCAgent significantly enhances long-video understanding, achieving up to 23.5\% accuracy improvement on the Video-MME Long split over a strong MLLM baseline. Furthermore, our framework establishes state-of-the-art performance among comparable 7B-scale MLLMs, achieving 73.4\% accuracy on the Long split and the highest overall average (71.9\%) on the Video-MME benchmark, validating our agent-based reasoning paradigm and structured memory for cognitively-inspired long-video understanding.
GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.
We are what we repeatedly do: Inducing and deploying habitual schemas in persona-based responses
Many practical applications of dialogue technology require the generation of responses according to a particular developer-specified persona. While a variety of personas can be elicited from recent large language models, the opaqueness and unpredictability of these models make it desirable to be able to specify personas in an explicit form. In previous work, personas have typically been represented as sets of one-off pieces of self-knowledge that are retrieved by the dialogue system for use in generation. However, in realistic human conversations, personas are often revealed through story-like narratives that involve rich habitual knowledge -- knowledge about kinds of events that an agent often participates in (e.g., work activities, hobbies, sporting activities, favorite entertainments, etc.), including typical goals, sub-events, preconditions, and postconditions of those events. We capture such habitual knowledge using an explicit schema representation, and propose an approach to dialogue generation that retrieves relevant schemas to condition a large language model to generate persona-based responses. Furthermore, we demonstrate a method for bootstrapping the creation of such schemas by first generating generic passages from a set of simple facts, and then inducing schemas from the generated passages.
Correcting Semantic Parses with Natural Language through Dynamic Schema Encoding
In addressing the task of converting natural language to SQL queries, there are several semantic and syntactic challenges. It becomes increasingly important to understand and remedy the points of failure as the performance of semantic parsing systems improve. We explore semantic parse correction with natural language feedback, proposing a new solution built on the success of autoregressive decoders in text-to-SQL tasks. By separating the semantic and syntactic difficulties of the task, we show that the accuracy of text-to-SQL parsers can be boosted by up to 26% with only one turn of correction with natural language. Additionally, we show that a T5-base model is capable of correcting the errors of a T5-large model in a zero-shot, cross-parser setting.
AEGIS : Automated Co-Evolutionary Framework for Guarding Prompt Injections Schema
Prompt injection attacks pose a significant challenge to the safe deployment of Large Language Models (LLMs) in real-world applications. While prompt-based detection offers a lightweight and interpretable defense strategy, its effectiveness has been hindered by the need for manual prompt engineering. To address this issue, we propose AEGIS , an Automated co-Evolutionary framework for Guarding prompt Injections Schema. Both attack and defense prompts are iteratively optimized against each other using a gradient-like natural language prompt optimization technique. This framework enables both attackers and defenders to autonomously evolve via a Textual Gradient Optimization (TGO) module, leveraging feedback from an LLM-guided evaluation loop. We evaluate our system on a real-world assignment grading dataset of prompt injection attacks and demonstrate that our method consistently outperforms existing baselines, achieving superior robustness in both attack success and detection. Specifically, the attack success rate (ASR) reaches 1.0, representing an improvement of 0.26 over the baseline. For detection, the true positive rate (TPR) improves by 0.23 compared to the previous best work, reaching 0.84, and the true negative rate (TNR) remains comparable at 0.89. Ablation studies confirm the importance of co-evolution, gradient buffering, and multi-objective optimization. We also confirm that this framework is effective in different LLMs. Our results highlight the promise of adversarial training as a scalable and effective approach for guarding prompt injections.
MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL
Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.
Prompt4Vis: Prompting Large Language Models with Example Mining and Schema Filtering for Tabular Data Visualization
Data visualization (DV) systems are increasingly recognized for their profound capability to uncover insights from vast datasets, gaining attention across both industry and academia. Crafting data queries is an essential process within certain declarative visualization languages (DVLs, e.g., Vega-Lite, EChart.). The evolution of natural language processing (NLP) technologies has streamlined the use of natural language interfaces to visualize tabular data, offering a more accessible and intuitive user experience. However, current methods for converting natural language questions into data visualization queries, such as Seq2Vis, ncNet, and RGVisNet, despite utilizing complex neural network architectures, still fall short of expectations and have great room for improvement. Large language models (LLMs) such as ChatGPT and GPT-4, have established new benchmarks in a variety of NLP tasks, fundamentally altering the landscape of the field. Inspired by these advancements, we introduce a novel framework, Prompt4Vis, leveraging LLMs and in-context learning to enhance the performance of generating data visualization from natural language. Prompt4Vis comprises two key components: (1) a multi-objective example mining module, designed to find out the truly effective examples that strengthen the LLM's in-context learning capabilities for text-to-vis; (2) a schema filtering module, which is proposed to simplify the schema of the database. Extensive experiments through 5-fold cross-validation on the NVBench dataset demonstrate the superiority of Prompt4Vis, which notably surpasses the state-of-the-art (SOTA) RGVisNet by approximately 35.9% and 71.3% on dev and test sets, respectively. To the best of our knowledge, Prompt4Vis is the first work that introduces in-context learning into the text-to-vis for generating data visualization queries.
Show, Don't Tell: Demonstrations Outperform Descriptions for Schema-Guided Task-Oriented Dialogue
Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.
Auto-BI: Automatically Build BI-Models Leveraging Local Join Prediction and Global Schema Graph
Business Intelligence (BI) is crucial in modern enterprises and billion-dollar business. Traditionally, technical experts like database administrators would manually prepare BI-models (e.g., in star or snowflake schemas) that join tables in data warehouses, before less-technical business users can run analytics using end-user dashboarding tools. However, the popularity of self-service BI (e.g., Tableau and Power-BI) in recent years creates a strong demand for less technical end-users to build BI-models themselves. We develop an Auto-BI system that can accurately predict BI models given a set of input tables, using a principled graph-based optimization problem we propose called k-Min-Cost-Arborescence (k-MCA), which holistically considers both local join prediction and global schema-graph structures, leveraging a graph-theoretical structure called arborescence. While we prove k-MCA is intractable and inapproximate in general, we develop novel algorithms that can solve k-MCA optimally, which is shown to be efficient in practice with sub-second latency and can scale to the largest BI-models we encounter (with close to 100 tables). Auto-BI is rigorously evaluated on a unique dataset with over 100K real BI models we harvested, as well as on 4 popular TPC benchmarks. It is shown to be both efficient and accurate, achieving over 0.9 F1-score on both real and synthetic benchmarks.
MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling
We present MatSci-NLP, a natural language benchmark for evaluating the performance of natural language processing (NLP) models on materials science text. We construct the benchmark from publicly available materials science text data to encompass seven different NLP tasks, including conventional NLP tasks like named entity recognition and relation classification, as well as NLP tasks specific to materials science, such as synthesis action retrieval which relates to creating synthesis procedures for materials. We study various BERT-based models pretrained on different scientific text corpora on MatSci-NLP to understand the impact of pretraining strategies on understanding materials science text. Given the scarcity of high-quality annotated data in the materials science domain, we perform our fine-tuning experiments with limited training data to encourage the generalize across MatSci-NLP tasks. Our experiments in this low-resource training setting show that language models pretrained on scientific text outperform BERT trained on general text. MatBERT, a model pretrained specifically on materials science journals, generally performs best for most tasks. Moreover, we propose a unified text-to-schema for multitask learning on \benchmark and compare its performance with traditional fine-tuning methods. In our analysis of different training methods, we find that our proposed text-to-schema methods inspired by question-answering consistently outperform single and multitask NLP fine-tuning methods. The code and datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-ACL23.
