- TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic. 7 authors · May 19
1 TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Medical image segmentation is an essential prerequisite for developing healthcare systems, especially for disease diagnosis and treatment planning. On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard and achieved tremendous success. However, due to the intrinsic locality of convolution operations, U-Net generally demonstrates limitations in explicitly modeling long-range dependency. Transformers, designed for sequence-to-sequence prediction, have emerged as alternative architectures with innate global self-attention mechanisms, but can result in limited localization abilities due to insufficient low-level details. In this paper, we propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation. On one hand, the Transformer encodes tokenized image patches from a convolution neural network (CNN) feature map as the input sequence for extracting global contexts. On the other hand, the decoder upsamples the encoded features which are then combined with the high-resolution CNN feature maps to enable precise localization. We argue that Transformers can serve as strong encoders for medical image segmentation tasks, with the combination of U-Net to enhance finer details by recovering localized spatial information. TransUNet achieves superior performances to various competing methods on different medical applications including multi-organ segmentation and cardiac segmentation. Code and models are available at https://github.com/Beckschen/TransUNet. 9 authors · Feb 8, 2021