Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR
We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box coordinates as queries in Transformer decoders and dynamically updates them layer-by-layer. Using box coordinates not only helps using explicit positional priors to improve the query-to-feature similarity and eliminate the slow training convergence issue in DETR, but also allows us to modulate the positional attention map using the box width and height information. Such a design makes it clear that queries in DETR can be implemented as performing soft ROI pooling layer-by-layer in a cascade manner. As a result, it leads to the best performance on MS-COCO benchmark among the DETR-like detection models under the same setting, e.g., AP 45.7\% using ResNet50-DC5 as backbone trained in 50 epochs. We also conducted extensive experiments to confirm our analysis and verify the effectiveness of our methods. Code is available at https://github.com/SlongLiu/DAB-DETR.
ChatRex: Taming Multimodal LLM for Joint Perception and Understanding
Perception and understanding are two pillars of computer vision. While multimodal large language models (MLLM) have demonstrated remarkable visual understanding capabilities, they arguably lack accurate perception abilities, e.g. the stage-of-the-art model Qwen2-VL only achieves a 43.9 recall rate on the COCO dataset, limiting many tasks requiring the combination of perception and understanding. In this work, we aim to bridge this perception gap from both model designing and data development perspectives. We first introduce ChatRex, an MLLM with a decoupled perception design. Instead of having the LLM directly predict box coordinates, we feed the output boxes from a universal proposal network into the LLM, allowing it to output the corresponding box indices to represent its detection results, turning the regression task into a retrieval-based task that LLM handles more proficiently. From the data perspective, we build a fully automated data engine and construct the Rexverse-2M dataset which possesses multiple granularities to support the joint training of perception and understanding. After standard two-stage training, ChatRex demonstrates strong perception capabilities while preserving multimodal understanding performance. The combination of these two capabilities simultaneously unlocks many attractive applications, demonstrating the complementary roles of both perception and understanding in MLLM. Code is available at https://github.com/IDEA-Research/ChatRex.
Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception
In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.
Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs
Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in many vision-language tasks. Nevertheless, most MLLMs still lack the Referential Comprehension (RC) ability to identify a specific object or area in images, limiting their application in fine-grained perception tasks. This paper proposes a novel method to enhance the RC capability for MLLMs. Our model represents the referring object in the image using the coordinates of its bounding box and converts the coordinates into texts in a specific format. This allows the model to treat the coordinates as natural language. Moreover, we construct the instruction tuning dataset with various designed RC tasks at a low cost by unleashing the potential of annotations in existing datasets. To further boost the RC ability of the model, we propose a self-consistent bootstrapping method that extends dense object annotations of a dataset into high-quality referring-expression-bounding-box pairs. The model is trained end-to-end with a parameter-efficient tuning framework that allows both modalities to benefit from multi-modal instruction tuning. This framework requires fewer trainable parameters and less training data. Experimental results on conventional vision-language and RC tasks demonstrate the superior performance of our method. For instance, our model exhibits a 12.0% absolute accuracy improvement over Instruct-BLIP on VSR and surpasses Kosmos-2 by 24.7% on RefCOCO_val under zero-shot settings. We also attain the top position on the leaderboard of MMBench. The models, datasets, and codes are publicly available at https://github.com/SY-Xuan/Pink
Medical Phrase Grounding with Region-Phrase Context Contrastive Alignment
Medical phrase grounding (MPG) aims to locate the most relevant region in a medical image, given a phrase query describing certain medical findings, which is an important task for medical image analysis and radiological diagnosis. However, existing visual grounding methods rely on general visual features for identifying objects in natural images and are not capable of capturing the subtle and specialized features of medical findings, leading to sub-optimal performance in MPG. In this paper, we propose MedRPG, an end-to-end approach for MPG. MedRPG is built on a lightweight vision-language transformer encoder and directly predicts the box coordinates of mentioned medical findings, which can be trained with limited medical data, making it a valuable tool in medical image analysis. To enable MedRPG to locate nuanced medical findings with better region-phrase correspondences, we further propose Tri-attention Context contrastive alignment (TaCo). TaCo seeks context alignment to pull both the features and attention outputs of relevant region-phrase pairs close together while pushing those of irrelevant regions far away. This ensures that the final box prediction depends more on its finding-specific regions and phrases. Experimental results on three MPG datasets demonstrate that our MedRPG outperforms state-of-the-art visual grounding approaches by a large margin. Additionally, the proposed TaCo strategy is effective in enhancing finding localization ability and reducing spurious region-phrase correlations.
StrucTexTv2: Masked Visual-Textual Prediction for Document Image Pre-training
In this paper, we present StrucTexTv2, an effective document image pre-training framework, by performing masked visual-textual prediction. It consists of two self-supervised pre-training tasks: masked image modeling and masked language modeling, based on text region-level image masking. The proposed method randomly masks some image regions according to the bounding box coordinates of text words. The objectives of our pre-training tasks are reconstructing the pixels of masked image regions and the corresponding masked tokens simultaneously. Hence the pre-trained encoder can capture more textual semantics in comparison to the masked image modeling that usually predicts the masked image patches. Compared to the masked multi-modal modeling methods for document image understanding that rely on both the image and text modalities, StrucTexTv2 models image-only input and potentially deals with more application scenarios free from OCR pre-processing. Extensive experiments on mainstream benchmarks of document image understanding demonstrate the effectiveness of StrucTexTv2. It achieves competitive or even new state-of-the-art performance in various downstream tasks such as image classification, layout analysis, table structure recognition, document OCR, and information extraction under the end-to-end scenario.
CodeDance: A Dynamic Tool-integrated MLLM for Executable Visual Reasoning
Recent releases such as o3 highlight human-like "thinking with images" reasoning that combines structured tool use with stepwise verification, yet most open-source approaches still rely on text-only chains, rigid visual schemas, or single-step pipelines, limiting flexibility, interpretability, and transferability on complex tasks. We introduce CodeDance, which explores executable code as a general solver for visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box coordinates), CodeDance defines, composes, and executes code to orchestrate multiple tools, compute intermediate results, and render visual artifacts (e.g., boxes, lines, plots) that support transparent, self-checkable reasoning. To guide this process, we introduce a reward for balanced and adaptive tool-call, which balances exploration with efficiency and mitigates tool overuse. Interestingly, beyond the expected capabilities taught by atomic supervision, we empirically observe novel emergent behaviors during RL training: CodeDance demonstrates novel tool invocations, unseen compositions, and cross-task transfer. These behaviors arise without task-specific fine-tuning, suggesting a general and scalable mechanism of executable visual reasoning. Extensive experiments across reasoning benchmarks (e.g., visual search, math, chart QA) show that CodeDance not only consistently outperforms schema-driven and text-only baselines, but also surpasses advanced closed models such as GPT-4o and larger open-source models.
Extreme clicking for efficient object annotation
Manually annotating object bounding boxes is central to building computer vision datasets, and it is very time consuming (annotating ILSVRC [53] took 35s for one high-quality box [62]). It involves clicking on imaginary corners of a tight box around the object. This is difficult as these corners are often outside the actual object and several adjustments are required to obtain a tight box. We propose extreme clicking instead: we ask the annotator to click on four physical points on the object: the top, bottom, left- and right-most points. This task is more natural and these points are easy to find. We crowd-source extreme point annotations for PASCAL VOC 2007 and 2012 and show that (1) annotation time is only 7s per box, 5x faster than the traditional way of drawing boxes [62]; (2) the quality of the boxes is as good as the original ground-truth drawn the traditional way; (3) detectors trained on our annotations are as accurate as those trained on the original ground-truth. Moreover, our extreme clicking strategy not only yields box coordinates, but also four accurate boundary points. We show (4) how to incorporate them into GrabCut to obtain more accurate segmentations than those delivered when initializing it from bounding boxes; (5) semantic segmentations models trained on these segmentations outperform those trained on segmentations derived from bounding boxes.
Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Late-interaction multimodal retrieval models like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on area efficiency. We evaluate on BBox-DocVQA with ground-truth bounding boxes. For within-page localization (given correct page retrieval), ColQwen3-4B with percentile-50 thresholding achieves 59.7% hit rate at IoU@0.5 (84.4% at IoU@0.25, 35.8% at IoU@0.7), with mean IoU of 0.569, compared to ~6.7% for random region selection. Our approach reduces context tokens by 28.8% compared to returning all OCR regions and by 52.3% compared to full-page image tokens. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation at https://github.com/athrael-soju/Snappy.
PlanGen: Towards Unified Layout Planning and Image Generation in Auto-Regressive Vision Language Models
In this paper, we propose a unified layout planning and image generation model, PlanGen, which can pre-plan spatial layout conditions before generating images. Unlike previous diffusion-based models that treat layout planning and layout-to-image as two separate models, PlanGen jointly models the two tasks into one autoregressive transformer using only next-token prediction. PlanGen integrates layout conditions into the model as context without requiring specialized encoding of local captions and bounding box coordinates, which provides significant advantages over the previous embed-and-pool operations on layout conditions, particularly when dealing with complex layouts. Unified prompting allows PlanGen to perform multitasking training related to layout, including layout planning, layout-to-image generation, image layout understanding, etc. In addition, PlanGen can be seamlessly expanded to layout-guided image manipulation thanks to the well-designed modeling, with teacher-forcing content manipulation policy and negative layout guidance. Extensive experiments verify the effectiveness of our PlanGen in multiple layoutrelated tasks, showing its great potential. Code is available at: https://360cvgroup.github.io/PlanGen.
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
Layout-aware pre-trained models has achieved significant progress on document image question answering. They introduce extra learnable modules into existing language models to capture layout information within document images from text bounding box coordinates obtained by OCR tools. However, extra modules necessitate pre-training on extensive document images. This prevents these methods from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Instead, in this paper, we find that instruction-tuning language models like Claude and ChatGPT can understand layout by spaces and line breaks. Based on this observation, we propose the LAyout and Task aware Instruction Prompt (LATIN-Prompt), which consists of layout-aware document content and task-aware instruction. Specifically, the former uses appropriate spaces and line breaks to recover the layout information among text segments obtained by OCR tools, and the latter ensures that generated answers adhere to formatting requirements. Moreover, we propose the LAyout and Task aware Instruction Tuning (LATIN-Tuning) to improve the performance of small instruction-tuning models like Alpaca. Experimental results show that LATIN-Prompt enables zero-shot performance of Claude and ChatGPT to be comparable to the fine-tuning performance of SOTAs on document image question answering, and LATIN-Tuning enhances the zero-shot performance of Alpaca significantly. For example, LATIN-Prompt improves the performance of Claude and ChatGPT on DocVQA by 263% and 20% respectively. LATIN-Tuning improves the performance of Alpaca on DocVQA by 87.7%. Quantitative and qualitative analyses demonstrate the effectiveness of LATIN-Prompt and LATIN-Tuning. We provide the code in supplementary and will release it to facilitate future research.
NExT-Chat: An LMM for Chat, Detection and Segmentation
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance the level of visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pixel2seq). In this paper, we introduce a novel paradigm for object location modeling called pixel2emb method, where we ask the LMM to output the location embeddings and then decoded by different decoders. This paradigm allows for different location formats (such as bounding boxes and masks) to be used in multimodal conversations Furthermore, this kind of embedding based location modeling enables the utilization of existing practices in localization tasks, such as detection and segmentation. In scenarios with limited resources, our pixel2emb demonstrates superior performance compared to existing state-of-the-art (SOTA) approaches in both the location input and output tasks under fair comparison. Leveraging the proposed pixel2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region caption, and grounded reasoning.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Region-Level Context-Aware Multimodal Understanding
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM
VISEM-Tracking: Human Spermatozoa Tracking Dataset
A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-assisted sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds of wet sperm preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex deep learning models to analyze spermatozoa. The dataset is publicly available at https://zenodo.org/record/7293726.
Chest ImaGenome Dataset for Clinical Reasoning
Despite the progress in automatic detection of radiologic findings from chest X-ray (CXR) images in recent years, a quantitative evaluation of the explainability of these models is hampered by the lack of locally labeled datasets for different findings. With the exception of a few expert-labeled small-scale datasets for specific findings, such as pneumonia and pneumothorax, most of the CXR deep learning models to date are trained on global "weak" labels extracted from text reports, or trained via a joint image and unstructured text learning strategy. Inspired by the Visual Genome effort in the computer vision community, we constructed the first Chest ImaGenome dataset with a scene graph data structure to describe 242,072 images. Local annotations are automatically produced using a joint rule-based natural language processing (NLP) and atlas-based bounding box detection pipeline. Through a radiologist constructed CXR ontology, the annotations for each CXR are connected as an anatomy-centered scene graph, useful for image-level reasoning and multimodal fusion applications. Overall, we provide: i) 1,256 combinations of relation annotations between 29 CXR anatomical locations (objects with bounding box coordinates) and their attributes, structured as a scene graph per image, ii) over 670,000 localized comparison relations (for improved, worsened, or no change) between the anatomical locations across sequential exams, as well as ii) a manually annotated gold standard scene graph dataset from 500 unique patients.
GRIT: Teaching MLLMs to Think with Images
Recent studies have demonstrated the efficacy of using Reinforcement Learning (RL) in building reasoning models that articulate chains of thoughts prior to producing final answers. However, despite ongoing advances that aim at enabling reasoning for vision-language tasks, existing open-source visual reasoning models typically generate reasoning content with pure natural language, lacking explicit integration of visual information. This limits their ability to produce clearly articulated and visually grounded reasoning chains. To this end, we propose Grounded Reasoning with Images and Texts (GRIT), a novel method for training MLLMs to think with images. GRIT introduces a grounded reasoning paradigm, in which models generate reasoning chains that interleave natural language and explicit bounding box coordinates. These coordinates point to regions of the input image that the model consults during its reasoning process. Additionally, GRIT is equipped with a reinforcement learning approach, GRPO-GR, built upon the GRPO algorithm. GRPO-GR employs robust rewards focused on the final answer accuracy and format of the grounded reasoning output, which eliminates the need for data with reasoning chain annotations or explicit bounding box labels. As a result, GRIT achieves exceptional data efficiency, requiring as few as 20 image-question-answer triplets from existing datasets. Comprehensive evaluations demonstrate that GRIT effectively trains MLLMs to produce coherent and visually grounded reasoning chains, showing a successful unification of reasoning and grounding abilities.
TransVG++: End-to-End Visual Grounding with Language Conditioned Vision Transformer
In this work, we explore neat yet effective Transformer-based frameworks for visual grounding. The previous methods generally address the core problem of visual grounding, i.e., multi-modal fusion and reasoning, with manually-designed mechanisms. Such heuristic designs are not only complicated but also make models easily overfit specific data distributions. To avoid this, we first propose TransVG, which establishes multi-modal correspondences by Transformers and localizes referred regions by directly regressing box coordinates. We empirically show that complicated fusion modules can be replaced by a simple stack of Transformer encoder layers with higher performance. However, the core fusion Transformer in TransVG is stand-alone against uni-modal encoders, and thus should be trained from scratch on limited visual grounding data, which makes it hard to be optimized and leads to sub-optimal performance. To this end, we further introduce TransVG++ to make two-fold improvements. For one thing, we upgrade our framework to a purely Transformer-based one by leveraging Vision Transformer (ViT) for vision feature encoding. For another, we devise Language Conditioned Vision Transformer that removes external fusion modules and reuses the uni-modal ViT for vision-language fusion at the intermediate layers. We conduct extensive experiments on five prevalent datasets, and report a series of state-of-the-art records.
Image-based Geo-localization for Robotics: Are Black-box Vision-Language Models there yet?
The advances in Vision-Language models (VLMs) offer exciting opportunities for robotic applications involving image geo-localization, the problem of identifying the geo-coordinates of a place based on visual data only. Recent research works have focused on using a VLM as embeddings extractor for geo-localization, however, the most sophisticated VLMs may only be available as black boxes that are accessible through an API, and come with a number of limitations: there is no access to training data, model features and gradients; retraining is not possible; the number of predictions may be limited by the API; training on model outputs is often prohibited; and queries are open-ended. The utilization of a VLM as a stand-alone, zero-shot geo-localization system using a single text-based prompt is largely unexplored. To bridge this gap, this paper undertakes the first systematic study, to the best of our knowledge, to investigate the potential of some of the state-of-the-art VLMs as stand-alone, zero-shot geo-localization systems in a black-box setting with realistic constraints. We consider three main scenarios for this thorough investigation: a) fixed text-based prompt; b) semantically-equivalent text-based prompts; and c) semantically-equivalent query images. We also take into account the auto-regressive and probabilistic generation process of the VLMs when investigating their utility for geo-localization task by using model consistency as a metric in addition to traditional accuracy. Our work provides new insights in the capabilities of different VLMs for the above-mentioned scenarios.
OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes
Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
