Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn the chromatic number of random triangle-free graphs
We study the chromatic number of typical triangle-free graphs with Theta left( n^{3/2} (log n)^{1/2} right) edges and establish the width of the scaling window for the transitions from chi = 3 to chi = 4 and from chi = 4 to chi = 5. The transition from 3- to 4-colorability has scaling window of width Theta(n^{4/3} (log n)^{-1/3}). To prove this, we show a high probability equivalence of the 3-colorability of a random triangle-free graph at this density and the satisfiability of an instance of bipartite random 2-SAT, for which we establish the width of the scaling window following the techniques of Bollob{\'a}s, Borgs, Chayes, Kim, and Wilson. The transition from 4- to 5-colorability has scaling window of width Theta(n^{3/2} (log n)^{-1/2}). To prove this, we show a high probability equivalence of the 4-colorability of a random triangle-free graph at this density and the simultaneous 2-colorability of two independent Erdos--R\'enyi random graphs. For this transition, we also establish the limiting probability of 4-colorability inside the scaling window.
Distinguishability and linear independence for $H$-chromatic symmetric functions
We study the H-chromatic symmetric functions X_G^H (introduced in (arXiv:2011.06063) as a generalization of the chromatic symmetric function (CSF) X_G), which track homomorphisms from the graph G to the graph H. We focus first on the case of self-chromatic symmetric functions (self-CSFs) X_G^G, making some progress toward a conjecture from (arXiv:2011.06063) that the self-CSF, like the normal CSF, is always different for different trees. In particular, we show that the self-CSF distinguishes trees from non-trees with just one exception, we check using Sage that it distinguishes all trees on up to 12 vertices, and we show that it determines the number of legs of a spider and the degree sequence of a caterpillar given its spine length. We also show that the self-CSF detects the number of connected components of a forest, again with just one exception. Then we prove some results about the power sum expansions for H-CSFs when H is a complete bipartite graph, in particular proving that the conjecture from (arXiv:2011.06063) about p-monotonicity of ω(X_G^H) for H a star holds as long as H is sufficiently large compared to G. We also show that the self-CSFs of complete multipartite graphs form a basis for the ring Λ of symmetric functions, and we give some construction of bases for the vector space Λ^n of degree n symmetric functions using H-CSFs X_G^H where H is a fixed graph that is not a complete graph, answering a question from (arXiv:2011.06063) about whether such bases exist. However, we show that there generally do not exist such bases with G fixed, even with loops, answering another question from (arXiv:2011.06063). We also define the H-chromatic polynomial as an analogue of the chromatic polynomial, and ask when it is the same for different graphs.
Generation Of Colors using Bidirectional Long Short Term Memory Networks
Human vision can distinguish between a vast spectrum of colours, estimated to be between 2 to 7 million discernible shades. However, this impressive range does not inherently imply that all these colours have been precisely named and described within our lexicon. We often associate colours with familiar objects and concepts in our daily lives. This research endeavors to bridge the gap between our visual perception of countless shades and our ability to articulate and name them accurately. A novel model has been developed to achieve this goal, leveraging Bidirectional Long Short-Term Memory (BiLSTM) networks with Active learning. This model operates on a proprietary dataset meticulously curated for this study. The primary objective of this research is to create a versatile tool for categorizing and naming previously unnamed colours or identifying intermediate shades that elude traditional colour terminology. The findings underscore the potential of this innovative approach in revolutionizing our understanding of colour perception and language. Through rigorous experimentation and analysis, this study illuminates a promising avenue for Natural Language Processing (NLP) applications in diverse industries. By facilitating the exploration of the vast colour spectrum the potential applications of NLP are extended beyond conventional boundaries.
WL meet VC
Recently, many works studied the expressive power of graph neural networks (GNNs) by linking it to the 1-dimensional Weisfeiler--Leman algorithm (1-WL). Here, the 1-WL is a well-studied heuristic for the graph isomorphism problem, which iteratively colors or partitions a graph's vertex set. While this connection has led to significant advances in understanding and enhancing GNNs' expressive power, it does not provide insights into their generalization performance, i.e., their ability to make meaningful predictions beyond the training set. In this paper, we study GNNs' generalization ability through the lens of Vapnik--Chervonenkis (VC) dimension theory in two settings, focusing on graph-level predictions. First, when no upper bound on the graphs' order is known, we show that the bitlength of GNNs' weights tightly bounds their VC dimension. Further, we derive an upper bound for GNNs' VC dimension using the number of colors produced by the 1-WL. Secondly, when an upper bound on the graphs' order is known, we show a tight connection between the number of graphs distinguishable by the 1-WL and GNNs' VC dimension. Our empirical study confirms the validity of our theoretical findings.
Constricting the Computational Complexity Gap of the 4-Coloring Problem in (P_t,C_3)-free Graphs
The k-Coloring problem on hereditary graph classes has been a deeply researched problem over the last decade. A hereditary graph class is characterized by a (possibly infinite) list of minimal forbidden induced subgraphs. We say that a graph is (H_1,H_2,ldots)-free if it does not contain any of H_1,H_2,ldots as induced subgraphs. The complexity landscape of the problem remains unclear even when restricting to the case k=4 and classes defined by a few forbidden induced subgraphs. While the case of only one forbidden induced subgraph has been completely resolved lately, the complexity when considering two forbidden induced subgraphs still has a couple of unknown cases. In particular, 4-Coloring on (P_6,C_3)-free graphs is polynomial while it is NP-hard on (P_{22},C_3)-free graphs. We provide a reduction showing NP-completeness of 4-Coloring on (P_t,C_3)-free graphs for 19leq tleq 21, thus constricting the gap of cases whose complexity remains unknown. Our proof includes a computer search ensuring that the graph family obtained through the reduction is indeed P_{19}-free.
New conjectures on the inertia of graphs
Let G be a graph with adjacency matrix A(G). We conjecture that \[2n^+(G) \le n^-(G)(n^-(G) + 1),\] where n^+(G) and n^-(G) denote the number of positive and negative eigenvalues of A(G), respectively. This conjecture generalizes to all graphs the well-known absolute bound for strongly regular graphs. The conjecture also relates to a question posed by Torgasev. We prove the conjecture for special graph families, including line graphs and planar graphs, and provide examples where the conjecture is exact. We also conjecture that for any connected graph G, its line graph L(G) satisfies n^+(L(G)) le n^-(L(G)) + 1 and obtain partial results.
On Two Orderings of Lattice Paths
The Markov numbers are positive integers appearing as solutions to the Diophantine equation x^2 + y^2 + z^2 = 3xyz. These numbers are very well-studied and have many combinatorial properties, as well as being the source of the long-standing unicity conjecture. In 2018, Canakc{\i} and Schiffler showed that the Markov number m_{a{b}} is the number of perfect matchings of a certain snake graph corresponding to the Christoffel path from (0,0) to (a,b). Based on this correspondence, Schiffler in 2023 introduced two orderings on lattice paths. For any path omega, associate a snake graph G(omega) and a continued fraction g(omega). The ordering <_M is given by the number of perfect matchings on G(omega), and the ordering <_L is given by the Lagrange number of g(omega). In this work, we settle two conjectures of Schiffler. First, we show that the path omega(a,b) = RRcdots R UU cdots U is the unique maximum over all lattice paths from (0,0) to (a,b) with respect to both orderings <_M and <_L. We then use this result to prove that sup L(omega) over all lattice paths is exactly 1+sqrt5.
On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters
Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the k-dimensional Weisfeiler-Leman (kWL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the kWL test. A central focus of research in this field revolves around determining the least dimensionality k, for which kWL can discern graphs with different number of occurrences of a pattern graph P. We refer to such a least k as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern P. We additionally demonstrate that in cases where the kWL test distinguishes between graphs with varying occurrences of a pattern P, the exact number of occurrences of P can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern P, answering an open question from previous work.
Efficient Maximum Fair Clique Search over Large Networks
Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version)
This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size.
Quantifying the Poor Purity and Completeness of Morphological Samples Selected by Galaxy Colour
The galaxy population is strongly bimodal in both colour and morphology, and the two measures correlate strongly, with most blue galaxies being late-types (spirals) and most early-types, typically ellipticals, being red. This observation has led to the use of colour as a convenient selection criteria to make samples which are then labelled by morphology. Such use of colour as a proxy for morphology results in necessarily impure and incomplete samples. In this paper, we make use of the morphological labels produced by Galaxy Zoo to measure how incomplete and impure such samples are, considering optical (ugriz), NUV and NIR (JHK) bands. The best single colour optical selection is found using a threshold of g-r = 0.742, but this still results in a sample where only 56% of red galaxies are smooth and 56% of smooth galaxies are red. Use of the NUV gives some improvement over purely optical bands, particularly for late-types, but still results in low purity/completeness for early-types. No significant improvement is found by adding NIR bands. With any two bands, including NUV, a sample of early-types with greater than two-thirds purity cannot be constructed. Advances in quantitative galaxy morphologies have made colour-morphology proxy selections largely unnecessary going forward; where such assumptions are still required, we recommend studies carefully consider the implications of sample incompleteness/impurity.
Spectral Sufficient Conditions for Graph Factors
The {K_{1,1}, K_{1,2},C_m: mgeq3}-factor of a graph is a spanning subgraph whose each component is an element of {K_{1,1}, K_{1,2},C_m: mgeq3}. In this paper, through the graph spectral methods, we establish the lower bound of the signless Laplacian spectral radius and the upper bound of the distance spectral radius to determine whether a graph admits a {K_2}-factor. We get a lower bound on the size (resp. the spectral radius) of G to guarantee that G contains a {K_{1,1}, K_{1,2},C_m: mgeq3}-factor. Then we determine an upper bound on the distance spectral radius of G to ensure that G has a {K_{1,1}, K_{1,2},C_m: mgeq3}-factor. Furthermore, by constructing extremal graphs, we show that the above all bounds are best possible.
