new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

FunnelNet: An End-to-End Deep Learning Framework to Monitor Digital Heart Murmur in Real-Time

Objective: Heart murmurs are abnormal sounds caused by turbulent blood flow within the heart. Several diagnostic methods are available to detect heart murmurs and their severity, such as cardiac auscultation, echocardiography, phonocardiogram (PCG), etc. However, these methods have limitations, including extensive training and experience among healthcare providers, cost and accessibility of echocardiography, as well as noise interference and PCG data processing. This study aims to develop a novel end-to-end real-time heart murmur detection approach using traditional and depthwise separable convolutional networks. Methods: Continuous wavelet transform (CWT) was applied to extract meaningful features from the PCG data. The proposed network has three parts: the Squeeze net, the Bottleneck, and the Expansion net. The Squeeze net generates a compressed data representation, whereas the Bottleneck layer reduces computational complexity using a depthwise-separable convolutional network. The Expansion net is responsible for up-sampling the compressed data to a higher dimension, capturing tiny details of the representative data. Results: For evaluation, we used four publicly available datasets and achieved state-of-the-art performance in all datasets. Furthermore, we tested our proposed network on two resource-constrained devices: a Raspberry PI and an Android device, stripping it down into a tiny machine learning model (TinyML), achieving a maximum of 99.70%. Conclusion: The proposed model offers a deep learning framework for real-time accurate heart murmur detection within limited resources. Significance: It will significantly result in more accessible and practical medical services and reduced diagnosis time to assist medical professionals. The code is publicly available at TBA.

  • 6 authors
·
May 9, 2024

A Hybrid Deep Learning Model for Robust Biometric Authentication from Low-Frame-Rate PPG Signals

Photoplethysmography (PPG) signals, which measure changes in blood volume in the skin using light, have recently gained attention in biometric authentication because of their non-invasive acquisition, inherent liveness detection, and suitability for low-cost wearable devices. However, PPG signal quality is challenged by motion artifacts, illumination changes, and inter-subject physiological variability, making robust feature extraction and classification crucial. This study proposes a lightweight and cost-effective biometric authentication framework based on PPG signals extracted from low-frame-rate fingertip videos. The CFIHSR dataset, comprising PPG recordings from 46 subjects at a sampling rate of 14 Hz, is employed for evaluation. The raw PPG signals undergo a standard preprocessing pipeline involving baseline drift removal, motion artifact suppression using Principal Component Analysis (PCA), bandpass filtering, Fourier-based resampling, and amplitude normalization. To generate robust representations, each one-dimensional PPG segment is converted into a two-dimensional time-frequency scalogram via the Continuous Wavelet Transform (CWT), effectively capturing transient cardiovascular dynamics. We developed a hybrid deep learning model, termed CVT-ConvMixer-LSTM, by combining spatial features from the Convolutional Vision Transformer (CVT) and ConvMixer branches with temporal features from a Long Short-Term Memory network (LSTM). The experimental results on 46 subjects demonstrate an authentication accuracy of 98%, validating the robustness of the model to noise and variability between subjects. Due to its efficiency, scalability, and inherent liveness detection capability, the proposed system is well-suited for real-world mobile and embedded biometric security applications.

  • 2 authors
·
Nov 5

UniFlow: Unifying Speech Front-End Tasks via Continuous Generative Modeling

Generative modeling has recently achieved remarkable success across image, video, and audio domains, demonstrating powerful capabilities for unified representation learning. Yet speech front-end tasks such as speech enhancement (SE), target speaker extraction (TSE), acoustic echo cancellation (AEC), and language-queried source separation (LASS) remain largely tackled by disparate, task-specific solutions. This fragmentation leads to redundant engineering effort, inconsistent performance, and limited extensibility. To address this gap, we introduce UniFlow, a unified framework that employs continuous generative modeling to tackle diverse speech front-end tasks in a shared latent space. Specifically, UniFlow utilizes a waveform variational autoencoder (VAE) to learn a compact latent representation of raw audio, coupled with a Diffusion Transformer (DiT) that predicts latent updates. To differentiate the speech processing task during the training, learnable condition embeddings indexed by a task ID are employed to enable maximal parameter sharing while preserving task-specific adaptability. To balance model performance and computational efficiency, we investigate and compare three generative objectives: denoising diffusion, flow matching, and mean flow within the latent domain. We validate UniFlow on multiple public benchmarks, demonstrating consistent gains over state-of-the-art baselines. UniFlow's unified latent formulation and conditional design make it readily extensible to new tasks, providing an integrated foundation for building and scaling generative speech processing pipelines. To foster future research, we will open-source our codebase.

  • 9 authors
·
Aug 10

Dark Matter Subhalos and Higher Order Catastrophes in Gravitational Wave Lensing

Gravitational lensing is an invaluable probe of the nature of dark matter, and the structures it forms. Lensed gravitational waves in particular allow for unparalleled sensitivity to small scale structures within the lenses, due to the precise time resolution in combination with the continuous monitoring of the entire sky. In this work, we show two distinct ways of using strongly lensed gravitational waves to identify the presence of dark matter subhalos: {i)} through higher order caustics generating high relative magnification (mu_r > 2), short time delay image pairs that break the caustic universality relations of single dark matter halos, which occur for sim 1-10 percent of strongly lensed events in our cold dark matter models, and ii) through the presence of more than three highly magnified images, which occur for sim 0.01-1 percent of the same simulated events. We find that these results are highly sensitive to the concentrations of subhalos in our simulations, and more mildly to their number densities. The presence of low-mass subhalos increases the probability of observing wave-optics lensing in lensed gravitational waves, which is studied by solving the diffraction integral with the stationary phase approximation, as well as numerically. We also report distinct quantitative and qualitative differences in the distributions of relative magnifications and time delays for subhalo populations with increased number densities or concentrations. With the upcoming detection of strongly lensed events by ground- and space- based detectors, comparisons against these simulated distributions will provide insight into the nature of dark matter.

  • 5 authors
·
Oct 16

CLEAR: Continuous Latent Autoregressive Modeling for High-quality and Low-latency Speech Synthesis

Autoregressive (AR) language models have emerged as powerful solutions for zero-shot text-to-speech (TTS) synthesis, capable of generating natural speech from a few seconds of audio prompts. However, conventional AR-based TTS systems relying on discrete audio tokens face the challenge of lossy compression during tokenization, requiring longer discrete token sequences to capture the same information as continuous ones, which adds inference latency and complicates AR modeling. To address this challenge, this paper proposes the Continuous Latent Autoregressive model (CLEAR), a unified zero-shot TTS framework that directly models continuous audio representations. More specifically, CLEAR introduces an enhanced variational autoencoder with shortcut connections, which achieves a high compression ratio to map waveforms into compact continuous latents. A lightweight MLP-based rectified flow head that operates independently for each hidden state is presented to model the continuous latent probability distribution, and trained jointly with the AR model within a single-stage framework. Experiments show that the proposed zero-shot CLEAR TTS can synthesize high-quality speech with low latency. Compared to state-of-the-art (SOTA) TTS models, CLEAR delivers competitive performance in robustness, speaker similarity and naturalness, while offering a lower real-time factor (RTF). In particular, CLEAR achieves SOTA results on the LibriSpeech test-clean dataset, with a word error rate of 1.88\% and an RTF of 0.29. Moreover, CLEAR facilitates streaming speech synthesis with a first-frame delay of 96ms, while maintaining high-quality speech synthesis.

  • 5 authors
·
Aug 26

Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays

We present the results of simulated injections testing the first Bayesian search-pipeline capable of investigating the angular-structure of a gravitational-wave (GW) background influencing pulsar signals. A stochastic background of GWs from the incoherent superposition of many inspiraling supermassive black hole binaries at nHz frequencies is likely to be the dominant GW signal detectable by pulsar timing arrays (PTAs). Even though one might expect a background composed of a high-redshift cosmological population of sources to be fairly isotropic, deviations from isotropy may be indicative of local GW hotspots or some form of continuous anisotropy in the angular-distribution of GW-power. A GWB induces time-of-arrival deviations in pulsar signals which are correlated between separated pulsars. In an isotropic background this cross-correlation follows a distinctive relationship, known as the Hellings and Downs curve, that depends only on the angular separation of the pulsars. If the background is anisotropic, the cross-correlation is different, but predictable, and also depends on the absolute position of the pulsars. By simulating datasets containing GWBs with various anisotropic configurations, we have explored the prospects for constraining anisotropy using near future data. We find that at moderate to high signal to noise ratio the assumption of isotropy is no longer an appropriate description of the simulated background. Furthermore, we can recover the nature of the injected anisotropy in a Bayesian parameter-estimation search, and propose a prior on the anisotropy search-space motivated by the physicality of the implied distribution of sources.

  • 2 authors
·
Jun 23, 2013

Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions

We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the U(1) degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous U(1) system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.

  • 4 authors
·
Dec 14, 2022

High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models

Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.

  • 7 authors
·
Sep 27, 2023

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.

  • 2 authors
·
Dec 19, 2015