new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

FreeTacMan: Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation

Enabling robots with contact-rich manipulation remains a pivotal challenge in robot learning, which is substantially hindered by the data collection gap, including its inefficiency and limited sensor setup. While prior work has explored handheld paradigms, their rod-based mechanical structures remain rigid and unintuitive, providing limited tactile feedback and posing challenges for human operators. Motivated by the dexterity and force feedback of human motion, we propose FreeTacMan, a human-centric and robot-free data collection system for accurate and efficient robot manipulation. Concretely, we design a wearable gripper with dual visuo-tactile sensors for data collection, which can be worn by human fingers for intuitive control. A high-precision optical tracking system is introduced to capture end-effector poses while synchronizing visual and tactile feedback simultaneously. We leverage FreeTacMan to collect a large-scale multimodal dataset, comprising over 3000k paired visual-tactile images with end-effector poses, 10k demonstration trajectories across 50 diverse contact-rich manipulation tasks. FreeTacMan achieves multiple improvements in data collection performance compared to prior works, and enables effective policy learning for contact-rich manipulation tasks with self-collected dataset. The full suite of hardware specifications and the dataset will be released to facilitate reproducibility and support research in visuo-tactile manipulation.

  • 8 authors
·
Jun 2, 2025

ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation

Representing robotic manipulation tasks as constraints that associate the robot and the environment is a promising way to encode desired robot behaviors. However, it remains unclear how to formulate the constraints such that they are 1) versatile to diverse tasks, 2) free of manual labeling, and 3) optimizable by off-the-shelf solvers to produce robot actions in real-time. In this work, we introduce Relational Keypoint Constraints (ReKep), a visually-grounded representation for constraints in robotic manipulation. Specifically, ReKep is expressed as Python functions mapping a set of 3D keypoints in the environment to a numerical cost. We demonstrate that by representing a manipulation task as a sequence of Relational Keypoint Constraints, we can employ a hierarchical optimization procedure to solve for robot actions (represented by a sequence of end-effector poses in SE(3)) with a perception-action loop at a real-time frequency. Furthermore, in order to circumvent the need for manual specification of ReKep for each new task, we devise an automated procedure that leverages large vision models and vision-language models to produce ReKep from free-form language instructions and RGB-D observations. We present system implementations on a wheeled single-arm platform and a stationary dual-arm platform that can perform a large variety of manipulation tasks, featuring multi-stage, in-the-wild, bimanual, and reactive behaviors, all without task-specific data or environment models. Website at https://rekep-robot.github.io/.

  • 5 authors
·
Sep 3, 2024

ManipLLM: Embodied Multimodal Large Language Model for Object-Centric Robotic Manipulation

Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.

  • 9 authors
·
Dec 24, 2023

Robo2VLM: Visual Question Answering from Large-Scale In-the-Wild Robot Manipulation Datasets

Vision-Language Models (VLMs) acquire real-world knowledge and general reasoning ability through Internet-scale image-text corpora. They can augment robotic systems with scene understanding and task planning, and assist visuomotor policies that are trained on robot trajectory data. We explore the reverse paradigm - using rich, real, multi-modal robot trajectory data to enhance and evaluate VLMs. In this paper, we present Robo2VLM, a Visual Question Answering (VQA) dataset generation framework for VLMs. Given a human tele-operated robot trajectory, Robo2VLM derives ground-truth from non-visual and non-descriptive sensory modalities, such as end-effector pose, gripper aperture, and force sensing. Based on these modalities, it segments the robot trajectory into a sequence of manipulation phases. At each phase, Robo2VLM uses scene and interaction understanding to identify 3D properties of the robot, task goal, and the target object. The properties are used to generate representative VQA queries - images with textural multiple-choice questions - based on spatial, goal-conditioned, and interaction reasoning question templates. We curate Robo2VLM-1, a large-scale in-the-wild dataset with 684,710 questions covering 463 distinct scenes and 3,396 robotic manipulation tasks from 176k real robot trajectories. Results suggest that Robo2VLM-1 can benchmark and improve VLM capabilities in spatial and interaction reasoning.

  • 4 authors
·
May 21, 2025 2

IGen: Scalable Data Generation for Robot Learning from Open-World Images

The rise of generalist robotic policies has created an exponential demand for large-scale training data. However, on-robot data collection is labor-intensive and often limited to specific environments. In contrast, open-world images capture a vast diversity of real-world scenes that naturally align with robotic manipulation tasks, offering a promising avenue for low-cost, large-scale robot data acquisition. Despite this potential, the lack of associated robot actions hinders the practical use of open-world images for robot learning, leaving this rich visual resource largely unexploited. To bridge this gap, we propose IGen, a framework that scalably generates realistic visual observations and executable actions from open-world images. IGen first converts unstructured 2D pixels into structured 3D scene representations suitable for scene understanding and manipulation. It then leverages the reasoning capabilities of vision-language models to transform scene-specific task instructions into high-level plans and generate low-level actions as SE(3) end-effector pose sequences. From these poses, it synthesizes dynamic scene evolution and renders temporally coherent visual observations. Experiments validate the high quality of visuomotor data generated by IGen, and show that policies trained solely on IGen-synthesized data achieve performance comparable to those trained on real-world data. This highlights the potential of IGen to support scalable data generation from open-world images for generalist robotic policy training.

  • 13 authors
·
Dec 1, 2025

PCHands: PCA-based Hand Pose Synergy Representation on Manipulators with N-DoF

We consider the problem of learning a common representation for dexterous manipulation across manipulators of different morphologies. To this end, we propose PCHands, a novel approach for extracting hand postural synergies from a large set of manipulators. We define a simplified and unified description format based on anchor positions for manipulators ranging from 2-finger grippers to 5-finger anthropomorphic hands. This enables learning a variable-length latent representation of the manipulator configuration and the alignment of the end-effector frame of all manipulators. We show that it is possible to extract principal components from this latent representation that is universal across manipulators of different structures and degrees of freedom. To evaluate PCHands, we use this compact representation to encode observation and action spaces of control policies for dexterous manipulation tasks learned with RL. In terms of learning efficiency and consistency, the proposed representation outperforms a baseline that learns the same tasks in joint space. We additionally show that PCHands performs robustly in RL from demonstration, when demonstrations are provided from a different manipulator. We further support our results with real-world experiments that involve a 2-finger gripper and a 4-finger anthropomorphic hand. Code and additional material are available at https://hsp-iit.github.io/PCHands/.

SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation

Acquiring a multi-task imitation policy in 3D manipulation poses challenges in terms of scene understanding and action prediction. Current methods employ both 3D representation and multi-view 2D representation to predict the poses of the robot's end-effector. However, they still require a considerable amount of high-quality robot trajectories, and suffer from limited generalization in unseen tasks and inefficient execution in long-horizon reasoning. In this paper, we propose SAM-E, a novel architecture for robot manipulation by leveraging a vision-foundation model for generalizable scene understanding and sequence imitation for long-term action reasoning. Specifically, we adopt Segment Anything (SAM) pre-trained on a huge number of images and promptable masks as the foundation model for extracting task-relevant features, and employ parameter-efficient fine-tuning on robot data for a better understanding of embodied scenarios. To address long-horizon reasoning, we develop a novel multi-channel heatmap that enables the prediction of the action sequence in a single pass, notably enhancing execution efficiency. Experimental results from various instruction-following tasks demonstrate that SAM-E achieves superior performance with higher execution efficiency compared to the baselines, and also significantly improves generalization in few-shot adaptation to new tasks.

  • 8 authors
·
May 29, 2024