new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

ProAct: Progressive Training for Hybrid Clipped Activation Function to Enhance Resilience of DNNs

Deep Neural Networks (DNNs) are extensively employed in safety-critical applications where ensuring hardware reliability is a primary concern. To enhance the reliability of DNNs against hardware faults, activation restriction techniques significantly mitigate the fault effects at the DNN structure level, irrespective of accelerator architectures. State-of-the-art methods offer either neuron-wise or layer-wise clipping activation functions. They attempt to determine optimal clipping thresholds using heuristic and learning-based approaches. Layer-wise clipped activation functions cannot preserve DNNs resilience at high bit error rates. On the other hand, neuron-wise clipping activation functions introduce considerable memory overhead due to the addition of parameters, which increases their vulnerability to faults. Moreover, the heuristic-based optimization approach demands numerous fault injections during the search process, resulting in time-consuming threshold identification. On the other hand, learning-based techniques that train thresholds for entire layers concurrently often yield sub-optimal results. In this work, first, we demonstrate that it is not essential to incorporate neuron-wise activation functions throughout all layers in DNNs. Then, we propose a hybrid clipped activation function that integrates neuron-wise and layer-wise methods that apply neuron-wise clipping only in the last layer of DNNs. Additionally, to attain optimal thresholds in the clipping activation function, we introduce ProAct, a progressive training methodology. This approach iteratively trains the thresholds on a layer-by-layer basis, aiming to obtain optimal threshold values in each layer separately.

  • 5 authors
·
Jun 10, 2024

FT-ClipAct: Resilience Analysis of Deep Neural Networks and Improving their Fault Tolerance using Clipped Activation

Deep Neural Networks (DNNs) are widely being adopted for safety-critical applications, e.g., healthcare and autonomous driving. Inherently, they are considered to be highly error-tolerant. However, recent studies have shown that hardware faults that impact the parameters of a DNN (e.g., weights) can have drastic impacts on its classification accuracy. In this paper, we perform a comprehensive error resilience analysis of DNNs subjected to hardware faults (e.g., permanent faults) in the weight memory. The outcome of this analysis is leveraged to propose a novel error mitigation technique which squashes the high-intensity faulty activation values to alleviate their impact. We achieve this by replacing the unbounded activation functions with their clipped versions. We also present a method to systematically define the clipping values of the activation functions that result in increased resilience of the networks against faults. We evaluate our technique on the AlexNet and the VGG-16 DNNs trained for the CIFAR-10 dataset. The experimental results show that our mitigation technique significantly improves the resilience of the DNNs to faults. For example, the proposed technique offers on average 68.92% improvement in the classification accuracy of resilience-optimized VGG-16 model at 1e-5 fault rate, when compared to the base network without any fault mitigation.

  • 3 authors
·
Dec 2, 2019

KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution

Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72% and 5.38% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software.

  • 7 authors
·
Jul 2, 2024