- A unified diagrammatic approach to quantum transport in few-level junctions for bosonic and fermionic reservoirs: Application to the quantum Rabi model We apply the Nakajima-Zwanzig approach to open quantum systems to study steady-state transport across generic multi-level junctions coupled to bosonic or fermionic reservoirs. The method allows for a unified diagrammatic formulation in Liouville space, with diagrams being classified according to an expansion in the coupling strength between the reservoirs and the junction. Analytical, approximate expressions are provided up to fourth order for the steady-state boson transport that generalize to multi-level systems the known results for the low-temperature thermal conductance in the spin-boson model. The formalism is applied to the problem of heat transport in a qubit-resonator junction modeled by the quantum Rabi model. Nontrivial transport features emerge as a result of the interplay between the qubit-oscillator detuning and coupling strength. For quasi-degenerate spectra, nonvanishing steady-state coherences cause a suppression of the thermal conductance. 3 authors · Mar 11, 2024
3 GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to viable fusion power is understanding plasma turbulence, which significantly impairs plasma confinement, and is vital for next-generation reactor design. Plasma turbulence is governed by the nonlinear gyrokinetic equation, which evolves a 5D distribution function over time. Due to its high computational cost, reduced-order models are often employed in practice to approximate turbulent transport of energy. However, they omit nonlinear effects unique to the full 5D dynamics. To tackle this, we introduce GyroSwin, the first scalable 5D neural surrogate that can model 5D nonlinear gyrokinetic simulations, thereby capturing the physical phenomena neglected by reduced models, while providing accurate estimates of turbulent heat transport.GyroSwin (i) extends hierarchical Vision Transformers to 5D, (ii) introduces cross-attention and integration modules for latent 3Dleftrightarrow5D interactions between electrostatic potential fields and the distribution function, and (iii) performs channelwise mode separation inspired by nonlinear physics. We demonstrate that GyroSwin outperforms widely used reduced numerics on heat flux prediction, captures the turbulent energy cascade, and reduces the cost of fully resolved nonlinear gyrokinetics by three orders of magnitude while remaining physically verifiable. GyroSwin shows promising scaling laws, tested up to one billion parameters, paving the way for scalable neural surrogates for gyrokinetic simulations of plasma turbulence. Johannes Kepler University · Oct 8, 2025 2
- Quantum thermophoresis Thermophoresis is the migration of a particle due to a thermal gradient. Here, we theoretically uncover the quantum version of thermophoresis. As a proof of principle, we analytically find a thermophoretic force on a trapped quantum particle having three energy levels in Lambda configuration. We then consider a model of N sites, each coupled to its first neighbors and subjected to a local bath at a certain temperature, so as to show numerically how quantum thermophoresis behaves with increasing delocalization of the quantum particle. We discuss how negative thermophoresis and the Dufour effect appear in the quantum regime. 3 authors · Apr 18, 2024
1 vHeat: Building Vision Models upon Heat Conduction A fundamental problem in learning robust and expressive visual representations lies in efficiently estimating the spatial relationships of visual semantics throughout the entire image. In this study, we propose vHeat, a novel vision backbone model that simultaneously achieves both high computational efficiency and global receptive field. The essential idea, inspired by the physical principle of heat conduction, is to conceptualize image patches as heat sources and model the calculation of their correlations as the diffusion of thermal energy. This mechanism is incorporated into deep models through the newly proposed module, the Heat Conduction Operator (HCO), which is physically plausible and can be efficiently implemented using DCT and IDCT operations with a complexity of O(N^{1.5}). Extensive experiments demonstrate that vHeat surpasses Vision Transformers (ViTs) across various vision tasks, while also providing higher inference speeds, reduced FLOPs, and lower GPU memory usage for high-resolution images. The code will be released at https://github.com/MzeroMiko/vHeat. 7 authors · May 26, 2024
2 Neural Conditional Transport Maps We present a neural framework for learning conditional optimal transport (OT) maps between probability distributions. Our approach introduces a conditioning mechanism capable of processing both categorical and continuous conditioning variables simultaneously. At the core of our method lies a hypernetwork that generates transport layer parameters based on these inputs, creating adaptive mappings that outperform simpler conditioning methods. Comprehensive ablation studies demonstrate the superior performance of our method over baseline configurations. Furthermore, we showcase an application to global sensitivity analysis, offering high performance in computing OT-based sensitivity indices. This work advances the state-of-the-art in conditional optimal transport, enabling broader application of optimal transport principles to complex, high-dimensional domains such as generative modeling and black-box model explainability. 4 authors · May 21, 2025
- Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases. 8 authors · Jan 10, 2025
- Morphological Regimes of Rotating Moist Convection Moist convection is a physical process where the latent heat released by condensation acts as a buoyancy source that can enhance or even trigger an overturning convective instability. Since the saturation temperature often decreases with height, condensation releases latent heat preferentially in regions of upflow. Due to this inhomogeneous heat source, moist convection may be more sensitive to changes in flow morphology, such as those induced by rotation, than dry Rayleigh-B\'enard convection. In order to study the effects of rotation on flows driven by latent heat release, we present a suite of numerical simulations that solve the Rainy-B\'enard equations (Vallis et al. 2019). We identify three morphological regimes: a cellular regime and a plume regime broadly analogous to those found in rotating Rayleigh B\'enard convection, and a novel funnel regime that lacks a clear analog within the regimes exhibited by dry convection. We measure energy fluxes through the system and report rotational scalings of the Reynolds and moist Nusselt numbers. We find that moist static energy transport, as measured by a moist Nusselt number, is significantly enhanced in the funnel regime without a corresponding enhancement in Reynolds number, indicating that this funnel regime produces structures with more favorable correlations between the temperature and vertical velocity. 5 authors · May 2, 2025
- Modeling formation and transport of clusters at high temperature and pressure gradients by implying partial chemical equilibrium A theoretical approach to describing transport of an entire ensemble of clusters with different sizes as a single species in gas has been developed. The major assumption is an existence of local partial chemical equilibrium between the clusters. It is shown that thermal diffusion emerges in the collective description as a significant factor even if it is negligible when transport of the original molecular species is considered. Analytical expressions for the effective diffusion and thermal diffusion coefficients at temperature, pressure, and chemical composition gradients have been derived. The theory has been applied to a technology of H2S conversion in a centrifugal plasma-chemical reactor and has made it possible to account for sulfur clusters in numerical process modeling. 2 authors · Oct 24, 2025
- Shaded Route Planning Using Active Segmentation and Identification of Satellite Images Heatwaves pose significant health risks, particularly due to prolonged exposure to high summer temperatures. Vulnerable groups, especially pedestrians and cyclists on sun-exposed sidewalks, motivate the development of a route planning method that incorporates somatosensory temperature effects through shade ratio consideration. This paper is the first to introduce a pipeline that utilizes segmentation foundation models to extract shaded areas from high-resolution satellite images. These areas are then integrated into a multi-layered road map, enabling users to customize routes based on a balance between distance and shade exposure, thereby enhancing comfort and health during outdoor activities. Specifically, we construct a graph-based representation of the road map, where links indicate connectivity and are updated with shade ratio data for dynamic route planning. This system is already implemented online, with a video demonstration, and will be specifically adapted to assist travelers during the 2024 Olympic Games in Paris. 5 authors · Jul 18, 2024
- Vortex Creep Heating in Neutron Star Cooling: New Insights into Thermal Evolution of Heavy Neutron Stars Neutron stars provide unique laboratories for probing physics of dense nuclear matter under extreme conditions. Their thermal and luminosity evolution reflects key internal properties such as the equation of state (EoS), nucleon superfluidity and superconductivity, envelope composition, and magnetic field, and so on. Recent observations [e.g., V. Abramkin et al., ApJ 924, 128 (2022)] have revealed unexpectedly warm old neutron stars, which cannot be explained by standard neutrino-photon cooling models. The failure of the standard cooling models implies the presence of additional internal heating mechanism. Building on the previous study [M. Fujiwara et al., JCAP 03, 051 (2024)], which proposed vortex creep heating (VCH) from the frictional motion of superfluid vortices as a viable mechanism, we extend the cooling framework to include both VCH and direct Urca (DUrca) processes. These are implemented in our code to explore their combined impact, particularly for massive neutron stars where DUrca operates. By varying rotational parameters (P, P, P_0), EoS models (APR, BSk24), pairing gaps, and envelope compositions, we examine how heating-cooling interplay shapes the temperature evolution. Our results show that VCH can substantially mitigate the rapid cooling driven by DUrca, offering new evolutionary pathways for massive neutron stars. 2 authors · Oct 28, 2025
- From black holes to strange metals Since the mid-eighties there has been an accumulation of metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory. Examples of these so-called non-Fermi liquids include the strange metal phase of high transition temperature cuprates, and heavy fermion systems near a quantum phase transition. We report on a class of non-Fermi liquids discovered using gauge/gravity duality. The low energy behavior of these non-Fermi liquids is shown to be governed by a nontrivial infrared (IR) fixed point which exhibits nonanalytic scaling behavior only in the temporal direction. Within this class we find examples whose single-particle spectral function and transport behavior resemble those of strange metals. In particular, the contribution from the Fermi surface to the conductivity is inversely proportional to the temperature. In our treatment these properties can be understood as being controlled by the scaling dimension of the fermion operator in the emergent IR fixed point. 5 authors · Mar 8, 2010
- Interplay between thermal and compositional gradients decides the microstructure during thermomigration: a phase-field study The presence of thermal gradients in alloys often leads to non-uniformity in concentration profiles, which can induce the thermomigration of microstructural features such as precipitates. To investigate such microstructural changes, we present a phase-field model that incorporates coupling between concentration and thermal gradients. First, we simulated the evolution of non-uniform concentration profiles in the single-phase regions of Fe-C and Fe-N alloy systems due to imposed thermal gradients. To validate our model with the classical experiments performed by Darken and Oriani, we studied the evolution of spatially varying concentration profiles where thermal gradients encompass single-phase and two-phase regions. We developed a parameterized thermodynamic description of the two-phase region of a binary alloy to systematically study the effect of interactions between chemically-driven and thermal gradient-driven diffusion of solute on the evolution of precipitates. Our simulations show how thermal gradient, precipitate size, and interparticle distance influence the migration and associated morphological changes of precipitates. The composition profiles and migration rates obtained from single-particle simulations show an exact match with our analytical model. We use twoparticle simulations to show conditions under which thermomigration induces the growth of the smaller particle and shrinkage of the larger one in contrast to the isothermal Ostwald ripening behavior. Our multiparticle simulations show similar behavior during coarsening. Moreover, in the presence of a thermal gradient, there is a shift in the center of mass of the precipitates towards the high-temperature region. Thus, our study offers new insights into the phenomena of microstructure evolution in the presence of thermal gradient. 4 authors · Jun 2, 2024
1 TOMATOES: Topology and Material Optimization for Latent Heat Thermal Energy Storage Devices Latent heat thermal energy storage (LHTES) systems are compelling candidates for energy storage, primarily owing to their high storage density. Improving their performance is crucial for developing the next-generation efficient and cost effective devices. Topology optimization (TO) has emerged as a powerful computational tool to design LHTES systems by optimally distributing a high-conductivity material (HCM) and a phase change material (PCM). However, conventional TO typically limits to optimizing the geometry for a fixed, pre-selected materials. This approach does not leverage the large and expanding databases of novel materials. Consequently, the co-design of material and geometry for LHTES remains a challenge and unexplored. To address this limitation, we present an automated design framework for the concurrent optimization of material choice and topology. A key challenge is the discrete nature of material selection, which is incompatible with the gradient-based methods used for TO. We overcome this by using a data-driven variational autoencoder (VAE) to project discrete material databases for both the HCM and PCM onto continuous and differentiable latent spaces. These continuous material representations are integrated into an end-to-end differentiable, transient nonlinear finite-element solver that accounts for phase change. We demonstrate this framework on a problem aimed at maximizing the discharged energy within a specified time, subject to cost constraints. The effectiveness of the proposed method is validated through several illustrative examples. 3 authors · Oct 8, 2025
1 FEAT: Free energy Estimators with Adaptive Transport We present Free energy Estimators with Adaptive Transport (FEAT), a novel framework for free energy estimation -- a critical challenge across scientific domains. FEAT leverages learned transports implemented via stochastic interpolants and provides consistent, minimum-variance estimators based on escorted Jarzynski equality and controlled Crooks theorem, alongside variational upper and lower bounds on free energy differences. Unifying equilibrium and non-equilibrium methods under a single theoretical framework, FEAT establishes a principled foundation for neural free energy calculations. Experimental validation on toy examples, molecular simulations, and quantum field theory demonstrates improvements over existing learning-based methods. 7 authors · Apr 15, 2025
1 Dynamic processes in superconductors and the laws of thermodynamics The transition from the superconducting to the normal state in a magnetic field was considered as a irreversible thermodynamic process before 1933 because of Joule heating. But all physicists became to consider this transition as reversible after 1933 because of the obvious contradiction of the Meissner effect with the second law of thermodynamics if this transition is considered as a irreversible process. This radical change of the opinion contradicted logic since the dissipation of the kinetic energy of the surface screening current into Joule heat in the normal state cannot depend on how this current appeared in the superconducting state. The inconsistency of the conventional theory of superconductivity, created in the framework of the equilibrium thermodynamics, with Joule heating, on which Jorge Hirsch draws reader's attention, is a consequence of this history. In order to avoid contradiction with the second law of thermodynamics, physicists postulated in the thirties of the last century that the surface screening current is damped without the generation of Joule heat. This postulate contradicts not only logic and the conventional theory of superconductivity but also experimental results. 1 authors · Aug 23, 2021