new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Frequency-Specific Neural Response and Cross-Correlation Analysis of Envelope Following Responses to Native Speech and Music Using Multichannel EEG Signals: A Case Study

Although native speech and music envelope following responses (EFRs) play a crucial role in auditory processing and cognition, their frequency profile, such as the dominating frequency and spectral coherence, is largely unknown. We have assumed that the auditory pathway - which transmits envelope components of speech and music to the scalp through time-varying neurophysiological processes - is a linear time-varying system, with the envelope and the multi-channel EEG responses as excitation and response, respectively. This paper investigates the transfer function of this system through two analytical techniques - time-averaged spectral responses and cross-spectral density - in the frequency domain at four different positions of the human scalp. Our findings suggest that alpha (8-11 Hz), lower gamma (53-56 Hz), and higher gamma (78-81 Hz) bands are the peak responses of the system. These frequently appearing dominant frequency responses may be the key components of familiar speech perception, maintaining attention, binding acoustic features, and memory processing. The cross-spectral density, which reflects the spatial neural coherence of the human brain, shows that 10-13 Hz, 27-29 Hz, and 62-64 Hz are common for all channel pairs. As neural coherences are frequently observed in these frequencies among native participants, we suggest that these distributed neural processes are also dominant in native speech and music perception.

  • 4 authors
·
Jul 7

Audio-Language Models for Audio-Centric Tasks: A survey

Audio-Language Models (ALMs), which are trained on audio-text data, focus on the processing, understanding, and reasoning of sounds. Unlike traditional supervised learning approaches learning from predefined labels, ALMs utilize natural language as a supervision signal, which is more suitable for describing complex real-world audio recordings. ALMs demonstrate strong zero-shot capabilities and can be flexibly adapted to diverse downstream tasks. These strengths not only enhance the accuracy and generalization of audio processing tasks but also promote the development of models that more closely resemble human auditory perception and comprehension. Recent advances in ALMs have positioned them at the forefront of computer audition research, inspiring a surge of efforts to advance ALM technologies. Despite rapid progress in the field of ALMs, there is still a notable lack of systematic surveys that comprehensively organize and analyze developments. In this paper, we present a comprehensive review of ALMs with a focus on general audio tasks, aiming to fill this gap by providing a structured and holistic overview of ALMs. Specifically, we cover: (1) the background of computer audition and audio-language models; (2) the foundational aspects of ALMs, including prevalent network architectures, training objectives, and evaluation methods; (3) foundational pre-training and audio-language pre-training approaches; (4) task-specific fine-tuning, multi-task tuning and agent systems for downstream applications; (5) datasets and benchmarks; and (6) current challenges and future directions. Our review provides a clear technical roadmap for researchers to understand the development and future trends of existing technologies, offering valuable references for implementation in real-world scenarios.

  • 5 authors
·
Jan 25

NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping

Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern neuroscience, providing a non-invasive window into whole-brain dynamics at millimeter-scale spatial resolution. However, fMRI is constrained by issues such as high operation costs and immobility. With the rapid advancements in cross-modality synthesis and brain decoding, the use of deep neural networks has emerged as a promising solution for inferring whole-brain, high-resolution fMRI features directly from electroencephalography (EEG), a more widely accessible and portable neuroimaging modality. Nonetheless, the complex projection from neural activity to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial challenges both in modeling and interpretability. Relatively few studies to date have developed approaches for EEG-fMRI translation, and although they have made significant strides, the inference of fMRI signals in a given study has been limited to a small set of brain areas and to a single condition (i.e., either resting-state or a specific task). The capability to predict fMRI signals in other brain areas, as well as to generalize across conditions, remain critical gaps in the field. To tackle these challenges, we introduce a novel and generalizable framework: NeuroBOLT, i.e., Neuro-to-BOLD Transformer, which leverages multi-dimensional representation learning from temporal, spatial, and spectral domains to translate raw EEG data to the corresponding fMRI activity signals across the brain. Our experiments demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI signals from primary sensory, high-level cognitive areas, and deep subcortical brain regions, achieving state-of-the-art accuracy with the potential to generalize across varying conditions and sites, which significantly advances the integration of these two modalities.

  • 10 authors
·
Oct 6, 2024

Decoding speech from non-invasive brain recordings

Decoding language from brain activity is a long-awaited goal in both healthcare and neuroscience. Major milestones have recently been reached thanks to intracranial devices: subject-specific pipelines trained on invasive brain responses to basic language tasks now start to efficiently decode interpretable features (e.g. letters, words, spectrograms). However, scaling this approach to natural speech and non-invasive brain recordings remains a major challenge. Here, we propose a single end-to-end architecture trained with contrastive learning across a large cohort of individuals to predict self-supervised representations of natural speech. We evaluate our model on four public datasets, encompassing 169 volunteers recorded with magneto- or electro-encephalography (M/EEG), while they listened to natural speech. The results show that our model can identify, from 3s of MEG signals, the corresponding speech segment with up to 72.5% top-10 accuracy out of 1,594 distinct segments (and 44% top-1 accuracy), and up to 19.1% out of 2,604 segments for EEG recordings -- hence allowing the decoding of phrases absent from the training set. Model comparison and ablation analyses show that these performances directly benefit from our original design choices, namely the use of (i) a contrastive objective, (ii) pretrained representations of speech and (iii) a common convolutional architecture simultaneously trained across several participants. Together, these results delineate a promising path to decode natural language processing in real time from non-invasive recordings of brain activity.

  • 5 authors
·
Aug 25, 2022 1

BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity

Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex.

  • 4 authors
·
Oct 6, 2023

AAD-LLM: Neural Attention-Driven Auditory Scene Understanding

Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io.

  • 9 authors
·
Feb 23 3

Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence

Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.

  • 6 authors
·
May 15 2

In-the-wild Audio Spatialization with Flexible Text-guided Localization

To enhance immersive experiences, binaural audio offers spatial awareness of sounding objects in AR, VR, and embodied AI applications. While existing audio spatialization methods can generally map any available monaural audio to binaural audio signals, they often lack the flexible and interactive control needed in complex multi-object user-interactive environments. To address this, we propose a Text-guided Audio Spatialization (TAS) framework that utilizes flexible text prompts and evaluates our model from unified generation and comprehension perspectives. Due to the limited availability of premium and large-scale stereo data, we construct the SpatialTAS dataset, which encompasses 376,000 simulated binaural audio samples to facilitate the training of our model. Our model learns binaural differences guided by 3D spatial location and relative position prompts, augmented by flipped-channel audio. It outperforms existing methods on both simulated and real-recorded datasets, demonstrating superior generalization and accuracy. Besides, we develop an assessment model based on Llama-3.1-8B, which evaluates the spatial semantic coherence between our generated binaural audio and text prompts through a spatial reasoning task. Results demonstrate that text prompts provide flexible and interactive control to generate binaural audio with excellent quality and semantic consistency in spatial locations. Dataset is available at https://github.com/Alice01010101/TASU

  • 5 authors
·
Jun 1

Acoustic Prompt Tuning: Empowering Large Language Models with Audition Capabilities

The auditory system plays a substantial role in shaping the overall human perceptual experience. While prevailing large language models (LLMs) and visual language models (VLMs) have shown their promise in solving a wide variety of vision and language understanding tasks, only a few of them can be generalised to the audio domain without compromising their domain-specific capacity. In this work, we introduce Acoustic Prompt Turning (APT), a new adapter extending LLMs and VLMs to the audio domain by soft prompting only. Specifically, APT applies an instruction-aware audio aligner to generate soft prompts, conditioned on both input text and sounds, as language model inputs. To mitigate the data scarcity in the audio domain, a multi-task learning strategy is proposed by formulating diverse audio tasks in a sequence-to-sequence manner. Moreover, we improve the framework of audio language model by using interleaved audio-text embeddings as the input sequence. This improved framework imposes zero constraints on the input format and thus is capable of tackling more understanding tasks, such as few-shot audio classification and audio reasoning. To further evaluate the reasoning ability of audio networks, we propose natural language audio reasoning (NLAR), a new task that analyses across two audio clips by comparison and summarization. Experiments show that APT-enhanced LLMs (namely APT-LLMs) achieve competitive results compared to the expert models (i.e., the networks trained on the targeted datasets) across various tasks. We finally demonstrate the APT's ability in extending frozen VLMs to the audio domain without finetuning, achieving promising results in the audio-visual question and answering task. Our code and model weights are released at https://github.com/JinhuaLiang/APT.

  • 6 authors
·
Nov 30, 2023

Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex

Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.

  • 9 authors
·
May 21 2

Brain3D: Generating 3D Objects from fMRI

Understanding the hidden mechanisms behind human's visual perception is a fundamental question in neuroscience. To that end, investigating into the neural responses of human mind activities, such as functional Magnetic Resonance Imaging (fMRI), has been a significant research vehicle. However, analyzing fMRI signals is challenging, costly, daunting, and demanding for professional training. Despite remarkable progress in fMRI analysis, existing approaches are limited to generating 2D images and far away from being biologically meaningful and practically useful. Under this insight, we propose to generate visually plausible and functionally more comprehensive 3D outputs decoded from brain signals, enabling more sophisticated modeling of fMRI data. Conceptually, we reformulate this task as a {\em fMRI conditioned 3D object generation} problem. We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject who was presented with a 2D image, and yields as output the corresponding 3D object images. The key capabilities of this model include tackling the noises with high-level semantic signals and a two-stage architecture design for progressive high-level information integration. Extensive experiments validate the superior capability of our model over previous state-of-the-art 3D object generation methods. Importantly, we show that our model captures the distinct functionalities of each region of human vision system as well as their intricate interplay relationships, aligning remarkably with the established discoveries in neuroscience. Further, preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios, such as V1, V2, V3, V4, and the medial temporal lobe (MTL) within the human visual system. Our data and code will be available at https://brain-3d.github.io/.

  • 7 authors
·
May 24, 2024

Hierarchical Frequency Tagging Probe (HFTP): A Unified Approach to Investigate Syntactic Structure Representations in Large Language Models and the Human Brain

Large Language Models (LLMs) demonstrate human-level or even superior language abilities, effectively modeling syntactic structures, yet the specific computational modules responsible remain unclear. A key question is whether LLM behavioral capabilities stem from mechanisms akin to those in the human brain. To address these questions, we introduce the Hierarchical Frequency Tagging Probe (HFTP), a tool that utilizes frequency-domain analysis to identify neuron-wise components of LLMs (e.g., individual Multilayer Perceptron (MLP) neurons) and cortical regions (via intracranial recordings) encoding syntactic structures. Our results show that models such as GPT-2, Gemma, Gemma 2, Llama 2, Llama 3.1, and GLM-4 process syntax in analogous layers, while the human brain relies on distinct cortical regions for different syntactic levels. Representational similarity analysis reveals a stronger alignment between LLM representations and the left hemisphere of the brain (dominant in language processing). Notably, upgraded models exhibit divergent trends: Gemma 2 shows greater brain similarity than Gemma, while Llama 3.1 shows less alignment with the brain compared to Llama 2. These findings offer new insights into the interpretability of LLM behavioral improvements, raising questions about whether these advancements are driven by human-like or non-human-like mechanisms, and establish HFTP as a valuable tool bridging computational linguistics and cognitive neuroscience. This project is available at https://github.com/LilTiger/HFTP.

  • 10 authors
·
Oct 15 2

MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment

Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-model task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, a method called MACS is proposed to conduct multi-source audio-to-image generation. This is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, efficient image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 of the 21 evaluation indexes on all tasks and delivers superior visual quality. The code will be publicly available.

  • 4 authors
·
Mar 13

Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models

A long standing goal in neuroscience has been to elucidate the functional organization of the brain. Within higher visual cortex, functional accounts have remained relatively coarse, focusing on regions of interest (ROIs) and taking the form of selectivity for broad categories such as faces, places, bodies, food, or words. Because the identification of such ROIs has typically relied on manually assembled stimulus sets consisting of isolated objects in non-ecological contexts, exploring functional organization without robust a priori hypotheses has been challenging. To overcome these limitations, we introduce a data-driven approach in which we synthesize images predicted to activate a given brain region using paired natural images and fMRI recordings, bypassing the need for category-specific stimuli. Our approach -- Brain Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative methods by combining large-scale diffusion models with brain-guided image synthesis. Validating our method, we demonstrate the ability to synthesize preferred images with appropriate semantic specificity for well-characterized category-selective ROIs. We then show that BrainDiVE can characterize differences between ROIs selective for the same high-level category. Finally we identify novel functional subdivisions within these ROIs, validated with behavioral data. These results advance our understanding of the fine-grained functional organization of human visual cortex, and provide well-specified constraints for further examination of cortical organization using hypothesis-driven methods.

  • 4 authors
·
Jun 5, 2023

Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain

Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].

  • 8 authors
·
Jun 9

Listen, Think, and Understand

The ability of artificial intelligence (AI) systems to perceive and comprehend audio signals is crucial for many applications. Although significant progress has been made in this area since the development of AudioSet, most existing models are designed to map audio inputs to pre-defined, discrete sound label sets. In contrast, humans possess the ability to not only classify sounds into coarse-grained categories, but also to listen to the details of the sounds, explain the reason for the predictions, think what the sound infers, and understand the scene and what action needs to be taken. Such capabilities beyond perception are not yet present in existing audio models. On the other hand, modern large language models (LLMs) exhibit emerging reasoning ability but they lack audio perception capabilities. Therefore, we ask the question: can we build an AI model that has both audio perception and a reasoning ability? In this paper, we propose a novel audio foundation model, called LTU (Listen, Think, and Understand). To train LTU, we created a new OpenAQA-5M dataset consisting of 1.9 million closed-ended and 3.7 million open-ended, diverse (audio, question, answer) tuples, and used an autoregressive training framework and a perception-to-understanding curriculum. LTU demonstrates strong performance and generalization ability on conventional audio tasks such as classification and captioning. Moreover, it exhibits remarkable reasoning and comprehension abilities in the audio domain. To the best of our knowledge, LTU is the first audio-enabled large language model that bridges audio perception with advanced reasoning.

  • 5 authors
·
May 18, 2023

Hallucinations in Neural Automatic Speech Recognition: Identifying Errors and Hallucinatory Models

Hallucinations are a type of output error produced by deep neural networks. While this has been studied in natural language processing, they have not been researched previously in automatic speech recognition. Here, we define hallucinations in ASR as transcriptions generated by a model that are semantically unrelated to the source utterance, yet still fluent and coherent. The similarity of hallucinations to probable natural language outputs of the model creates a danger of deception and impacts the credibility of the system. We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models. To address this, we propose a perturbation-based method for assessing the susceptibility of an automatic speech recognition (ASR) model to hallucination at test time, which does not require access to the training dataset. We demonstrate that this method helps to distinguish between hallucinatory and non-hallucinatory models that have similar baseline word error rates. We further explore the relationship between the types of ASR errors and the types of dataset noise to determine what types of noise are most likely to create hallucinatory outputs. We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency. Finally, we discover how to induce hallucinations with a random noise injection to the utterance.

  • 2 authors
·
Jan 3, 2024

Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals

Invasive brain-computer interfaces have garnered significant attention due to their high performance. The current intracranial stereoElectroEncephaloGraphy (sEEG) foundation models typically build univariate representations based on a single channel. Some of them further use Transformer to model the relationship among channels. However, due to the locality and specificity of brain computation, their performance on more difficult tasks, e.g., speech decoding, which demands intricate processing in specific brain regions, is yet to be fully investigated. We hypothesize that building multi-variate representations within certain brain regions can better capture the specific neural processing. To explore this hypothesis, we collect a well-annotated Chinese word-reading sEEG dataset, targeting language-related brain networks, over 12 subjects. Leveraging this benchmark dataset, we developed the Du-IN model that can extract contextual embeddings from specific brain regions through discrete codebook-guided mask modeling. Our model achieves SOTA performance on the downstream 61-word classification task, surpassing all baseline models. Model comparison and ablation analysis reveal that our design choices, including (i) multi-variate representation by fusing channels in vSMC and STG regions and (ii) self-supervision by discrete codebook-guided mask modeling, significantly contribute to these performances. Collectively, our approach, inspired by neuroscience findings, capitalizing on multi-variate neural representation from specific brain regions, is suitable for invasive brain modeling. It marks a promising neuro-inspired AI approach in BCI.

  • 9 authors
·
May 19, 2024

Look Once to Hear: Target Speech Hearing with Noisy Examples

In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.

  • 5 authors
·
May 10, 2024

PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs

The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/

  • 7 authors
·
Jun 12

CortexCompile: Harnessing Cortical-Inspired Architectures for Enhanced Multi-Agent NLP Code Synthesis

Current approaches to automated code generation often rely on monolithic models that lack real-time adaptability and scalability. This limitation is particularly evident in complex programming tasks that require dynamic adjustment and efficiency. The integration of neuroscience principles into Natural Language Processing (NLP) has the potential to revolutionize automated code generation. This paper presents CortexCompile, a novel modular system inspired by the specialized functions of the human brain's cortical regions. By emulating the distinct roles of the Prefrontal Cortex, Parietal Cortex, Temporal Lobe, and Motor Cortex, CortexCompile achieves significant advancements in scalability, efficiency, and adaptability compared to traditional monolithic models like GPT-4o. The system's architecture features a Task Orchestration Agent that manages dynamic task delegation and parallel processing, facilitating the generation of highly accurate and optimized code across increasingly complex programming tasks. Experimental evaluations demonstrate that CortexCompile consistently outperforms GPT-4o in development time, accuracy, and user satisfaction, particularly in tasks involving real-time strategy games and first-person shooters. These findings underscore the viability of neuroscience-inspired architectures in addressing the limitations of current NLP models, paving the way for more efficient and human-like AI systems.

  • 2 authors
·
Aug 23, 2024

OmniDPO: A Preference Optimization Framework to Address Omni-Modal Hallucination

Recently, Omni-modal large language models (OLLMs) have sparked a new wave of research, achieving impressive results in tasks such as audio-video understanding and real-time environment perception. However, hallucination issues still persist. Similar to the bimodal setting, the priors from the text modality tend to dominate, leading OLLMs to rely more heavily on textual cues while neglecting visual and audio information. In addition, fully multimodal scenarios introduce new challenges. Most existing models align visual or auditory modalities with text independently during training, while ignoring the intrinsic correlations between video and its corresponding audio. This oversight results in hallucinations when reasoning requires interpreting hidden audio cues embedded in video content. To address these challenges, we propose OmniDPO, a preference-alignment framework designed to mitigate hallucinations in OLLMs. Specifically, OmniDPO incorporates two strategies: (1) constructing text-preference sample pairs to enhance the model's understanding of audio-video interactions; and (2) constructing multimodal-preference sample pairs to strengthen the model's attention to visual and auditory information. By tackling both challenges, OmniDPO effectively improves multimodal grounding and reduces hallucination. Experiments conducted on two OLLMs demonstrate that OmniDPO not only effectively mitigates multimodal hallucinations but also significantly enhances the models' reasoning capabilities across modalities. All code and datasets will be released upon paper acceptance.

  • 9 authors
·
Aug 31

Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training

As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.

  • 5 authors
·
Oct 20, 2024 2

Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models

Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advancements in functional Magnetic Resonance Imaging and machine learning have greatly improved our ability to map visual stimuli to brain activity, especially in the visual cortex. Concurrently, research has expanded into decoding more complex processes like language and memory across the whole brain, utilizing techniques to handle greater variability and improve signal accuracy. We argue that "seeing" involves more than just mapping visual stimuli onto the visual cortex; it engages the entire brain, as various emotions and cognitive states can emerge from observing different scenes. In this paper, we develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps while individuals are exposed to visual stimuli. We utilize large-scale fMRI encoders and Image generative models pre-trained on large public datasets, which are then fine-tuned through Image-fMRI contrastive learning. Our models hence can decode visual experience across the entire cerebral cortex, surpassing the traditional confines of the visual cortex. We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%. A network ablation analysis suggests that beyond the visual cortex, the default mode network contributes most to decoding stimuli, in line with the proposed role of this network in sense-making and semantic processing. Additionally, we implemented zero-shot imagination decoding on an extra validation dataset, achieving a p-value of 0.0206 for mapping the reconstructed images and ground-truth text stimuli, which substantiates the model's capability to capture semantic meanings across various scenarios.

  • 9 authors
·
Nov 11, 2024

Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens

We present Brain Harmony (BrainHarmonix), the first multimodal brain foundation model that unifies structural morphology and functional dynamics into compact 1D token representations. The model was pretrained on two of the largest neuroimaging datasets to date, encompassing 64,594 T1-weighted structural MRI 3D volumes (~ 14 million images) and 70,933 functional MRI (fMRI) time series. BrainHarmonix is grounded in two foundational neuroscience principles: structure complements function - structural and functional modalities offer distinct yet synergistic insights into brain organization; function follows structure - brain functional dynamics are shaped by cortical morphology. The modular pretraining process involves single-modality training with geometric pre-alignment followed by modality fusion through shared brain hub tokens. Notably, our dynamics encoder uniquely handles fMRI time series with heterogeneous repetition times (TRs), addressing a major limitation in existing models. BrainHarmonix is also the first to deeply compress high-dimensional neuroimaging signals into unified, continuous 1D tokens, forming a compact latent space of the human brain. BrainHarmonix achieves strong generalization across diverse downstream tasks, including neurodevelopmental and neurodegenerative disorder classification and cognition prediction - consistently outperforming previous approaches. Our models - pretrained on 8 H100 GPUs - aim to catalyze a new era of AI-driven neuroscience powered by large-scale multimodal neuroimaging.

  • 12 authors
·
Sep 29

Exploring Quality and Generalizability in Parameterized Neural Audio Effects

Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets.

  • 2 authors
·
Jun 9, 2020

DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment

We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.

  • 28 authors
·
Jul 3

ClearBuds: Wireless Binaural Earbuds for Learning-Based Speech Enhancement

We present ClearBuds, the first hardware and software system that utilizes a neural network to enhance speech streamed from two wireless earbuds. Real-time speech enhancement for wireless earbuds requires high-quality sound separation and background cancellation, operating in real-time and on a mobile phone. Clear-Buds bridges state-of-the-art deep learning for blind audio source separation and in-ear mobile systems by making two key technical contributions: 1) a new wireless earbud design capable of operating as a synchronized, binaural microphone array, and 2) a lightweight dual-channel speech enhancement neural network that runs on a mobile device. Our neural network has a novel cascaded architecture that combines a time-domain conventional neural network with a spectrogram-based frequency masking neural network to reduce the artifacts in the audio output. Results show that our wireless earbuds achieve a synchronization error less than 64 microseconds and our network has a runtime of 21.4 milliseconds on an accompanying mobile phone. In-the-wild evaluation with eight users in previously unseen indoor and outdoor multipath scenarios demonstrates that our neural network generalizes to learn both spatial and acoustic cues to perform noise suppression and background speech removal. In a user-study with 37 participants who spent over 15.4 hours rating 1041 audio samples collected in-the-wild, our system achieves improved mean opinion score and background noise suppression. Project page with demos: https://clearbuds.cs.washington.edu

  • 7 authors
·
Jun 27, 2022

V2A-Mapper: A Lightweight Solution for Vision-to-Audio Generation by Connecting Foundation Models

Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.

  • 5 authors
·
Aug 18, 2023

DeepASA: An Object-Oriented One-for-All Network for Auditory Scene Analysis

We propose DeepASA, a one-for-all model for auditory scene analysis that performs multi-input multi-output (MIMO) source separation, dereverberation, sound event detection (SED), audio classification, and direction-of-arrival estimation (DoAE) within a unified framework. DeepASA is designed for complex auditory scenes where multiple, often similar, sound sources overlap in time and move dynamically in space. To achieve robust and consistent inference across tasks, we introduce an object-oriented processing (OOP) strategy. This approach encapsulates diverse auditory features into object-centric representations and refines them through a chain-of-inference (CoI) mechanism. The pipeline comprises a dynamic temporal kernel-based feature extractor, a transformer-based aggregator, and an object separator that yields per-object features. These features feed into multiple task-specific decoders. Our object-centric representations naturally resolve the parameter association ambiguity inherent in traditional track-wise processing. However, early-stage object separation can lead to failure in downstream ASA tasks. To address this, we implement temporal coherence matching (TCM) within the chain-of-inference, enabling multi-task fusion and iterative refinement of object features using estimated auditory parameters. We evaluate DeepASA on representative spatial audio benchmark datasets, including ASA2, MC-FUSS, and STARSS23. Experimental results show that our model achieves state-of-the-art performance across all evaluated tasks, demonstrating its effectiveness in both source separation and auditory parameter estimation under diverse spatial auditory scenes.

  • 3 authors
·
Sep 21

Unlocking the potential of two-point cells for energy-efficient and resilient training of deep nets

Context-sensitive two-point layer 5 pyramidal cells (L5PCs) were discovered as long ago as 1999. However, the potential of this discovery to provide useful neural computation has yet to be demonstrated. Here we show for the first time how a transformative L5PCs-driven deep neural network (DNN), termed the multisensory cooperative computing (MCC) architecture, can effectively process large amounts of heterogeneous real-world audio-visual (AV) data, using far less energy compared to best available 'point' neuron-driven DNNs. A novel highly-distributed parallel implementation on a Xilinx UltraScale+ MPSoC device estimates energy savings up to 245759 times 50000 muJ (i.e., 62% less than the baseline model in a semi-supervised learning setup) where a single synapse consumes 8e^{-5}muJ. In a supervised learning setup, the energy-saving can potentially reach up to 1250x less (per feedforward transmission) than the baseline model. The significantly reduced neural activity in MCC leads to inherently fast learning and resilience against sudden neural damage. This remarkable performance in pilot experiments demonstrates the embodied neuromorphic intelligence of our proposed cooperative L5PC that receives input from diverse neighbouring neurons as context to amplify the transmission of most salient and relevant information for onward transmission, from overwhelmingly large multimodal information utilised at the early stages of on-chip training. Our proposed approach opens new cross-disciplinary avenues for future on-chip DNN training implementations and posits a radical shift in current neuromorphic computing paradigms.

  • 6 authors
·
Oct 24, 2022

MMAU-Pro: A Challenging and Comprehensive Benchmark for Holistic Evaluation of Audio General Intelligence

Audio comprehension-including speech, non-speech sounds, and music-is essential for achieving human-level intelligence. Consequently, AI agents must demonstrate holistic audio understanding to qualify as generally intelligent. However, evaluating auditory intelligence comprehensively remains challenging. To address this gap, we introduce MMAU-Pro, the most comprehensive and rigorously curated benchmark for assessing audio intelligence in AI systems. MMAU-Pro contains 5,305 instances, where each instance has one or more audios paired with human expert-generated question-answer pairs, spanning speech, sound, music, and their combinations. Unlike existing benchmarks, MMAU-Pro evaluates auditory intelligence across 49 unique skills and multiple complex dimensions, including long-form audio comprehension, spatial audio reasoning, multi-audio understanding, among others. All questions are meticulously designed to require deliberate multi-hop reasoning, including both multiple-choice and open-ended response formats. Importantly, audio data is sourced directly ``from the wild" rather than from existing datasets with known distributions. We evaluate 22 leading open-source and proprietary multimodal AI models, revealing significant limitations: even state-of-the-art models such as Gemini 2.5 Flash and Audio Flamingo 3 achieve only 59.2% and 51.7% accuracy, respectively, approaching random performance in multiple categories. Our extensive analysis highlights specific shortcomings and provides novel insights, offering actionable perspectives for the community to enhance future AI systems' progression toward audio general intelligence. The benchmark and code is available at https://sonalkum.github.io/mmau-pro.

  • 34 authors
·
Aug 19 2

Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain

The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.

  • 6 authors
·
Apr 29, 2022

GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities

Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84%. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning and instruction following capabilities.

  • 9 authors
·
Jun 17, 2024 1

BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings

Understanding how the brain represents visual information is a fundamental challenge in neuroscience and artificial intelligence. While AI-driven decoding of neural data has provided insights into the human visual system, integrating multimodal neuroimaging signals, such as EEG, MEG, and fMRI, remains a critical hurdle due to their inherent spatiotemporal misalignment. Current approaches often analyze these modalities in isolation, limiting a holistic view of neural representation. In this study, we introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation. Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval task and has the potential to extend multitasking. Combining neuroimaging analysis methods, we further reveal how visual concept representations align across neural modalities and with real world object perception. We demonstrate that the brain's structured visual concept representations exhibit an implicit mapping to physical-world stimuli, bridging neuroscience and machine learning from different modalities of neural imaging. Beyond methodological advancements, BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs). Our code is available at https://github.com/ncclab-sustech/BrainFLORA.

  • 5 authors
·
Jul 13

BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals

Electroencephalography (EEG) and magnetoencephalography (MEG) measure neural activity non-invasively by capturing electromagnetic fields generated by dendritic currents. Although rooted in the same biophysics, EEG and MEG exhibit distinct signal patterns, further complicated by variations in sensor configurations across modalities and recording devices. Existing approaches typically rely on separate, modality- and dataset-specific models, which limits the performance and cross-domain scalability. This paper proposes BrainOmni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings. To unify diverse data sources, we introduce BrainTokenizer,the first tokenizer that quantises spatiotemporal brain activity into discrete representations. Central to BrainTokenizer is a novel Sensor Encoder that encodes sensor properties such as spatial layout, orientation, and type, enabling compatibility across devices and modalities. Building upon the discrete representations, BrainOmni learns unified semantic embeddings of brain signals by self-supervised pretraining. To the best of our knowledge, it is the first foundation model to support both EEG and MEG signals, as well as the first to incorporate large-scale MEG pretraining. A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining. Experiments show that BrainOmni outperforms both existing foundation models and state-of-the-art task-specific models on a range of downstream tasks. It also demonstrates strong generalisation to unseen EEG and MEG devices. Further analysis reveals that joint EEG-MEG (EMEG) training yields consistent improvements across both modalities. Code and model checkpoints will be released upon acceptance.

  • 9 authors
·
May 18

SPEAR: A Unified SSL Framework for Learning Speech and Audio Representations

Self-Supervised Learning (SSL) excels at learning generic representations of acoustic signals, yet prevailing methods remain domain-specific, tailored to either speech or general audio, hindering the development of a unified representation model with a comprehensive capability over both domains. To address this, we present SPEAR (SPEech and Audio Representations), the first SSL framework to successfully learn unified speech and audio representations from a mixture of speech and audio data. SPEAR proposes a unified pre-training objective based on masked prediction of fine-grained discrete tokens for both speech and general audio. These tokens are derived from continuous speech and audio representations using a Multi-codebook Vector Quantisation (MVQ) method, retaining rich acoustic detail essential for modelling both speech and complex audio events. SPEAR is applied to pre-train both single-domain and unified speech-and-audio SSL models. Our speech-domain model establishes a new state-of-the-art on the SUPERB benchmark, a speech processing benchmark for SSL models, matching or surpassing the highly competitive WavLM Large on 12 out of 15 tasks with the same pre-training corpora and a similar model size. Crucially, our unified model learns complementary features and demonstrates comprehensive capabilities across two major benchmarks, SUPERB and HEAR, for evaluating audio representations. By further scaling up the model size and pre-training data, we present a unified model with 600M parameters that excels in both domains, establishing it as one of the most powerful and versatile open-source SSL models for auditory understanding. The inference code and pre-trained models will be made publicly available.

  • 8 authors
·
Oct 29

STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence

Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.

ReCLAP: Improving Zero Shot Audio Classification by Describing Sounds

Open-vocabulary audio-language models, like CLAP, offer a promising approach for zero-shot audio classification (ZSAC) by enabling classification with any arbitrary set of categories specified with natural language prompts. In this paper, we propose a simple but effective method to improve ZSAC with CLAP. Specifically, we shift from the conventional method of using prompts with abstract category labels (e.g., Sound of an organ) to prompts that describe sounds using their inherent descriptive features in a diverse context (e.g.,The organ's deep and resonant tones filled the cathedral.). To achieve this, we first propose ReCLAP, a CLAP model trained with rewritten audio captions for improved understanding of sounds in the wild. These rewritten captions describe each sound event in the original caption using their unique discriminative characteristics. ReCLAP outperforms all baselines on both multi-modal audio-text retrieval and ZSAC. Next, to improve zero-shot audio classification with ReCLAP, we propose prompt augmentation. In contrast to the traditional method of employing hand-written template prompts, we generate custom prompts for each unique label in the dataset. These custom prompts first describe the sound event in the label and then employ them in diverse scenes. Our proposed method improves ReCLAP's performance on ZSAC by 1%-18% and outperforms all baselines by 1% - 55%.

  • 6 authors
·
Sep 13, 2024 2

Brain decoding: toward real-time reconstruction of visual perception

In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (approx0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (approx5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that high-level visual features can be decoded from MEG signals, although the same approach applied to 7T fMRI also recovers better low-level features. Overall, these results, while preliminary, provide an important step towards the decoding -- in real-time -- of the visual processes continuously unfolding within the human brain.

  • 3 authors
·
Oct 18, 2023

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

  • 11 authors
·
Jan 13, 2023

Can Brain Signals Reveal Inner Alignment with Human Languages?

Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at https://github.com/Jason-Qiu/EEG_Language_Alignment.

  • 7 authors
·
Aug 10, 2022

Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research

Recently, there is an increasing interest in using artificial intelligence (AI) to automate aspects of the research process, or even autonomously conduct the full research cycle from idea generation, over data analysis, to composing and evaluation of scientific manuscripts. Examples of working AI scientist systems have been demonstrated for computer science tasks and running molecular biology labs. While some approaches aim for full autonomy of the scientific AI, others rather aim for leveraging human-AI teaming. Here, we address how to adapt such approaches for boosting Brain-Computer Interface (BCI) development, as well as brain research resp. neuroscience at large. We argue that at this time, a strong emphasis on human-AI teaming, in contrast to fully autonomous AI BCI researcher will be the most promising way forward. We introduce the collaborative workspaces concept for human-AI teaming based on a set of Janusian design principles, looking both ways, to the human as well as to the AI side. Based on these principles, we present ChatBCI, a Python-based toolbox for enabling human-AI collaboration based on interaction with Large Language Models (LLMs), designed for BCI research and development projects. We show how ChatBCI was successfully used in a concrete BCI project on advancing motor imagery decoding from EEG signals. Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics, and may by design facilitate human expert knowledge transfer to scientific AI systems in general.

  • 2 authors
·
Dec 30, 2024

Contextual Fusion For Adversarial Robustness

Mammalian brains handle complex reasoning tasks in a gestalt manner by integrating information from regions of the brain that are specialised to individual sensory modalities. This allows for improved robustness and better generalisation ability. In contrast, deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations. While many methods exist for detecting and defending against adversarial attacks, they do not generalise across a range of attacks and negatively affect performance on clean, unperturbed data. We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN. We tested the benefits of the fusion approach on preserving adversarial robustness for human perceivable (e.g., Gaussian blur) and network perceivable (e.g., gradient-based) attacks for CIFAR-10 and MS COCO data sets. For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data and without need to perform adversarial retraining. Our fused model revealed improvements for Gaussian blur type perturbations as well. The increase in performance from fusion approach depended on the variability of the image contexts; larger increases were seen for classes of images with larger differences in their contexts. We also demonstrate the effect of regularization to bias the classifier decision in the presence of a known adversary. We propose that this biologically inspired approach to integrate information across multiple modalities provides a new way to improve adversarial robustness that can be complementary to current state of the art approaches.

  • 3 authors
·
Nov 18, 2020

Alljoined-1.6M: A Million-Trial EEG-Image Dataset for Evaluating Affordable Brain-Computer Interfaces

We present a new large-scale electroencephalography (EEG) dataset as part of the THINGS initiative, comprising over 1.6 million visual stimulus trials collected from 20 participants, and totaling more than twice the size of the most popular current benchmark dataset, THINGS-EEG2. Crucially, our data was recorded using a 32-channel consumer-grade wet electrode system costing ~$2.2k, around 27x cheaper than research-grade EEG systems typically used in cognitive neuroscience labs. Our work is one of the first open-source, large-scale EEG resource designed to closely reflect the quality of hardware that is practical to deploy in real-world, downstream applications of brain-computer interfaces (BCIs). We aim to explore the specific question of whether deep neural network-based BCI research and semantic decoding methods can be effectively conducted with such affordable systems, filling an important gap in current literature that is extremely relevant for future research. In our analysis, we not only demonstrate that decoding of high-level semantic information from EEG of visualized images is possible at consumer-grade hardware, but also that our data can facilitate effective EEG-to-Image reconstruction even despite significantly lower signal-to-noise ratios. In addition to traditional benchmarks, we also conduct analyses of EEG-to-Image models that demonstrate log-linear decoding performance with increasing data volume on our data, and discuss the trade-offs between hardware cost, signal fidelity, and the scale of data collection efforts in increasing the size and utility of currently available datasets. Our contributions aim to pave the way for large-scale, cost-effective EEG research with widely accessible equipment, and position our dataset as a unique resource for the democratization and development of effective deep neural models of visual cognition.

  • 8 authors
·
Aug 25

A dataset and model for recognition of audiologically relevant environments for hearing aids: AHEAD-DS and YAMNet+

Scene recognition of audiologically relevant environments is important for hearing aids; however, it is challenging, in part because of the limitations of existing datasets. Datasets often lack public accessibility, completeness, or audiologically relevant labels, hindering systematic comparison of machine learning models. Deploying these models on resource-constrained edge devices presents another challenge. Our solution is two-fold: we leverage several open source datasets to create AHEAD-DS, a dataset designed for scene recognition of audiologically relevant environments, and introduce YAMNet+, a sound recognition model. AHEAD-DS aims to provide a standardised, publicly available dataset with consistent labels relevant to hearing aids, facilitating model comparison. YAMNet+ is designed for deployment on edge devices like smartphones connected to hearing devices, such as hearing aids and wireless earphones with hearing aid functionality; serving as a baseline model for sound-based scene recognition. YAMNet+ achieved a mean average precision of 0.83 and accuracy of 0.93 on the testing set of AHEAD-DS across fourteen categories of audiologically relevant environments. We found that applying transfer learning from the pretrained YAMNet model was essential. We demonstrated real-time sound-based scene recognition capabilities on edge devices by deploying YAMNet+ to an Android smartphone. Even with a Google Pixel 3 (a phone with modest specifications, released in 2018), the model processes audio with approximately 50ms of latency to load the model, and an approximate linear increase of 30ms per 1 second of audio. Our website and code https://github.com/Australian-Future-Hearing-Initiative .

  • 5 authors
·
Aug 14

Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure

The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes' relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating.

  • 3 authors
·
Feb 19, 2021

OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation

Hallucination, posed as a pervasive challenge of multi-modal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with either training with specific designed data or inferencing with external knowledge from other sources, incurring inevitable additional costs. In this paper, we present OPERA, a novel MLLM decoding method grounded in an Over-trust Penalty and a Retrospection-Allocation strategy, serving as a nearly free lunch to alleviate the hallucination issue without additional data, knowledge, or training. Our approach begins with an interesting observation that, most hallucinations are closely tied to the knowledge aggregation patterns manifested in the self-attention matrix, i.e., MLLMs tend to generate new tokens by focusing on a few summary tokens, but not all the previous tokens. Such partial over-trust inclination results in the neglecting of image tokens and describes the image content with hallucination. Statistically, we observe an 80%sim95% co-currency rate between hallucination contents and such knowledge aggregation patterns. Based on the observation, OPERA introduces a penalty term on the model logits during the beam-search decoding to mitigate the over-trust issue, along with a rollback strategy that retrospects the presence of summary tokens in the previously generated tokens, and re-allocate the token selection if necessary. With extensive experiments, OPERA shows significant hallucination-mitigating performance on different MLLMs and metrics, proving its effectiveness and generality. Our code is available at: https://github.com/shikiw/OPERA.

  • 9 authors
·
Nov 29, 2023

Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data

State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis. Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive spatiotemporal generation problem. Neuroformer is a multimodal, multitask generative pretrained transformer (GPT) model that is specifically designed to handle the intricacies of data in systems neuroscience. It scales linearly with feature size, can process an arbitrary number of modalities, and is adaptable to downstream tasks, such as predicting behavior. We first trained Neuroformer on simulated datasets, and found that it both accurately predicted simulated neuronal circuit activity, and also intrinsically inferred the underlying neural circuit connectivity, including direction. When pretrained to decode neural responses, the model predicted the behavior of a mouse with only few-shot fine-tuning, suggesting that the model begins learning how to do so directly from the neural representations themselves, without any explicit supervision. We used an ablation study to show that joint training on neuronal responses and behavior boosted performance, highlighting the model's ability to associate behavioral and neural representations in an unsupervised manner. These findings show that Neuroformer can analyze neural datasets and their emergent properties, informing the development of models and hypotheses associated with the brain.

  • 5 authors
·
Oct 31, 2023