new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Maximizing Efficiency of Dataset Compression for Machine Learning Potentials With Information Theory

Machine learning interatomic potentials (MLIPs) balance high accuracy and lower costs compared to density functional theory calculations, but their performance often depends on the size and diversity of training datasets. Large datasets improve model accuracy and generalization but are computationally expensive to produce and train on, while smaller datasets risk discarding rare but important atomic environments and compromising MLIP accuracy/reliability. Here, we develop an information-theoretical framework to quantify the efficiency of dataset compression methods and propose an algorithm that maximizes this efficiency. By framing atomistic dataset compression as an instance of the minimum set cover (MSC) problem over atom-centered environments, our method identifies the smallest subset of structures that contains as much information as possible from the original dataset while pruning redundant information. The approach is extensively demonstrated on the GAP-20 and TM23 datasets, and validated on 64 varied datasets from the ColabFit repository. Across all cases, MSC consistently retains outliers, preserves dataset diversity, and reproduces the long-tail distributions of forces even at high compression rates, outperforming other subsampling methods. Furthermore, MLIPs trained on MSC-compressed datasets exhibit reduced error for out-of-distribution data even in low-data regimes. We explain these results using an outlier analysis and show that such quantitative conclusions could not be achieved with conventional dimensionality reduction methods. The algorithm is implemented in the open-source QUESTS package and can be used for several tasks in atomistic modeling, from data subsampling, outlier detection, and training improved MLIPs at a lower cost.

  • 3 authors
·
Nov 13

OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy

We present OrbNet Denali, a machine learning model for electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 million DFT calculations on molecules and geometries. This dataset covers the most common elements in bio- and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, I) as well as charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformers benchmark set, OrbNet Denali has a median correlation coefficient of R^2=0.90 compared to the reference DLPNO-CCSD(T) calculation, and R^2=0.97 compared to the method used to generate the training data (wB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of wB97X-D3/def2-TZVP with an average MAE of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.

  • 11 authors
·
Jul 1, 2021

AQCat25: Unlocking spin-aware, high-fidelity machine learning potentials for heterogeneous catalysis

Large-scale datasets have enabled highly accurate machine learning interatomic potentials (MLIPs) for general-purpose heterogeneous catalysis modeling. There are, however, some limitations in what can be treated with these potentials because of gaps in the underlying training data. To extend these capabilities, we introduce AQCat25, a complementary dataset of 13.5 million density functional theory (DFT) single point calculations designed to improve the treatment of systems where spin polarization and/or higher fidelity are critical. We also investigate methodologies for integrating new datasets, such as AQCat25, with the broader Open Catalyst 2020 (OC20) dataset to create spin-aware models without sacrificing generalizability. We find that directly tuning a general model on AQCat25 leads to catastrophic forgetting of the original dataset's knowledge. Conversely, joint training strategies prove effective for improving accuracy on the new data without sacrificing general performance. This joint approach introduces a challenge, as the model must learn from a dataset containing both mixed-fidelity calculations and mixed-physics (spin-polarized vs. unpolarized). We show that explicitly conditioning the model on this system-specific metadata, for example by using Feature-wise Linear Modulation (FiLM), successfully addresses this challenge and further enhances model accuracy. Ultimately, our work establishes an effective protocol for bridging DFT fidelity domains to advance the predictive power of foundational models in catalysis.

  • 3 authors
·
Oct 26

Facet: highly efficient E(3)-equivariant networks for interatomic potentials

Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.

  • 9 authors
·
Sep 10

A Benchmark for Quantum Chemistry Relaxations via Machine Learning Interatomic Potentials

Computational quantum chemistry plays a critical role in drug discovery, chemical synthesis, and materials science. While first-principles methods, such as density functional theory (DFT), provide high accuracy in modeling electronic structures and predicting molecular properties, they are computationally expensive. Machine learning interatomic potentials (MLIPs) have emerged as promising surrogate models that aim to achieve DFT-level accuracy while enabling efficient large-scale atomistic simulations. The development of accurate and transferable MLIPs requires large-scale, high-quality datasets with both energy and force labels. Critically, MLIPs must generalize not only to stable geometries but also to intermediate, non-equilibrium conformations encountered during atomistic simulations. In this work, we introduce PubChemQCR, a large-scale dataset of molecular relaxation trajectories curated from the raw geometry optimization outputs of the PubChemQC project. PubChemQCR is the largest publicly available dataset of DFT-based relaxation trajectories for small organic molecules, comprising approximately 3.5 million trajectories and over 300 million molecular conformations computed at various levels of theory. Each conformation is labeled with both total energy and atomic forces, making the dataset suitable for training and evaluating MLIPs. To provide baselines for future developments, we benchmark nine representative MLIP models on the dataset. Our resources are publicly available at https://huggingface.co/divelab

  • 11 authors
·
Jun 28

Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations

SO(3)-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of SO(3)-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the O(L^3) CG paths into a single shared parameter set without compromising equivariance, where L is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from O(L^6) to O(L^4). We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS/tree/main/OpenMol/TDN{https://github.com/divelab/AIRS/}).

  • 9 authors
·
Jul 1

Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields

Creating a single unified interatomic potential capable of attaining ab initio accuracy across all chemistry remains a long-standing challenge in computational chemistry and materials science. This work introduces a training protocol for foundation machine-learning interatomic potentials (MLIPs) that bridge molecular, surface, and materials chemistry through cross-domain learning. First, we introduce enhancements to the MACE architecture that improve its performance on chemically diverse databases by increasing weight sharing across chemical elements and introducing non-linear factors into the tensor decomposition of the product basis. Second, we develop a multi-head replay post-training methodology that enables efficient knowledge transfer across diverse chemical domains. By fine-tuning on datasets at different levels of electronic structure theory, including inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry, we demonstrate that a single unified model achieves state-of-the-art performance across several chemical domains. Comprehensive benchmarking reveals superior cross-domain transferability compared with existing specialised and multi-task models, with notable improvements in molecular and surface properties while maintaining state-of-the-art performance in materials-property prediction.

  • 8 authors
·
Oct 29

CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling

The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.

  • 7 authors
·
Feb 27, 2023

Transformers Discover Molecular Structure Without Graph Priors

Graph Neural Networks (GNNs) are the dominant architecture for molecular machine learning, particularly for molecular property prediction and machine learning interatomic potentials (MLIPs). GNNs perform message passing on predefined graphs often induced by a fixed radius cutoff or k-nearest neighbor scheme. While this design aligns with the locality present in many molecular tasks, a hard-coded graph can limit expressivity due to the fixed receptive field and slows down inference with sparse graph operations. In this work, we investigate whether pure, unmodified Transformers trained directly on Cartesian coordinatesx2013without predefined graphs or physical priorsx2013can approximate molecular energies and forces. As a starting point for our analysis, we demonstrate how to train a Transformer to competitive energy and force mean absolute errors under a matched training compute budget, relative to a state-of-the-art equivariant GNN on the OMol25 dataset. We discover that the Transformer learns physically consistent patternsx2013such as attention weights that decay inversely with interatomic distancex2013and flexibly adapts them across different molecular environments due to the absence of hard-coded biases. The use of a standard Transformer also unlocks predictable improvements with respect to scaling training resources, consistent with empirical scaling laws observed in other domains. Our results demonstrate that many favorable properties of GNNs can emerge adaptively in Transformers, challenging the necessity of hard-coded graph inductive biases and pointing toward standardized, scalable architectures for molecular modeling.

Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks

Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.

  • 6 authors
·
Mar 31

Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations

State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.

  • 6 authors
·
Nov 8, 2024

Learning Inter-Atomic Potentials without Explicit Equivariance

Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are essential for molecular simulations ranging from drug discovery to new material design. Current state-of-the-art models enforce roto-translational symmetries through equivariant neural network architectures, a hard-wired inductive bias that can often lead to reduced flexibility, computational efficiency, and scalability. In this work, we introduce TransIP: Transformer-based Inter-Atomic Potentials, a novel training paradigm for interatomic potentials achieving symmetry compliance without explicit architectural constraints. Our approach guides a generic non-equivariant Transformer-based model to learn SO(3)-equivariance by optimizing its representations in the embedding space. Trained on the recent Open Molecules (OMol25) collection, a large and diverse molecular dataset built specifically for MLIPs and covering different types of molecules (including small organics, biomolecular fragments, and electrolyte-like species), TransIP attains comparable performance in machine-learning force fields versus state-of-the-art equivariant baselines. Further, compared to a data augmentation baseline, TransIP achieves 40% to 60% improvement in performance across varying OMol25 dataset sizes. More broadly, our work shows that learned equivariance can be a powerful and efficient alternative to equivariant or augmentation-based MLIP models.

  • 6 authors
·
Sep 25

Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning

Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.

  • 6 authors
·
Sep 19, 2023

AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use

Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.

  • 17 authors
·
May 18 2

Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions

Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks. However, most of these frameworks assume settings with cross-sectional data, whereas researchers often have access to panel data, which in traditional methods helps to deal with unobserved heterogeneity between units. In this paper, we explore how we can adapt double/debiased machine learning (DML) (Chernozhukov et al., 2018) for panel data in the presence of unobserved heterogeneity. This adaptation is challenging because DML's cross-fitting procedure assumes independent data and the unobserved heterogeneity is not necessarily additively separable in settings with nonlinear observed confounding. We assess the performance of several intuitively appealing estimators in a variety of simulations. While we find violations of the cross-fitting assumptions to be largely inconsequential for the accuracy of the effect estimates, many of the considered methods fail to adequately account for the presence of unobserved heterogeneity. However, we find that using predictive models based on the correlated random effects approach (Mundlak, 1978) within DML leads to accurate coefficient estimates across settings, given a sample size that is large relative to the number of observed confounders. We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.

  • 2 authors
·
Sep 2, 2024

Geometric Machine Learning on EEG Signals

Brain-computer interfaces (BCIs) offer transformative potential, but decoding neural signals presents significant challenges. The core premise of this paper is built around demonstrating methods to elucidate the underlying low-dimensional geometric structure present in high-dimensional brainwave data in order to assist in downstream BCI-related neural classification tasks. We demonstrate two pipelines related to electroencephalography (EEG) signal processing: (1) a preliminary pipeline removing noise from individual EEG channels, and (2) a downstream manifold learning pipeline uncovering geometric structure across networks of EEG channels. We conduct preliminary validation using two EEG datasets and situate our demonstration in the context of the BCI-relevant imagined digit decoding problem. Our preliminary pipeline uses an attention-based EEG filtration network to extract clean signal from individual EEG channels. Our primary pipeline uses a fast Fourier transform, a Laplacian eigenmap, a discrete analog of Ricci flow via Ollivier's notion of Ricci curvature, and a graph convolutional network to perform dimensionality reduction on high-dimensional multi-channel EEG data in order to enable regularizable downstream classification. Our system achieves competitive performance with existing signal processing and classification benchmarks; we demonstrate a mean test correlation coefficient of >0.95 at 2 dB on semi-synthetic neural denoising and a downstream EEG-based classification accuracy of 0.97 on distinguishing digit- versus non-digit- thoughts. Results are preliminary and our geometric machine learning pipeline should be validated by more extensive follow-up studies; generalizing these results to larger inter-subject sample sizes, different hardware systems, and broader use cases will be crucial.

  • 1 authors
·
Feb 7

A Machine Learning Approach for MIDI to Guitar Tablature Conversion

Guitar tablature transcription consists in deducing the string and the fret number on which each note should be played to reproduce the actual musical part. This assignment should lead to playable string-fret combinations throughout the entire track and, in general, preserve parsimonious motion between successive combinations. Throughout the history of guitar playing, specific chord fingerings have been developed across different musical styles that facilitate common idiomatic voicing combinations and motion between them. This paper presents a method for assigning guitar tablature notation to a given MIDI-based musical part (possibly consisting of multiple polyphonic tracks), i.e. no information about guitar-idiomatic expressional characteristics is involved (e.g. bending etc.) The current strategy is based on machine learning and requires a basic assumption about how much fingers can stretch on a fretboard; only standard 6-string guitar tuning is examined. The proposed method also examines the transcription of music pieces that was not meant to be played or could not possibly be played by a guitar (e.g. potentially a symphonic orchestra part), employing a rudimentary method for augmenting musical information and training/testing the system with artificial data. The results present interesting aspects about what the system can achieve when trained on the initial and augmented dataset, showing that the training with augmented data improves the performance even in simple, e.g. monophonic, cases. Results also indicate weaknesses and lead to useful conclusions about possible improvements.

  • 6 authors
·
Oct 12

Benchmarking On-Device Machine Learning on Apple Silicon with MLX

The recent widespread adoption of Large Language Models (LLMs) and machine learning in general has sparked research interest in exploring the possibilities of deploying these models on smaller devices such as laptops and mobile phones. This creates a need for frameworks and approaches that are capable of taking advantage of on-device hardware. The MLX framework was created to address this need. It is a framework optimized for machine learning (ML) computations on Apple silicon devices, facilitating easier research, experimentation, and prototyping. This paper presents a performance evaluation of MLX, focusing on inference latency of transformer models. We compare the performance of different transformer architecture implementations in MLX with their Pytorch counterparts. For this research we create a framework called MLX-transformers which includes different transformer implementations in MLX and downloads the model checkpoints in pytorch and converts it to the MLX format. By leveraging the advanced architecture and capabilities of Apple Silicon, MLX-Transformers enables seamless execution of transformer models directly sourced from Hugging Face, eliminating the need for checkpoint conversion often required when porting models between frameworks. Our study benchmarks different transformer models on two Apple Silicon macbook devices against an NVIDIA CUDA GPU. Specifically, we compare the inference latency performance of models with the same parameter sizes and checkpoints. We evaluate the performance of BERT, RoBERTa, and XLM-RoBERTa models, with the intention of extending future work to include models of different modalities, thus providing a more comprehensive assessment of MLX's capabilities. The results highlight MLX's potential in enabling efficient and more accessible on-device ML applications within Apple's ecosystem.

  • 2 authors
·
Oct 21

FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting

Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.

  • 10 authors
·
May 9, 2024

Modeling PROTAC Degradation Activity with Machine Learning

PROTACs are a promising therapeutic modality that harnesses the cell's built-in degradation machinery to degrade specific proteins. Despite their potential, developing new PROTACs is challenging and requires significant domain expertise, time, and cost. Meanwhile, machine learning has transformed drug design and development. In this work, we present a strategy for curating open-source PROTAC data and an open-source deep learning tool for predicting the degradation activity of novel PROTAC molecules. The curated dataset incorporates important information such as pDC_{50}, D_{max}, E3 ligase type, POI amino acid sequence, and experimental cell type. Our model architecture leverages learned embeddings from pretrained machine learning models, in particular for encoding protein sequences and cell type information. We assessed the quality of the curated data and the generalization ability of our model architecture against new PROTACs and targets via three tailored studies, which we recommend other researchers to use in evaluating their degradation activity models. In each study, three models predict protein degradation in a majority vote setting, reaching a top test accuracy of 82.6% and 0.848 ROC AUC, and a test accuracy of 61% and 0.615 ROC AUC when generalizing to novel protein targets. Our results are not only comparable to state-of-the-art models for protein degradation prediction, but also part of an open-source implementation which is easily reproducible and less computationally complex than existing approaches.

  • 4 authors
·
Jun 4, 2024

Machine Learning Parameterization of the Multi-scale Kain-Fritsch (MSKF) Convection Scheme

Warm-sector heavy rainfall often occurs along the coast of South China, and it is usually localized and long-lasting, making it challenging to predict. High-resolution numerical weather prediction (NWP) models are increasingly used to better resolve topographic features and forecast such high-impact weather events. However, when the grid spacing becomes comparable to the length scales of convection, known as the gray zone, the turbulent eddies in the atmospheric boundary layer are only partially resolved and parameterized to some extent. Whether using a convection parameterization (CP) scheme in the gray zone remains controversial. Scale-aware CP schemes are developed to enhance the representation of convective transport within the gray zone. The multi-scale Kain-Fritsch (MSKF) scheme includes modifications that allow for its effective implementation at a grid resolution as high as 2 km. In recent years, there has been an increasing application of machine learning (ML) models to various domains of atmospheric sciences, including the replacement of physical parameterizations with ML models. This work proposes a multi-output bidirectional long short-term memory (Bi-LSTM) model as a replace the scale-aware MSKF CP scheme. The Weather Research and Forecast (WRF) model is used to generate training and testing data over South China at a horizontal resolution of 5 km. Furthermore, the WRF model is coupled with the ML based CP scheme and compared with WRF simulations with original MSKF scheme. The results demonstrate that the Bi-LSTM model can achieve high accuracy, indicating the potential use of ML models to substitute the MSKF scheme in the gray zone.

  • 3 authors
·
Nov 6, 2023

Machine Learning Force Fields with Data Cost Aware Training

Machine learning force fields (MLFF) have been proposed to accelerate molecular dynamics (MD) simulation, which finds widespread applications in chemistry and biomedical research. Even for the most data-efficient MLFFs, reaching chemical accuracy can require hundreds of frames of force and energy labels generated by expensive quantum mechanical algorithms, which may scale as O(n^3) to O(n^7), with n proportional to the number of basis functions. To address this issue, we propose a multi-stage computational framework -- ASTEROID, which lowers the data cost of MLFFs by leveraging a combination of cheap inaccurate data and expensive accurate data. The motivation behind ASTEROID is that inaccurate data, though incurring large bias, can help capture the sophisticated structures of the underlying force field. Therefore, we first train a MLFF model on a large amount of inaccurate training data, employing a bias-aware loss function to prevent the model from overfitting tahe potential bias of this data. We then fine-tune the obtained model using a small amount of accurate training data, which preserves the knowledge learned from the inaccurate training data while significantly improving the model's accuracy. Moreover, we propose a variant of ASTEROID based on score matching for the setting where the inaccurate training data are unlabeled. Extensive experiments on MD datasets and downstream tasks validate the efficacy of ASTEROID. Our code and data are available at https://github.com/abukharin3/asteroid.

  • 7 authors
·
Jun 5, 2023

An Experience Report on Machine Learning Reproducibility: Guidance for Practitioners and TensorFlow Model Garden Contributors

Machine learning techniques are becoming a fundamental tool for scientific and engineering progress. These techniques are applied in contexts as diverse as astronomy and spam filtering. However, correctly applying these techniques requires careful engineering. Much attention has been paid to the technical potential; relatively little attention has been paid to the software engineering process required to bring research-based machine learning techniques into practical utility. Technology companies have supported the engineering community through machine learning frameworks such as TensorFLow and PyTorch, but the details of how to engineer complex machine learning models in these frameworks have remained hidden. To promote best practices within the engineering community, academic institutions and Google have partnered to launch a Special Interest Group on Machine Learning Models (SIGMODELS) whose goal is to develop exemplary implementations of prominent machine learning models in community locations such as the TensorFlow Model Garden (TFMG). The purpose of this report is to define a process for reproducing a state-of-the-art machine learning model at a level of quality suitable for inclusion in the TFMG. We define the engineering process and elaborate on each step, from paper analysis to model release. We report on our experiences implementing the YOLO model family with a team of 26 student researchers, share the tools we developed, and describe the lessons we learned along the way.

  • 10 authors
·
Jul 2, 2021

Automated Chronotyping from a Daily Calendar using Machine Learning

Chronotype compares individuals' circadian phase to others. It contextualizes mental health risk assessments and detection of social jet lag, which can hamper mental health and cognitive performance. Existing ways of determining chronotypes, such as Dim Light Melatonin Onset (DLMO) or the Morningness-Eveningness Questionnaire (MEQ), are limited by being discrete in time and time-intensive to update, meaning they rarely capture real-world variability across time. Chronotyping users based on a daily planner app might augment existing methods to enable assessment continuously and at scale. This paper reports the construction of a supervised binary classifier that attempts to demonstrate the feasibility of this approach. 1,460 registered users from the Owaves app opted in by filling out the MEQ survey between July 14, 2022, and May 1, 2023. 142 met the eligibility criteria. We used multimodal app data from individuals identified as morning and evening types from MEQ data, basing the classifier on app time series data. This included daily timing for 8 main lifestyle activity types: exercise, sleep, social interactions, meal times, relaxation, work, play, and miscellaneous, as defined in the app. The timing of activities showed substantial change across time, as well as heterogeneity by activity type. Our novel chronotyping classifier was able to predict the morningness and eveningness of its users with an ROC AUC of 0.70. Our findings demonstrate the feasibility of chronotype classification from multimodal, real-world app data, while highlighting fundamental challenges to applying discrete and fixed labels to complex, dynamic, multimodal behaviors. Our findings suggest a potential for real-time monitoring of shifts in chronotype specific to different causes (i.e. types of activity), which could feasibly be used to support future, prospective mental health support research.

  • 7 authors
·
Jul 8, 2024

An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage

Scalable and cost-effective solutions to renewable energy storage are essential to addressing the world's rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen or methane. To be widely adopted, this process requires cost-effective solutions to running electrochemical reactions. An open challenge is finding low-cost electrocatalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (density functional theory), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of machine learning may provide a method to efficiently approximate these calculations, leading to new approaches in finding effective electrocatalysts. In this paper, we provide an introduction to the challenges in finding suitable electrocatalysts, how machine learning may be applied to the problem, and the use of the Open Catalyst Project OC20 dataset for model training.

  • 17 authors
·
Oct 14, 2020

The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of (25~h^{-1}{rm Mpc})^3 volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying Omega_m, sigma_8, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of (400~h^{-1}{rm Mpc})^3. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.

  • 22 authors
·
Oct 1, 2020

A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that primarily affects the aging population by impairing cognitive and motor functions. Early detection of AD through accessible methodologies like magnetic resonance imaging (MRI) is vital for developing effective interventions to halt or slow the disease's progression. This study aims to perform a comprehensive analysis of machine learning techniques for selecting MRI-based biomarkers and classifying individuals into healthy controls (HC) and unstable controls (uHC) who later show mild cognitive impairment within five years. The research utilizes MRI data from the Alzheimer's Disease Neuroinformatics Initiative (ADNI) and the Open Access Series of Imaging Studies 3 (OASIS-3), focusing on both HC and uHC participants. The study addresses the challenges of imbalanced data by testing classification methods on balanced and unbalanced datasets, and harmonizes data using polynomial regression to mitigate nuisance variables like age, gender, and intracranial volume. Results indicate that Gaussian Naive Bayes and RusBoost classifiers shows an optimal performance, achieving accuracies of up to 76.46% and 72.48% respectively on the ADNI dataset. For the OASIS-3 dataset, Kernel Naive Bayes and RusBoost yield accuracies ranging from 64.66% to 75.71%, improving further in age-matched datasets. Brain regions like the entorhinal cortex, hippocampus, lateral ventricle, and lateral orbitofrontal cortex are identified as significantly impacted during early cognitive decline. Despite limitations such as small sample sizes, the study's harmonization approach enhances the robustness of biomarker selection, suggesting the potential of this semi-automatic machine learning pipeline for early AD detection using MRI.

  • 6 authors
·
May 29, 2024

ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning

Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) community has taken an increased interest in supporting climate scientists' efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a "super emulator" can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.

  • 9 authors
·
Nov 6, 2023

Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach

Artificial intelligence (AI), and especially its sub-field of Machine Learning (ML), are impacting the daily lives of everyone with their ubiquitous applications. In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions. From a practical perspective, conventional ML systems process historical data to extract the features that are consequently used to train ML models that perform the desired task. However, in practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously. To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment. Although MLOps demonstrated great success in streamlining ML processes, thoroughly defining the specifications of robust MLOps approaches remains of great interest to researchers and practitioners. In this paper, we provide a comprehensive overview of the trustworthiness property of MLOps systems. Specifically, we highlight technical practices to achieve robust MLOps systems. In addition, we survey the existing research approaches that address the robustness aspects of ML systems in production. We also review the tools and software available to build MLOps systems and summarize their support to handle the robustness aspects. Finally, we present the open challenges and propose possible future directions and opportunities within this emerging field. The aim of this paper is to provide researchers and practitioners working on practical AI applications with a comprehensive view to adopt robust ML solutions in production environments.

  • 2 authors
·
Oct 28, 2024

Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives

The trustworthiness of machine learning has emerged as a critical topic in the field, encompassing various applications and research areas such as robustness, security, interpretability, and fairness. The last decade saw the development of numerous methods addressing these challenges. In this survey, we systematically review these advancements from a data-centric perspective, highlighting the shortcomings of traditional empirical risk minimization (ERM) training in handling challenges posed by the data. Interestingly, we observe a convergence of these methods, despite being developed independently across trustworthy machine learning subfields. Pearl's hierarchy of causality offers a unifying framework for these techniques. Accordingly, this survey presents the background of trustworthy machine learning development using a unified set of concepts, connects this language to Pearl's causal hierarchy, and finally discusses methods explicitly inspired by causality literature. We provide a unified language with mathematical vocabulary to link these methods across robustness, adversarial robustness, interpretability, and fairness, fostering a more cohesive understanding of the field. Further, we explore the trustworthiness of large pretrained models. After summarizing dominant techniques like fine-tuning, parameter-efficient fine-tuning, prompting, and reinforcement learning with human feedback, we draw connections between them and the standard ERM. This connection allows us to build upon the principled understanding of trustworthy methods, extending it to these new techniques in large pretrained models, paving the way for future methods. Existing methods under this perspective are also reviewed. Lastly, we offer a brief summary of the applications of these methods and discuss potential future aspects related to our survey. For more information, please visit http://trustai.one.

  • 3 authors
·
Jul 31, 2023

Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction

Matbench Discovery simulates the deployment of machine learning (ML) energy models in a high-throughput search for stable inorganic crystals. We address the disconnect between (i) thermodynamic stability and formation energy and (ii) in-domain vs out-of-distribution performance. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with further insights into trade-offs between various performance metrics. To answer the question which ML methodology performs best at materials discovery, our initial release explores a variety of models including random forests, graph neural networks (GNN), one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials (UIP). Ranked best-to-worst by their test set F1 score on thermodynamic stability prediction, we find CHGNet > M3GNet > MACE > ALIGNN > MEGNet > CGCNN > CGCNN+P > Wrenformer > BOWSR > Voronoi tessellation fingerprints with random forest. The top 3 models are UIPs, the winning methodology for ML-guided materials discovery, achieving F1 scores of ~0.6 for crystal stability classification and discovery acceleration factors (DAF) of up to 5x on the first 10k most stable predictions compared to dummy selection from our test set. We also highlight a sharp disconnect between commonly used global regression metrics and more task-relevant classification metrics. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV/atom above the convex hull where most materials are. Our results highlight the need to focus on classification metrics that actually correlate with improved stability hit rate.

  • 6 authors
·
Aug 28, 2023

MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research

Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.

  • 10 authors
·
May 26 1

MyCrunchGPT: A chatGPT assisted framework for scientific machine learning

Scientific Machine Learning (SciML) has advanced recently across many different areas in computational science and engineering. The objective is to integrate data and physics seamlessly without the need of employing elaborate and computationally taxing data assimilation schemes. However, preprocessing, problem formulation, code generation, postprocessing and analysis are still time consuming and may prevent SciML from wide applicability in industrial applications and in digital twin frameworks. Here, we integrate the various stages of SciML under the umbrella of ChatGPT, to formulate MyCrunchGPT, which plays the role of a conductor orchestrating the entire workflow of SciML based on simple prompts by the user. Specifically, we present two examples that demonstrate the potential use of MyCrunchGPT in optimizing airfoils in aerodynamics, and in obtaining flow fields in various geometries in interactive mode, with emphasis on the validation stage. To demonstrate the flow of the MyCrunchGPT, and create an infrastructure that can facilitate a broader vision, we built a webapp based guided user interface, that includes options for a comprehensive summary report. The overall objective is to extend MyCrunchGPT to handle diverse problems in computational mechanics, design, optimization and controls, and general scientific computing tasks involved in SciML, hence using it as a research assistant tool but also as an educational tool. While here the examples focus in fluid mechanics, future versions will target solid mechanics and materials science, geophysics, systems biology and bioinformatics.

  • 5 authors
·
Jun 27, 2023

FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models

Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of FuXi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, FuXi-S2S not only captures realistic teleconnections associated with the MJO, but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.

  • 11 authors
·
Dec 15, 2023

Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech

In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.

  • 6 authors
·
Nov 7, 2023

Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning

Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks.

  • 2 authors
·
Nov 1, 2022

Empirical and Experimental Insights into Machine Learning-Based Defect Classification in Semiconductor Wafers

This survey paper offers a comprehensive review of methodologies utilizing machine learning (ML) classification techniques for identifying wafer defects in semiconductor manufacturing. Despite the growing body of research demonstrating the effectiveness of ML in wafer defect identification, there is a noticeable absence of comprehensive reviews on this subject. This survey attempts to fill this void by amalgamating available literature and providing an in-depth analysis of the advantages, limitations, and potential applications of various ML classification algorithms in the realm of wafer defect detection. An innovative taxonomy of methodologies that we present provides a detailed classification of algorithms into more refined categories and techniques. This taxonomy follows a three-tier structure, starting from broad methodology categories and ending with specific techniques. It aids researchers in comprehending the complex relationships between different algorithms and their techniques. We employ a rigorous empirical and experimental evaluation to rank these varying techniques. For the empirical evaluation, we assess techniques based on a set of five criteria. The experimental evaluation ranks the algorithms employing the same techniques, sub-categories, and categories. Also the paper illuminates the future prospects of ML classification techniques for wafer defect identification, underscoring potential advancements and opportunities for further research in this field

  • 1 authors
·
Oct 16, 2023

Grad DFT: a software library for machine learning enhanced density functional theory

Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

  • 5 authors
·
Sep 22, 2023

Statistical mechanics of continual learning: variational principle and mean-field potential

An obstacle to artificial general intelligence is set by continual learning of multiple tasks of different nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were proposed, but they lack a unified theory ground. Here, we focus on continual learning in single-layered and multi-layered neural networks of binary weights. A variational Bayesian learning setting is thus proposed, where the neural networks are trained in a field-space, rather than gradient-ill-defined discrete-weight space, and furthermore, weight uncertainty is naturally incorporated, and modulates synaptic resources among tasks. From a physics perspective, we translate the variational continual learning into Franz-Parisi thermodynamic potential framework, where previous task knowledge acts as a prior and a reference as well. We thus interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential computation. The learning performance can then be analytically studied with mean-field order parameters, whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary weights using multi-layered neural networks, and performs better than the currently available metaplasticity algorithm. Our proposed principled frameworks also connect to elastic weight consolidation, weight-uncertainty modulated learning, and neuroscience inspired metaplasticity, providing a theory-grounded method for the real-world multi-task learning with deep networks.

  • 4 authors
·
Dec 6, 2022

A Survey on Machine Learning Solutions for Graph Pattern Extraction

A subgraph is constructed by using a subset of vertices and edges of a given graph. There exist many graph properties that are hereditary for subgraphs. Hence, researchers from different communities have paid a great deal of attention in studying numerous subgraph problems, on top of the ordinary graph problems. Many algorithms are proposed in studying subgraph problems, where one common approach is by extracting the patterns and structures of a given graph. Due to the complex structures of certain types of graphs and to improve overall performances of the existing frameworks, machine learning techniques have recently been employed in dealing with various subgraph problems. In this article, we present a comprehensive review on five well known subgraph problems that have been tackled by using machine learning methods. They are subgraph isomorphism (both counting and matching), maximum common subgraph, community detection and community search problems. We provide an outline of each proposed method, and examine its designs and performances. We also explore non-learning-based algorithms for each problem and a brief discussion is given. We then suggest some promising research directions in this area, hoping that relevant subgraph problems can be tackled by using a similar strategy. Since there is a huge growth in employing machine learning techniques in recent years, we believe that this survey will serve as a good reference point to relevant research communities.

  • 6 authors
·
Apr 3, 2022

The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification

Background:Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies. Machine learning (ML) presents an opportunity to harness these patterns for accurate disease diagnosis. Objective: This review synthesized findings from studies exploring ML's capability in leveraging speech for the diagnosis of neurological, laryngeal and mental disorders. Methods: A systematic examination of 564 articles was conducted with 91 articles included in the study, which encompassed a wide spectrum of conditions, ranging from voice pathologies to mental and neurological disorders. Methods for speech classifications were assessed based on the relevant studies and scored between 0-10 based on the reported diagnostic accuracy of their ML models. Results: High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease. These findings indicate the robust potential of speech as a diagnostic tool. Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies, albeit with some variability across studies. Meanwhile, disorders like OCD and autism highlighted the need for more extensive research to ascertain the relationship between speech patterns and the respective conditions. Conclusion: ML models utilizing speech patterns demonstrate promising potential in diagnosing a range of mental, laryngeal, and neurological disorders. However, the efficacy varies across conditions, and further research is needed. The integration of these models into clinical practice could potentially revolutionize the evaluation and diagnosis of a number of different medical conditions.

  • 4 authors
·
Mar 3

asanAI: In-Browser, No-Code, Offline-First Machine Learning Toolkit

Machine learning (ML) has become crucial in modern life, with growing interest from researchers and the public. Despite its potential, a significant entry barrier prevents widespread adoption, making it challenging for non-experts to understand and implement ML techniques. The increasing desire to leverage ML is counterbalanced by its technical complexity, creating a gap between potential and practical application. This work introduces asanAI, an offline-first, open-source, no-code machine learning toolkit designed for users of all skill levels. It allows individuals to design, debug, train, and test ML models directly in a web browser, eliminating the need for software installations and coding. The toolkit runs on any device with a modern web browser, including smartphones, and ensures user privacy through local computations while utilizing WebGL for enhanced GPU performance. Users can quickly experiment with neural networks and train custom models using various data sources, supported by intuitive visualizations of network structures and data flows. asanAI simplifies the teaching of ML concepts in educational settings and is released under an open-source MIT license, encouraging modifications. It also supports exporting models in industry-ready formats, empowering a diverse range of users to effectively learn and apply machine learning in their projects. The proposed toolkit is successfully utilized by researchers of ScaDS.AI to swiftly draft and test machine learning ideas, by trainers to effectively educate enthusiasts, and by teachers to introduce contemporary ML topics in classrooms with minimal effort and high clarity.

  • 2 authors
·
Jan 7

FuXi Weather: A data-to-forecast machine learning system for global weather

Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of obtaining finer resolution. These limitations, alongside the uneven distribution of observational networks, result in global disparities in forecast accuracy, leaving some regions vulnerable to extreme weather. Recent advances in machine learning present a promising alternative, providing more efficient and accurate forecasts using the same initial conditions as NWP. However, current machine learning models still depend on the initial conditions generated by NWP systems, which require extensive computational resources and expertise. Here we introduce FuXi Weather, a machine learning weather forecasting system that assimilates data from multiple satellites. Operating on a 6-hourly DA and forecast cycle, FuXi Weather generates reliable and accurate 10-day global weather forecasts at a spatial resolution of 0.25^circ. FuXi Weather is the first system to achieve all-grid, all-surface, all-channel, and all-sky DA and forecasting, extending skillful forecast lead times beyond those of the European Centre for Medium-range Weather Forecasts (ECMWF) high-resolution forecasts (HRES) while using significantly fewer observations. FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa, demonstrating its potential to improve forecasts where observational infrastructure is limited.

  • 11 authors
·
Aug 10, 2024

Evolution and The Knightian Blindspot of Machine Learning

This paper claims that machine learning (ML) largely overlooks an important facet of general intelligence: robustness to a qualitatively unknown future in an open world. Such robustness relates to Knightian uncertainty (KU) in economics, i.e. uncertainty that cannot be quantified, which is excluded from consideration in ML's key formalisms. This paper aims to identify this blind spot, argue its importance, and catalyze research into addressing it, which we believe is necessary to create truly robust open-world AI. To help illuminate the blind spot, we contrast one area of ML, reinforcement learning (RL), with the process of biological evolution. Despite staggering ongoing progress, RL still struggles in open-world situations, often failing under unforeseen situations. For example, the idea of zero-shot transferring a self-driving car policy trained only in the US to the UK currently seems exceedingly ambitious. In dramatic contrast, biological evolution routinely produces agents that thrive within an open world, sometimes even to situations that are remarkably out-of-distribution (e.g. invasive species; or humans, who do undertake such zero-shot international driving). Interestingly, evolution achieves such robustness without explicit theory, formalisms, or mathematical gradients. We explore the assumptions underlying RL's typical formalisms, showing how they limit RL's engagement with the unknown unknowns characteristic of an ever-changing complex world. Further, we identify mechanisms through which evolutionary processes foster robustness to novel and unpredictable challenges, and discuss potential pathways to algorithmically embody them. The conclusion is that the intriguing remaining fragility of ML may result from blind spots in its formalisms, and that significant gains may result from direct confrontation with the challenge of KU.

  • 5 authors
·
Jan 22 2

Analyzing Data Quality and Decay in Mega-Constellations: A Physics-Informed Machine Learning Approach

In the era of mega-constellations, the need for accurate and publicly available information has become fundamental for satellite operators to guarantee the safety of spacecrafts and the Low Earth Orbit (LEO) space environment. This study critically evaluates the accuracy and reliability of publicly available ephemeris data for a LEO mega-constellation - Starlink. The goal of this work is twofold: (i) compare and analyze the quality of the data against high-precision numerical propagation. (ii) Leverage Physics-Informed Machine Learning to extract relevant satellite quantities, such as non-conservative forces, during the decay process. By analyzing two months of real orbital data for approximately 1500 Starlink satellites, we identify discrepancies between high precision numerical algorithms and the published ephemerides, recognizing the use of simplified dynamics at fixed thresholds, planned maneuvers, and limitations in uncertainty propagations. Furthermore, we compare data obtained from multiple sources to track and analyze deorbiting satellites over the same period. Empirically, we extract the acceleration profile of satellites during deorbiting and provide insights relating to the effects of non-conservative forces during reentry. For non-deorbiting satellites, the position Root Mean Square Error (RMSE) was approximately 300 m, while for deorbiting satellites it increased to about 600 m. Through this in-depth analysis, we highlight potential limitations in publicly available data for accurate and robust Space Situational Awareness (SSA), and importantly, we propose a data-driven model of satellite decay in mega-constellations.

  • 3 authors
·
Oct 13

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.

  • 3 authors
·
Mar 26, 2021

MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation

A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.

  • 4 authors
·
Oct 5, 2023

Enhancing Traffic Incident Management with Large Language Models: A Hybrid Machine Learning Approach for Severity Classification

This research showcases the innovative integration of Large Language Models into machine learning workflows for traffic incident management, focusing on the classification of incident severity using accident reports. By leveraging features generated by modern language models alongside conventional data extracted from incident reports, our research demonstrates improvements in the accuracy of severity classification across several machine learning algorithms. Our contributions are threefold. First, we present an extensive comparison of various machine learning models paired with multiple large language models for feature extraction, aiming to identify the optimal combinations for accurate incident severity classification. Second, we contrast traditional feature engineering pipelines with those enhanced by language models, showcasing the superiority of language-based feature engineering in processing unstructured text. Third, our study illustrates how merging baseline features from accident reports with language-based features can improve the severity classification accuracy. This comprehensive approach not only advances the field of incident management but also highlights the cross-domain application potential of our methodology, particularly in contexts requiring the prediction of event outcomes from unstructured textual data or features translated into textual representation. Specifically, our novel methodology was applied to three distinct datasets originating from the United States, the United Kingdom, and Queensland, Australia. This cross-continental application underlines the robustness of our approach, suggesting its potential for widespread adoption in improving incident management processes globally.

  • 4 authors
·
Mar 20, 2024

Challenges and Research Directions from the Operational Use of a Machine Learning Damage Assessment System via Small Uncrewed Aerial Systems at Hurricanes Debby and Helene

This paper details four principal challenges encountered with machine learning (ML) damage assessment using small uncrewed aerial systems (sUAS) at Hurricanes Debby and Helene that prevented, degraded, or delayed the delivery of data products during operations and suggests three research directions for future real-world deployments. The presence of these challenges is not surprising given that a review of the literature considering both datasets and proposed ML models suggests this is the first sUAS-based ML system for disaster damage assessment actually deployed as a part of real-world operations. The sUAS-based ML system was applied by the State of Florida to Hurricanes Helene (2 orthomosaics, 3.0 gigapixels collected over 2 sorties by a Wintra WingtraOne sUAS) and Debby (1 orthomosaic, 0.59 gigapixels collected via 1 sortie by a Wintra WingtraOne sUAS) in Florida. The same model was applied to crewed aerial imagery of inland flood damage resulting from post-tropical remnants of Hurricane Debby in Pennsylvania (436 orthophotos, 136.5 gigapixels), providing further insights into the advantages and limitations of sUAS for disaster response. The four challenges (variationin spatial resolution of input imagery, spatial misalignment between imagery and geospatial data, wireless connectivity, and data product format) lead to three recommendations that specify research needed to improve ML model capabilities to accommodate the wide variation of potential spatial resolutions used in practice, handle spatial misalignment, and minimize the dependency on wireless connectivity. These recommendations are expected to improve the effective operational use of sUAS and sUAS-based ML damage assessment systems for disaster response.

  • 4 authors
·
Jun 18

Identifying Climate Targets in National Laws and Policies using Machine Learning

Quantified policy targets are a fundamental element of climate policy, typically characterised by domain-specific and technical language. Current methods for curating comprehensive views of global climate policy targets entail significant manual effort. At present there are few scalable methods for extracting climate targets from national laws or policies, which limits policymakers' and researchers' ability to (1) assess private and public sector alignment with global goals and (2) inform policy decisions. In this paper we present an approach for extracting mentions of climate targets from national laws and policies. We create an expert-annotated dataset identifying three categories of target ('Net Zero', 'Reduction' and 'Other' (e.g. renewable energy targets)) and train a classifier to reliably identify them in text. We investigate bias and equity impacts related to our model and identify specific years and country names as problematic features. Finally, we investigate the characteristics of the dataset produced by running this classifier on the Climate Policy Radar (CPR) dataset of global national climate laws and policies and UNFCCC submissions, highlighting the potential of automated and scalable data collection for existing climate policy databases and supporting further research. Our work represents a significant upgrade in the accessibility of these key climate policy elements for policymakers and researchers. We publish our model at https://huggingface.co/ClimatePolicyRadar/national-climate-targets and related dataset at https://huggingface.co/datasets/ClimatePolicyRadar/national-climate-targets.

  • 7 authors
·
Apr 3, 2024

Empathy Detection from Text, Audiovisual, Audio or Physiological Signals: A Systematic Review of Task Formulations and Machine Learning Methods

Empathy indicates an individual's ability to understand others. Over the past few years, empathy has drawn attention from various disciplines, including but not limited to Affective Computing, Cognitive Science, and Psychology. Detecting empathy has potential applications in society, healthcare and education. Despite being a broad and overlapping topic, the avenue of empathy detection leveraging Machine Learning remains underexplored from a systematic literature review perspective. We collected 849 papers from 10 well-known academic databases, systematically screened them and analysed the final 82 papers. Our analyses reveal several prominent task formulations - including empathy on localised utterances or overall expressions, unidirectional or parallel empathy, and emotional contagion - in monadic, dyadic and group interactions. Empathy detection methods are summarised based on four input modalities - text, audiovisual, audio and physiological signals - thereby presenting modality-specific network architecture design protocols. We discuss challenges, research gaps and potential applications in the Affective Computing-based empathy domain, which can facilitate new avenues of exploration. We further enlist the public availability of datasets and codes. This paper, therefore, provides a structured overview of recent advancements and remaining challenges towards developing a robust empathy detection system that could meaningfully contribute to enhancing human well-being.

  • 5 authors
·
Oct 30, 2023

Building Flexible, Scalable, and Machine Learning-ready Multimodal Oncology Datasets

The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS) - a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines' scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.

  • 5 authors
·
Sep 30, 2023

Metatensor and metatomic: foundational libraries for interoperable atomistic machine learning

Incorporation of machine learning (ML) techniques into atomic-scale modeling has proven to be an extremely effective strategy to improve the accuracy and reduce the computational cost of simulations. It also entails conceptual and practical challenges, as it involves combining very different mathematical foundations, as well as software ecosystems that are very well developed in their own merit, but do not share many commonalities. To address these issues and facilitate the adoption of ML in atomistic simulations, we introduce two dedicated software libraries. The first one, metatensor, provides multi-platform and multi-language storage and manipulation of arrays with many potentially sparse indices, designed from the ground up for atomistic ML applications. By combining the actual values with metadata that describes their nature and that facilitates the handling of geometric information and gradients with respect to the atomic positions, metatensor provides a common framework to enable data sharing between ML software -- typically written in Python -- and established atomistic modeling tools -- typically written in Fortran, C or C++. The second library, metatomic, provides an interface to store an atomistic ML model and metadata about this model in a portable way, facilitating the implementation, training and distribution of models, and their use across different simulation packages. We showcase a growing ecosystem of tools, from low-level libraries, training utilities, to interfaces with existing software packages that demonstrate the effectiveness of metatensor and metatomic in bridging the gap between traditional simulation software and modern ML frameworks.

  • 14 authors
·
Aug 21

ProtAgents: Protein discovery via large language model multi-agent collaborations combining physics and machine learning

Designing de novo proteins beyond those found in nature holds significant promise for advancements in both scientific and engineering applications. Current methodologies for protein design often rely on AI-based models, such as surrogate models that address end-to-end problems by linking protein structure to material properties or vice versa. However, these models frequently focus on specific material objectives or structural properties, limiting their flexibility when incorporating out-of-domain knowledge into the design process or comprehensive data analysis is required. In this study, we introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs), where multiple AI agents with distinct capabilities collaboratively address complex tasks within a dynamic environment. The versatility in agent development allows for expertise in diverse domains, including knowledge retrieval, protein structure analysis, physics-based simulations, and results analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile approach to tackling protein design and analysis problems, as demonstrated through diverse examples in this study. The problems of interest encompass designing new proteins, analyzing protein structures and obtaining new first-principles data -- natural vibrational frequencies -- via physics simulations. The concerted effort of the system allows for powerful automated and synergistic design of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-objective materials problems and opens up new avenues for autonomous materials discovery and design.

  • 2 authors
·
Jan 27, 2024

2DNMRGym: An Annotated Experimental Dataset for Atom-Level Molecular Representation Learning in 2D NMR via Surrogate Supervision

Two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy, particularly Heteronuclear Single Quantum Coherence (HSQC) spectroscopy, plays a critical role in elucidating molecular structures, interactions, and electronic properties. However, accurately interpreting 2D NMR data remains labor-intensive and error-prone, requiring highly trained domain experts, especially for complex molecules. Machine Learning (ML) holds significant potential in 2D NMR analysis by learning molecular representations and recognizing complex patterns from data. However, progress has been limited by the lack of large-scale and high-quality annotated datasets. In this work, we introduce 2DNMRGym, the first annotated experimental dataset designed for ML-based molecular representation learning in 2D NMR. It includes over 22,000 HSQC spectra, along with the corresponding molecular graphs and SMILES strings. Uniquely, 2DNMRGym adopts a surrogate supervision setup: models are trained using algorithm-generated annotations derived from a previously validated method and evaluated on a held-out set of human-annotated gold-standard labels. This enables rigorous assessment of a model's ability to generalize from imperfect supervision to expert-level interpretation. We provide benchmark results using a series of 2D and 3D GNN and GNN transformer models, establishing a strong foundation for future work. 2DNMRGym supports scalable model training and introduces a chemically meaningful benchmark for evaluating atom-level molecular representations in NMR-guided structural tasks. Our data and code is open-source and available on Huggingface and Github.

  • 3 authors
·
May 16

Supervised learning with quantum enhanced feature spaces

Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.

  • 7 authors
·
Apr 30, 2018