Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConfidence Self-Calibration for Multi-Label Class-Incremental Learning
The partial label challenge in Multi-Label Class-Incremental Learning (MLCIL) arises when only the new classes are labeled during training, while past and future labels remain unavailable. This issue leads to a proliferation of false-positive errors due to erroneously high confidence multi-label predictions, exacerbating catastrophic forgetting within the disjoint label space. In this paper, we aim to refine multi-label confidence calibration in MLCIL and propose a Confidence Self-Calibration (CSC) approach. Firstly, for label relationship calibration, we introduce a class-incremental graph convolutional network that bridges the isolated label spaces by constructing learnable, dynamically extended label relationship graph. Then, for confidence calibration, we present a max-entropy regularization for each multi-label increment, facilitating confidence self-calibration through the penalization of over-confident output distributions. Our approach attains new state-of-the-art results in MLCIL tasks on both MS-COCO and PASCAL VOC datasets, with the calibration of label confidences confirmed through our methodology.
A Capsule Network for Hierarchical Multi-Label Image Classification
Image classification is one of the most important areas in computer vision. Hierarchical multi-label classification applies when a multi-class image classification problem is arranged into smaller ones based upon a hierarchy or taxonomy. Thus, hierarchical classification modes generally provide multiple class predictions on each instance, whereby these are expected to reflect the structure of image classes as related to one another. In this paper, we propose a multi-label capsule network (ML-CapsNet) for hierarchical classification. Our ML-CapsNet predicts multiple image classes based on a hierarchical class-label tree structure. To this end, we present a loss function that takes into account the multi-label predictions of the network. As a result, the training approach for our ML-CapsNet uses a coarse to fine paradigm while maintaining consistency with the structure in the classification levels in the label-hierarchy. We also perform experiments using widely available datasets and compare the model with alternatives elsewhere in the literature. In our experiments, our ML-CapsNet yields a margin of improvement with respect to these alternative methods.
CDUL: CLIP-Driven Unsupervised Learning for Multi-Label Image Classification
This paper presents a CLIP-based unsupervised learning method for annotation-free multi-label image classification, including three stages: initialization, training, and inference. At the initialization stage, we take full advantage of the powerful CLIP model and propose a novel approach to extend CLIP for multi-label predictions based on global-local image-text similarity aggregation. To be more specific, we split each image into snippets and leverage CLIP to generate the similarity vector for the whole image (global) as well as each snippet (local). Then a similarity aggregator is introduced to leverage the global and local similarity vectors. Using the aggregated similarity scores as the initial pseudo labels at the training stage, we propose an optimization framework to train the parameters of the classification network and refine pseudo labels for unobserved labels. During inference, only the classification network is used to predict the labels of the input image. Extensive experiments show that our method outperforms state-of-the-art unsupervised methods on MS-COCO, PASCAL VOC 2007, PASCAL VOC 2012, and NUS datasets and even achieves comparable results to weakly supervised classification methods.
Fast Online Value-Maximizing Prediction Sets with Conformal Cost Control
Many real-world multi-label prediction problems involve set-valued predictions that must satisfy specific requirements dictated by downstream usage. We focus on a typical scenario where such requirements, separately encoding value and cost, compete with each other. For instance, a hospital might expect a smart diagnosis system to capture as many severe, often co-morbid, diseases as possible (the value), while maintaining strict control over incorrect predictions (the cost). We present a general pipeline, dubbed as FavMac, to maximize the value while controlling the cost in such scenarios. FavMac can be combined with almost any multi-label classifier, affording distribution-free theoretical guarantees on cost control. Moreover, unlike prior works, it can handle real-world large-scale applications via a carefully designed online update mechanism, which is of independent interest. Our methodological and theoretical contributions are supported by experiments on several healthcare tasks and synthetic datasets - FavMac furnishes higher value compared with several variants and baselines while maintaining strict cost control. Our code is available at https://github.com/zlin7/FavMac
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
ImageNet has been arguably the most popular image classification benchmark, but it is also the one with a significant level of label noise. Recent studies have shown that many samples contain multiple classes, despite being assumed to be a single-label benchmark. They have thus proposed to turn ImageNet evaluation into a multi-label task, with exhaustive multi-label annotations per image. However, they have not fixed the training set, presumably because of a formidable annotation cost. We argue that the mismatch between single-label annotations and effectively multi-label images is equally, if not more, problematic in the training setup, where random crops are applied. With the single-label annotations, a random crop of an image may contain an entirely different object from the ground truth, introducing noisy or even incorrect supervision during training. We thus re-label the ImageNet training set with multi-labels. We address the annotation cost barrier by letting a strong image classifier, trained on an extra source of data, generate the multi-labels. We utilize the pixel-wise multi-label predictions before the final pooling layer, in order to exploit the additional location-specific supervision signals. Training on the re-labeled samples results in improved model performances across the board. ResNet-50 attains the top-1 classification accuracy of 78.9% on ImageNet with our localized multi-labels, which can be further boosted to 80.2% with the CutMix regularization. We show that the models trained with localized multi-labels also outperforms the baselines on transfer learning to object detection and instance segmentation tasks, and various robustness benchmarks. The re-labeled ImageNet training set, pre-trained weights, and the source code are available at {https://github.com/naver-ai/relabel_imagenet}.
A Neural Span-Based Continual Named Entity Recognition Model
Named Entity Recognition (NER) models capable of Continual Learning (CL) are realistically valuable in areas where entity types continuously increase (e.g., personal assistants). Meanwhile the learning paradigm of NER advances to new patterns such as the span-based methods. However, its potential to CL has not been fully explored. In this paper, we propose SpanKL, a simple yet effective Span-based model with Knowledge distillation (KD) to preserve memories and multi-Label prediction to prevent conflicts in CL-NER. Unlike prior sequence labeling approaches, the inherently independent modeling in span and entity level with the designed coherent optimization on SpanKL promotes its learning at each incremental step and mitigates the forgetting. Experiments on synthetic CL datasets derived from OntoNotes and Few-NERD show that SpanKL significantly outperforms previous SoTA in many aspects, and obtains the smallest gap from CL to the upper bound revealing its high practiced value. The code is available at https://github.com/Qznan/SpanKL.
PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT
This study provides an efficient approach for using text data to calculate patent-to-patent (p2p) technological similarity, and presents a hybrid framework for leveraging the resulting p2p similarity for applications such as semantic search and automated patent classification. We create embeddings using Sentence-BERT (SBERT) based on patent claims. We leverage SBERTs efficiency in creating embedding distance measures to map p2p similarity in large sets of patent data. We deploy our framework for classification with a simple Nearest Neighbors (KNN) model that predicts Cooperative Patent Classification (CPC) of a patent based on the class assignment of the K patents with the highest p2p similarity. We thereby validate that the p2p similarity captures their technological features in terms of CPC overlap, and at the same demonstrate the usefulness of this approach for automatic patent classification based on text data. Furthermore, the presented classification framework is simple and the results easy to interpret and evaluate by end-users. In the out-of-sample model validation, we are able to perform a multi-label prediction of all assigned CPC classes on the subclass (663) level on 1,492,294 patents with an accuracy of 54% and F1 score > 66%, which suggests that our model outperforms the current state-of-the-art in text-based multi-label and multi-class patent classification. We furthermore discuss the applicability of the presented framework for semantic IP search, patent landscaping, and technology intelligence. We finally point towards a future research agenda for leveraging multi-source patent embeddings, their appropriateness across applications, as well as to improve and validate patent embeddings by creating domain-expert curated Semantic Textual Similarity (STS) benchmark datasets.
Self-similarity Driven Scale-invariant Learning for Weakly Supervised Person Search
Weakly supervised person search aims to jointly detect and match persons with only bounding box annotations. Existing approaches typically focus on improving the features by exploring relations of persons. However, scale variation problem is a more severe obstacle and under-studied that a person often owns images with different scales (resolutions). On the one hand, small-scale images contain less information of a person, thus affecting the accuracy of the generated pseudo labels. On the other hand, the similarity of cross-scale images is often smaller than that of images with the same scale for a person, which will increase the difficulty of matching. In this paper, we address this problem by proposing a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL). Scale invariance can be explored based on the self-similarity prior that it shows the same statistical properties of an image at different scales. To this end, we introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features by hard exemplars mining. To enhance the discriminative power of the features in an unsupervised manner, we introduce a dynamic multi-label prediction which progressively seeks true labels for training. It is adaptable to different types of unlabeled data and serves as a compensation for clustering based strategy. Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
Assessing the impact of contextual information in hate speech detection
In recent years, hate speech has gained great relevance in social networks and other virtual media because of its intensity and its relationship with violent acts against members of protected groups. Due to the great amount of content generated by users, great effort has been made in the research and development of automatic tools to aid the analysis and moderation of this speech, at least in its most threatening forms. One of the limitations of current approaches to automatic hate speech detection is the lack of context. Most studies and resources are performed on data without context; that is, isolated messages without any type of conversational context or the topic being discussed. This restricts the available information to define if a post on a social network is hateful or not. In this work, we provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter. This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic. Classification experiments using state-of-the-art techniques show evidence that adding contextual information improves hate speech detection performance for two proposed tasks (binary and multi-label prediction). We make our code, models, and corpus available for further research.
Accurate Use of Label Dependency in Multi-Label Text Classification Through the Lens of Causality
Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
Hierarchical Text Classification Using Black Box Large Language Models
Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification
Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.
Multi-label Text Classification using GloVe and Neural Network Models
This study addresses the challenges of multi-label text classification. The difficulties arise from imbalanced data sets, varied text lengths, and numerous subjective feature labels. Existing solutions include traditional machine learning and deep neural networks for predictions. However, both approaches have their limitations. Traditional machine learning often overlooks the associations between words, while deep neural networks, despite their better classification performance, come with increased training complexity and time. This paper proposes a method utilizing the bag-of-words model approach based on the GloVe model and the CNN-BiLSTM network. The principle is to use the word vector matrix trained by the GloVe model as the input for the text embedding layer. Given that the GloVe model requires no further training, the neural network model can be trained more efficiently. The method achieves an accuracy rate of 87.26% on the test set and an F1 score of 0.8737, showcasing promising results.
Text2Topic: Multi-Label Text Classification System for Efficient Topic Detection in User Generated Content with Zero-Shot Capabilities
Multi-label text classification is a critical task in the industry. It helps to extract structured information from large amount of textual data. We propose Text to Topic (Text2Topic), which achieves high multi-label classification performance by employing a Bi-Encoder Transformer architecture that utilizes concatenation, subtraction, and multiplication of embeddings on both text and topic. Text2Topic also supports zero-shot predictions, produces domain-specific text embeddings, and enables production-scale batch-inference with high throughput. The final model achieves accurate and comprehensive results compared to state-of-the-art baselines, including large language models (LLMs). In this study, a total of 239 topics are defined, and around 1.6 million text-topic pairs annotations (in which 200K are positive) are collected on approximately 120K texts from 3 main data sources on Booking.com. The data is collected with optimized smart sampling and partial labeling. The final Text2Topic model is deployed on a real-world stream processing platform, and it outperforms other models with 92.9% micro mAP, as well as a 75.8% macro mAP score. We summarize the modeling choices which are extensively tested through ablation studies, and share detailed in-production decision-making steps.
Multi-Label Zero-Shot Product Attribute-Value Extraction
E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.
Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss
Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.
Multi-Label Knowledge Distillation
Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class single-label learning. However, these methods can hardly be extended to the multi-label learning scenario, where each instance is associated with multiple semantic labels, because the prediction probabilities do not sum to one and feature maps of the whole example may ignore minor classes in such a scenario. In this paper, we propose a novel multi-label knowledge distillation method. On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems; on the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings. Experimental results on multiple benchmark datasets validate that the proposed method can avoid knowledge counteraction among labels, thus achieving superior performance against diverse comparing methods. Our code is available at: https://github.com/penghui-yang/L2D
Well-calibrated Confidence Measures for Multi-label Text Classification with a Large Number of Labels
We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than 1e+16 combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated.
Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels
Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: COrrection rightarrow ModificatIon rightarrow balanCe, abbreviated as \method{}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.
OTSeq2Set: An Optimal Transport Enhanced Sequence-to-Set Model for Extreme Multi-label Text Classification
Extreme multi-label text classification (XMTC) is the task of finding the most relevant subset labels from an extremely large-scale label collection. Recently, some deep learning models have achieved state-of-the-art results in XMTC tasks. These models commonly predict scores for all labels by a fully connected layer as the last layer of the model. However, such models can't predict a relatively complete and variable-length label subset for each document, because they select positive labels relevant to the document by a fixed threshold or take top k labels in descending order of scores. A less popular type of deep learning models called sequence-to-sequence (Seq2Seq) focus on predicting variable-length positive labels in sequence style. However, the labels in XMTC tasks are essentially an unordered set rather than an ordered sequence, the default order of labels restrains Seq2Seq models in training. To address this limitation in Seq2Seq, we propose an autoregressive sequence-to-set model for XMTC tasks named OTSeq2Set. Our model generates predictions in student-forcing scheme and is trained by a loss function based on bipartite matching which enables permutation-invariance. Meanwhile, we use the optimal transport distance as a measurement to force the model to focus on the closest labels in semantic label space. Experiments show that OTSeq2Set outperforms other competitive baselines on 4 benchmark datasets. Especially, on the Wikipedia dataset with 31k labels, it outperforms the state-of-the-art Seq2Seq method by 16.34% in micro-F1 score. The code is available at https://github.com/caojie54/OTSeq2Set.
Dual-Encoders for Extreme Multi-Label Classification
Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Although deep neural networks hold the state-of-the-art in several remote sensing tasks, their black-box operation hinders the understanding of their decisions, concealing any bias and other shortcomings in datasets and model performance. To this end, we have applied explainable artificial intelligence (XAI) methods in remote sensing multi-label classification tasks towards producing human-interpretable explanations and improve transparency. In particular, we utilized and trained deep learning models with state-of-the-art performance in the benchmark BigEarthNet and SEN12MS datasets. Ten XAI methods were employed towards understanding and interpreting models' predictions, along with quantitative metrics to assess and compare their performance. Numerous experiments were performed to assess the overall performance of XAI methods for straightforward prediction cases, competing multiple labels, as well as misclassification cases. According to our findings, Occlusion, Grad-CAM and Lime were the most interpretable and reliable XAI methods. However, none delivers high-resolution outputs, while apart from Grad-CAM, both Lime and Occlusion are computationally expensive. We also highlight different aspects of XAI performance and elaborate with insights on black-box decisions in order to improve transparency, understand their behavior and reveal, as well, datasets' particularities.
ChessVision -- A Dataset for Logically Coherent Multi-label Classification
Starting with early successes in computer vision tasks, deep learning based techniques have since overtaken state of the art approaches in a multitude of domains. However, it has been demonstrated time and again that these techniques fail to capture semantic context and logical constraints, instead often relying on spurious correlations to arrive at the answer. Since application of deep learning techniques to critical scenarios are dependent on adherence to domain specific constraints, several attempts have been made to address this issue. One limitation holding back a thorough exploration of this area, is a lack of suitable datasets which feature a rich set of rules. In order to address this, we present the ChessVision Dataset, consisting of 200,000+ images of annotated chess games in progress, requiring recreation of the game state from its corresponding image. This is accompanied by a curated set of rules which constrains the set of predictions to "reasonable" game states, and are designed to probe key semantic abilities like localization and enumeration. Alongside standard metrics, additional metrics to measure performance with regards to logical consistency is presented. We analyze several popular and state of the art vision models on this task, and show that, although their performance on standard metrics are laudable, they produce a plethora of incoherent results, indicating that this dataset presents a significant challenge for future works.
SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-Ray Classification
Chest X-rays are widely used to diagnose thoracic diseases, but the lack of detailed information about these abnormalities makes it challenging to develop accurate automated diagnosis systems, which is crucial for early detection and effective treatment. To address this challenge, we employed deep learning techniques to identify patterns in chest X-rays that correspond to different diseases. We conducted experiments on the "ChestX-ray14" dataset using various pre-trained CNNs, transformers, hybrid(CNN+Transformer) models and classical models. The best individual model was the CoAtNet, which achieved an area under the receiver operating characteristic curve (AUROC) of 84.2%. By combining the predictions of all trained models using a weighted average ensemble where the weight of each model was determined using differential evolution, we further improved the AUROC to 85.4%, outperforming other state-of-the-art methods in this field. Our findings demonstrate the potential of deep learning techniques, particularly ensemble deep learning, for improving the accuracy of automatic diagnosis of thoracic diseases from chest X-rays. Code available at:https://github.com/syednabilashraf/SynthEnsemble
Online hierarchical partitioning of the output space in extreme multi-label data stream
Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.
Extreme Classification for Answer Type Prediction in Question Answering
Semantic answer type prediction (SMART) is known to be a useful step towards effective question answering (QA) systems. The SMART task involves predicting the top-k knowledge graph (KG) types for a given natural language question. This is challenging due to the large number of types in KGs. In this paper, we propose use of extreme multi-label classification using Transformer models (XBERT) by clustering KG types using structural and semantic features based on question text. We specifically improve the clustering stage of the XBERT pipeline using textual and structural features derived from KGs. We show that these features can improve end-to-end performance for the SMART task, and yield state-of-the-art results.
BASIR: Budget-Assisted Sectoral Impact Ranking -- A Dataset for Sector Identification and Performance Prediction Using Language Models
Government fiscal policies, particularly annual union budgets, exert significant influence on financial markets. However, real-time analysis of budgetary impacts on sector-specific equity performance remains methodologically challenging and largely unexplored. This study proposes a framework to systematically identify and rank sectors poised to benefit from India's Union Budget announcements. The framework addresses two core tasks: (1) multi-label classification of excerpts from budget transcripts into 81 predefined economic sectors, and (2) performance ranking of these sectors. Leveraging a comprehensive corpus of Indian Union Budget transcripts from 1947 to 2025, we introduce BASIR (Budget-Assisted Sectoral Impact Ranking), an annotated dataset mapping excerpts from budgetary transcripts to sectoral impacts. Our architecture incorporates fine-tuned embeddings for sector identification, coupled with language models that rank sectors based on their predicted performances. Our results demonstrate 0.605 F1-score in sector classification, and 0.997 NDCG score in predicting ranks of sectors based on post-budget performances. The methodology enables investors and policymakers to quantify fiscal policy impacts through structured, data-driven insights, addressing critical gaps in manual analysis. The annotated dataset has been released under CC-BY-NC-SA-4.0 license to advance computational economics research.
Neural Legal Judgment Prediction in English
Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case's facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT's length limitation.
AeroLite: Tag-Guided Lightweight Generation of Aerial Image Captions
Accurate and automated captioning of aerial imagery is crucial for applications like environmental monitoring, urban planning, and disaster management. However, this task remains challenging due to complex spatial semantics and domain variability. To address these issues, we introduce AeroLite, a lightweight, tag-guided captioning framework designed to equip small-scale language models (1--3B parameters) with robust and interpretable captioning capabilities specifically for remote sensing images. AeroLite leverages GPT-4o to generate a large-scale, semantically rich pseudo-caption dataset by integrating multiple remote sensing benchmarks, including DLRSD, iSAID, LoveDA, WHU, and RSSCN7. To explicitly capture key semantic elements such as orientation and land-use types, AeroLite employs natural language processing techniques to extract relevant semantic tags. These tags are then learned by a dedicated multi-label CLIP encoder, ensuring precise semantic predictions. To effectively fuse visual and semantic information, we propose a novel bridging multilayer perceptron (MLP) architecture, aligning semantic tags with visual embeddings while maintaining minimal computational overhead. AeroLite's flexible design also enables seamless integration with various pretrained large language models. We adopt a two-stage LoRA-based training approach: the initial stage leverages our pseudo-caption dataset to capture broad remote sensing semantics, followed by fine-tuning on smaller, curated datasets like UCM and Sydney Captions to refine domain-specific alignment. Experimental evaluations demonstrate that AeroLite surpasses significantly larger models (e.g., 13B parameters) in standard captioning metrics, including BLEU and METEOR, while maintaining substantially lower computational costs.
SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis
Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.
node2vec: Scalable Feature Learning for Networks
Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.
ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning
In this paper, we introduce a framework ARBEx, a novel attentive feature extraction framework driven by Vision Transformer with reliability balancing to cope against poor class distributions, bias, and uncertainty in the facial expression learning (FEL) task. We reinforce several data pre-processing and refinement methods along with a window-based cross-attention ViT to squeeze the best of the data. We also employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions with reliability balancing, which is a strategy that leverages anchor points, attention scores, and confidence values to enhance the resilience of label predictions. To ensure correct label classification and improve the models' discriminative power, we introduce anchor loss, which encourages large margins between anchor points. Additionally, the multi-head self-attention mechanism, which is also trainable, plays an integral role in identifying accurate labels. This approach provides critical elements for improving the reliability of predictions and has a substantial positive effect on final prediction capabilities. Our adaptive model can be integrated with any deep neural network to forestall challenges in various recognition tasks. Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.
EncT5: A Framework for Fine-tuning T5 as Non-autoregressive Models
Pre-trained encoder-decoder transformer architectures have become increasingly popular recently with the advent of T5 models. T5 has also become more favorable over other architectures like BERT due to the amount of data that it is pre-trained on, increased scale of model parameter sizes and easy applicability to a diverse set of tasks due to the generative nature of the model. While being able to generalize to a wide variety of tasks, it is not clear that encoder-decoder architectures are the most efficient for fine-tuning tasks that don't require auto-regressive decoding. In this work, we study fine-tuning pre-trained encoder-decoder models for tasks such as classification, multi-label classification, and structured prediction. We propose EncT5, a framework for these problems, and illustrate instantiations for these tasks. Our experiment results show that EncT5 has advantages over T5 such as efficiency and usability out performs BERT when evaluated on publicly available pre-trained checkpoints.
Conditional Cross Attention Network for Multi-Space Embedding without Entanglement in Only a SINGLE Network
Many studies in vision tasks have aimed to create effective embedding spaces for single-label object prediction within an image. However, in reality, most objects possess multiple specific attributes, such as shape, color, and length, with each attribute composed of various classes. To apply models in real-world scenarios, it is essential to be able to distinguish between the granular components of an object. Conventional approaches to embedding multiple specific attributes into a single network often result in entanglement, where fine-grained features of each attribute cannot be identified separately. To address this problem, we propose a Conditional Cross-Attention Network that induces disentangled multi-space embeddings for various specific attributes with only a single backbone. Firstly, we employ a cross-attention mechanism to fuse and switch the information of conditions (specific attributes), and we demonstrate its effectiveness through a diverse visualization example. Secondly, we leverage the vision transformer for the first time to a fine-grained image retrieval task and present a simple yet effective framework compared to existing methods. Unlike previous studies where performance varied depending on the benchmark dataset, our proposed method achieved consistent state-of-the-art performance on the FashionAI, DARN, DeepFashion, and Zappos50K benchmark datasets.
GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.
PRISM: A Multi-Modal Generative Foundation Model for Slide-Level Histopathology
Foundation models in computational pathology promise to unlock the development of new clinical decision support systems and models for precision medicine. However, there is a mismatch between most clinical analysis, which is defined at the level of one or more whole slide images, and foundation models to date, which process the thousands of image tiles contained in a whole slide image separately. The requirement to train a network to aggregate information across a large number of tiles in multiple whole slide images limits these models' impact. In this work, we present a slide-level foundation model for H&E-stained histopathology, PRISM, that builds on Virchow tile embeddings and leverages clinical report text for pre-training. Using the tile embeddings, PRISM produces slide-level embeddings with the ability to generate clinical reports, resulting in several modes of use. Using text prompts, PRISM achieves zero-shot cancer detection and sub-typing performance approaching and surpassing that of a supervised aggregator model. Using the slide embeddings with linear classifiers, PRISM surpasses supervised aggregator models. Furthermore, we demonstrate that fine-tuning of the PRISM slide encoder yields label-efficient training for biomarker prediction, a task that typically suffers from low availability of training data; an aggregator initialized with PRISM and trained on as little as 10% of the training data can outperform a supervised baseline that uses all of the data.
Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records
Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.
A Novel Framework for Multi-Person Temporal Gaze Following and Social Gaze Prediction
Gaze following and social gaze prediction are fundamental tasks providing insights into human communication behaviors, intent, and social interactions. Most previous approaches addressed these tasks separately, either by designing highly specialized social gaze models that do not generalize to other social gaze tasks or by considering social gaze inference as an ad-hoc post-processing of the gaze following task. Furthermore, the vast majority of gaze following approaches have proposed static models that can handle only one person at a time, therefore failing to take advantage of social interactions and temporal dynamics. In this paper, we address these limitations and introduce a novel framework to jointly predict the gaze target and social gaze label for all people in the scene. The framework comprises of: (i) a temporal, transformer-based architecture that, in addition to image tokens, handles person-specific tokens capturing the gaze information related to each individual; (ii) a new dataset, VSGaze, that unifies annotation types across multiple gaze following and social gaze datasets. We show that our model trained on VSGaze can address all tasks jointly, and achieves state-of-the-art results for multi-person gaze following and social gaze prediction.
On Large Language Models' Selection Bias in Multi-Choice Questions
Multi-choice questions (MCQs) serve as a common yet important task format in the research of large language models (LLMs). Our work shows that LLMs exhibit an inherent "selection bias" in MCQs, which refers to LLMs' preferences to select options located at specific positions (like "Option C"). This bias is prevalent across various LLMs, making their performance vulnerable to option position changes in MCQs. We identify that one primary cause resulting in selection bias is option numbering, i.e., the ID symbols A/B/C/D associated with the options. To mitigate selection bias, we propose a new method called PriDe. PriDe first decomposes the observed model prediction distribution into an intrinsic prediction over option contents and a prior distribution over option IDs. It then estimates the prior by permutating option contents on a small number of test samples, which is used to debias the subsequent test samples. We demonstrate that, as a label-free, inference-time method, PriDe achieves a more effective and computation-efficient debiasing than strong baselines. We further show that the priors estimated by PriDe generalize well across different domains, highlighting its practical potential in broader scenarios.
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training
While making a tremendous impact in various fields, deep neural networks usually require large amounts of labeled data for training which are expensive to collect in many applications, especially in the medical domain. Unlabeled data, on the other hand, is much more abundant. Semi-supervised learning techniques, such as co-training, could provide a powerful tool to leverage unlabeled data. In this paper, we propose a novel framework, uncertainty-aware multi-view co-training (UMCT), to address semi-supervised learning on 3D data, such as volumetric data from medical imaging. In our work, co-training is achieved by exploiting multi-viewpoint consistency of 3D data. We generate different views by rotating or permuting the 3D data and utilize asymmetrical 3D kernels to encourage diversified features in different sub-networks. In addition, we propose an uncertainty-weighted label fusion mechanism to estimate the reliability of each view's prediction with Bayesian deep learning. As one view requires the supervision from other views in co-training, our self-adaptive approach computes a confidence score for the prediction of each unlabeled sample in order to assign a reliable pseudo label. Thus, our approach can take advantage of unlabeled data during training. We show the effectiveness of our proposed semi-supervised method on several public datasets from medical image segmentation tasks (NIH pancreas & LiTS liver tumor dataset). Meanwhile, a fully-supervised method based on our approach achieved state-of-the-art performances on both the LiTS liver tumor segmentation and the Medical Segmentation Decathlon (MSD) challenge, demonstrating the robustness and value of our framework, even when fully supervised training is feasible.
Training-Free Unsupervised Prompt for Vision-Language Models
Prompt learning has become the most effective paradigm for adapting large pre-trained vision-language models (VLMs) to downstream tasks. Recently, unsupervised prompt tuning methods, such as UPL and POUF, directly leverage pseudo-labels as supervisory information to fine-tune additional adaptation modules on unlabeled data. However, inaccurate pseudo labels easily misguide the tuning process and result in poor representation capabilities. In light of this, we propose Training-Free Unsupervised Prompts (TFUP), which maximally preserves the inherent representation capabilities and enhances them with a residual connection to similarity-based prediction probabilities in a training-free and labeling-free manner. Specifically, we integrate both instance confidence and prototype scores to select representative samples, which are used to customize a reliable Feature Cache Model (FCM) for training-free inference. Then, we design a Multi-level Similarity Measure (MSM) that considers both feature-level and semantic-level similarities to calculate the distance between each test image and the cached sample as the weight of the corresponding cached label to generate similarity-based prediction probabilities. In this way, TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets. Based on our TFUP, we propose a training-based approach (TFUP-T) to further boost the adaptation performance. In addition to the standard cross-entropy loss, TFUP-T adopts an additional marginal distribution entropy loss to constrain the model from a global perspective. Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks. In particular, TFUP-T improves the classification accuracy of POUF by 3.3% on the most challenging Domain-Net dataset.
DriftMoE: A Mixture of Experts Approach to Handle Concept Drifts
Learning from non-stationary data streams subject to concept drift requires models that can adapt on-the-fly while remaining resource-efficient. Existing adaptive ensemble methods often rely on coarse-grained adaptation mechanisms or simple voting schemes that fail to optimally leverage specialized knowledge. This paper introduces DriftMoE, an online Mixture-of-Experts (MoE) architecture that addresses these limitations through a novel co-training framework. DriftMoE features a compact neural router that is co-trained alongside a pool of incremental Hoeffding tree experts. The key innovation lies in a symbiotic learning loop that enables expert specialization: the router selects the most suitable expert for prediction, the relevant experts update incrementally with the true label, and the router refines its parameters using a multi-hot correctness mask that reinforces every accurate expert. This feedback loop provides the router with a clear training signal while accelerating expert specialization. We evaluate DriftMoE's performance across nine state-of-the-art data stream learning benchmarks spanning abrupt, gradual, and real-world drifts testing two distinct configurations: one where experts specialize on data regimes (multi-class variant), and another where they focus on single-class specialization (task-based variant). Our results demonstrate that DriftMoE achieves competitive results with state-of-the-art stream learning adaptive ensembles, offering a principled and efficient approach to concept drift adaptation. All code, data pipelines, and reproducibility scripts are available in our public GitHub repository: https://github.com/miguel-ceadar/drift-moe.
PanopticSplatting: End-to-End Panoptic Gaussian Splatting
Open-vocabulary panoptic reconstruction is a challenging task for simultaneous scene reconstruction and understanding. Recently, methods have been proposed for 3D scene understanding based on Gaussian splatting. However, these methods are multi-staged, suffering from the accumulated errors and the dependence of hand-designed components. To streamline the pipeline and achieve global optimization, we propose PanopticSplatting, an end-to-end system for open-vocabulary panoptic reconstruction. Our method introduces query-guided Gaussian segmentation with local cross attention, lifting 2D instance masks without cross-frame association in an end-to-end way. The local cross attention within view frustum effectively reduces the training memory, making our model more accessible to large scenes with more Gaussians and objects. In addition, to address the challenge of noisy labels in 2D pseudo masks, we propose label blending to promote consistent 3D segmentation with less noisy floaters, as well as label warping on 2D predictions which enhances multi-view coherence and segmentation accuracy. Our method demonstrates strong performances in 3D scene panoptic reconstruction on the ScanNet-V2 and ScanNet++ datasets, compared with both NeRF-based and Gaussian-based panoptic reconstruction methods. Moreover, PanopticSplatting can be easily generalized to numerous variants of Gaussian splatting, and we demonstrate its robustness on different Gaussian base models.
Adaptive Thresholding for Multi-Label Classification via Global-Local Signal Fusion
Multi-label classification (MLC) requires predicting multiple labels per sample, often under heavy class imbalance and noisy conditions. Traditional approaches apply fixed thresholds or treat labels independently, overlooking context and global rarity. We introduce an adaptive thresholding mechanism that fuses global (IDF-based) and local (KNN-based) signals to produce per-label, per-instance thresholds. Instead of applying these as hard cutoffs, we treat them as differentiable penalties in the loss, providing smooth supervision and better calibration. Our architecture is lightweight, interpretable, and highly modular. On the AmazonCat-13K benchmark, it achieves a macro-F1 of 0.1712, substantially outperforming tree-based and pretrained transformer-based methods. We release full code for reproducibility and future extensions.
Improving Arabic Multi-Label Emotion Classification using Stacked Embeddings and Hybrid Loss Function
In multi-label emotion classification, particularly for low-resource languages like Arabic, the challenges of class imbalance and label correlation hinder model performance, especially in accurately predicting minority emotions. To address these issues, this study proposes a novel approach that combines stacked embeddings, meta-learning, and a hybrid loss function to enhance multi-label emotion classification for the Arabic language. The study extracts contextual embeddings from three fine-tuned language models-ArabicBERT, MarBERT, and AraBERT-which are then stacked to form enriched embeddings. A meta-learner is trained on these stacked embeddings, and the resulting concatenated representations are provided as input to a Bi-LSTM model, followed by a fully connected neural network for multi-label classification. To further improve performance, a hybrid loss function is introduced, incorporating class weighting, label correlation matrix, and contrastive learning, effectively addressing class imbalances and improving the handling of label correlations. Extensive experiments validate the proposed model's performance across key metrics such as Precision, Recall, F1-Score, Jaccard Accuracy, and Hamming Loss. The class-wise performance analysis demonstrates the hybrid loss function's ability to significantly reduce disparities between majority and minority classes, resulting in a more balanced emotion classification. An ablation study highlights the contribution of each component, showing the superiority of the model compared to baseline approaches and other loss functions. This study not only advances multi-label emotion classification for Arabic but also presents a generalizable framework that can be adapted to other languages and domains, providing a significant step forward in addressing the challenges of low-resource emotion classification tasks.
NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning
In this paper we present deep-learning models that submitted to the SemEval-2018 Task~1 competition: "Affect in Tweets". We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E "Multi-Label Emotion Classification", 2nd in Subtask A "Emotion Intensity Regression" and achieved competitive results in other subtasks.
How you feelin'? Learning Emotions and Mental States in Movie Scenes
Movie story analysis requires understanding characters' emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a movie scene and for each character. We propose EmoTx, a multimodal Transformer-based architecture that ingests videos, multiple characters, and dialog utterances to make joint predictions. By leveraging annotations from the MovieGraphs dataset, we aim to predict classic emotions (e.g. happy, angry) and other mental states (e.g. honest, helpful). We conduct experiments on the most frequently occurring 10 and 25 labels, and a mapping that clusters 181 labels to 26. Ablation studies and comparison against adapted state-of-the-art emotion recognition approaches shows the effectiveness of EmoTx. Analyzing EmoTx's self-attention scores reveals that expressive emotions often look at character tokens while other mental states rely on video and dialog cues.
Predicting Multi-Codebook Vector Quantization Indexes for Knowledge Distillation
Knowledge distillation(KD) is a common approach to improve model performance in automatic speech recognition (ASR), where a student model is trained to imitate the output behaviour of a teacher model. However, traditional KD methods suffer from teacher label storage issue, especially when the training corpora are large. Although on-the-fly teacher label generation tackles this issue, the training speed is significantly slower as the teacher model has to be evaluated every batch. In this paper, we reformulate the generation of teacher label as a codec problem. We propose a novel Multi-codebook Vector Quantization (MVQ) approach that compresses teacher embeddings to codebook indexes (CI). Based on this, a KD training framework (MVQ-KD) is proposed where a student model predicts the CI generated from the embeddings of a self-supervised pre-trained teacher model. Experiments on the LibriSpeech clean-100 hour show that MVQ-KD framework achieves comparable performance as traditional KD methods (l1, l2), while requiring 256 times less storage. When the full LibriSpeech dataset is used, MVQ-KD framework results in 13.8% and 8.2% relative word error rate reductions (WERRs) for non -streaming transducer on test-clean and test-other and 4.0% and 4.9% for streaming transducer. The implementation of this work is already released as a part of the open-source project icefall.
Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains 156,309 unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to 26,734 (17.1%) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of 0.847 pm 0.050 (internal out-of sample validation) and 0.761 pm 0.052 (external validation). For a harmonised prevalence of 17%, at 80% recall our model detects septic patients with 39% precision 3.7 hours in advance.
SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction
Facial beauty prediction (FBP) is a significant visual recognition problem to make assessment of facial attractiveness that is consistent to human perception. To tackle this problem, various data-driven models, especially state-of-the-art deep learning techniques, were introduced, and benchmark dataset become one of the essential elements to achieve FBP. Previous works have formulated the recognition of facial beauty as a specific supervised learning problem of classification, regression or ranking, which indicates that FBP is intrinsically a computation problem with multiple paradigms. However, most of FBP benchmark datasets were built under specific computation constrains, which limits the performance and flexibility of the computational model trained on the dataset. In this paper, we argue that FBP is a multi-paradigm computation problem, and propose a new diverse benchmark dataset, called SCUT-FBP5500, to achieve multi-paradigm facial beauty prediction. The SCUT-FBP5500 dataset has totally 5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) and diverse labels (face landmarks, beauty scores within [1,~5], beauty score distribution), which allows different computational models with different FBP paradigms, such as appearance-based/shape-based facial beauty classification/regression model for male/female of Asian/Caucasian. We evaluated the SCUT-FBP5500 dataset for FBP using different combinations of feature and predictor, and various deep learning methods. The results indicates the improvement of FBP and the potential applications based on the SCUT-FBP5500.
Mitigating Label Length Bias in Large Language Models
Large language models (LLMs) are powerful zero- and few-shot learners. However, when predicting over a set of candidate options, LLMs suffer from label biases, and existing calibration methods overlook biases arising from multi-token class labels. We tackle an issue we call label length bias, where labels of different lengths are treated inconsistently, even after standard length normalization. To mitigate it, we propose normalized contextual calibration (NCC), an effective method that normalizes and calibrates predictions at the full-label level. NCC achieves statistically significant improvements over prior approaches across multiple datasets and models, with gains of up to 10% F1. Moreover, NCC extends bias mitigation to broader tasks such as multiple-choice question answering. Our analysis shows that, when combined with in-context learning, NCC is less sensitive to few-shot example selection, requires fewer examples for competitive performance, and produces more reliable confidence estimates. These findings highlight the importance of mitigating full-label biases to improve the performance and robustness of LLM-based methods, particularly in real-world applications where class labels naturally consist of multiple tokens.
Multi-Task Lung Nodule Detection in Chest Radiographs with a Dual Head Network
Lung nodules can be an alarming precursor to potential lung cancer. Missed nodule detections during chest radiograph analysis remains a common challenge among thoracic radiologists. In this work, we present a multi-task lung nodule detection algorithm for chest radiograph analysis. Unlike past approaches, our algorithm predicts a global-level label indicating nodule presence along with local-level labels predicting nodule locations using a Dual Head Network (DHN). We demonstrate the favorable nodule detection performance that our multi-task formulation yields in comparison to conventional methods. In addition, we introduce a novel Dual Head Augmentation (DHA) strategy tailored for DHN, and we demonstrate its significance in further enhancing global and local nodule predictions.
Class Token and Knowledge Distillation for Multi-head Self-Attention Speaker Verification Systems
This paper explores three novel approaches to improve the performance of speaker verification (SV) systems based on deep neural networks (DNN) using Multi-head Self-Attention (MSA) mechanisms and memory layers. Firstly, we propose the use of a learnable vector called Class token to replace the average global pooling mechanism to extract the embeddings. Unlike global average pooling, our proposal takes into account the temporal structure of the input what is relevant for the text-dependent SV task. The class token is concatenated to the input before the first MSA layer, and its state at the output is used to predict the classes. To gain additional robustness, we introduce two approaches. First, we have developed a Bayesian estimation of the class token. Second, we have added a distilled representation token for training a teacher-student pair of networks using the Knowledge Distillation (KD) philosophy, which is combined with the class token. This distillation token is trained to mimic the predictions from the teacher network, while the class token replicates the true label. All the strategies have been tested on the RSR2015-Part II and DeepMine-Part 1 databases for text-dependent SV, providing competitive results compared to the same architecture using the average pooling mechanism to extract average embeddings.
Self-supervision on Unlabelled OR Data for Multi-person 2D/3D Human Pose Estimation
2D/3D human pose estimation is needed to develop novel intelligent tools for the operating room that can analyze and support the clinical activities. The lack of annotated data and the complexity of state-of-the-art pose estimation approaches limit, however, the deployment of such techniques inside the OR. In this work, we propose to use knowledge distillation in a teacher/student framework to harness the knowledge present in a large-scale non-annotated dataset and in an accurate but complex multi-stage teacher network to train a lightweight network for joint 2D/3D pose estimation. The teacher network also exploits the unlabeled data to generate both hard and soft labels useful in improving the student predictions. The easily deployable network trained using this effective self-supervision strategy performs on par with the teacher network on MVOR+, an extension of the public MVOR dataset where all persons have been fully annotated, thus providing a viable solution for real-time 2D/3D human pose estimation in the OR.
RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision
3D occupancy prediction holds significant promise in the fields of robot perception and autonomous driving, which quantifies 3D scenes into grid cells with semantic labels. Recent works mainly utilize complete occupancy labels in 3D voxel space for supervision. However, the expensive annotation process and sometimes ambiguous labels have severely constrained the usability and scalability of 3D occupancy models. To address this, we present RenderOcc, a novel paradigm for training 3D occupancy models only using 2D labels. Specifically, we extract a NeRF-style 3D volume representation from multi-view images, and employ volume rendering techniques to establish 2D renderings, thus enabling direct 3D supervision from 2D semantics and depth labels. Additionally, we introduce an Auxiliary Ray method to tackle the issue of sparse viewpoints in autonomous driving scenarios, which leverages sequential frames to construct comprehensive 2D rendering for each object. To our best knowledge, RenderOcc is the first attempt to train multi-view 3D occupancy models only using 2D labels, reducing the dependence on costly 3D occupancy annotations. Extensive experiments demonstrate that RenderOcc achieves comparable performance to models fully supervised with 3D labels, underscoring the significance of this approach in real-world applications.
Contrastive learning, multi-view redundancy, and linear models
Self-supervised learning is an empirically successful approach to unsupervised learning based on creating artificial supervised learning problems. A popular self-supervised approach to representation learning is contrastive learning, which leverages naturally occurring pairs of similar and dissimilar data points, or multiple views of the same data. This work provides a theoretical analysis of contrastive learning in the multi-view setting, where two views of each datum are available. The main result is that linear functions of the learned representations are nearly optimal on downstream prediction tasks whenever the two views provide redundant information about the label.
Euclid Quick Data Release (Q1) Exploring galaxy properties with a multi-modal foundation model
Modern astronomical surveys, such as the Euclid mission, produce high-dimensional, multi-modal data sets that include imaging and spectroscopic information for millions of galaxies. These data serve as an ideal benchmark for large, pre-trained multi-modal models, which can leverage vast amounts of unlabelled data. In this work, we present the first exploration of Euclid data with AstroPT, an autoregressive multi-modal foundation model trained on approximately 300 000 optical and infrared Euclid images and spectral energy distributions (SEDs) from the first Euclid Quick Data Release. We compare self-supervised pre-training with baseline fully supervised training across several tasks: galaxy morphology classification; redshift estimation; similarity searches; and outlier detection. Our results show that: (a) AstroPT embeddings are highly informative, correlating with morphology and effectively isolating outliers; (b) including infrared data helps to isolate stars, but degrades the identification of edge-on galaxies, which are better captured by optical images; (c) simple fine-tuning of these embeddings for photometric redshift and stellar mass estimation outperforms a fully supervised approach, even when using only 1% of the training labels; and (d) incorporating SED data into AstroPT via a straightforward multi-modal token-chaining method improves photo-z predictions, and allow us to identify potentially more interesting anomalies (such as ringed or interacting galaxies) compared to a model pre-trained solely on imaging data.
Food Ingredients Recognition through Multi-label Learning
Automatically constructing a food diary that tracks the ingredients consumed can help people follow a healthy diet. We tackle the problem of food ingredients recognition as a multi-label learning problem. We propose a method for adapting a highly performing state of the art CNN in order to act as a multi-label predictor for learning recipes in terms of their list of ingredients. We prove that our model is able to, given a picture, predict its list of ingredients, even if the recipe corresponding to the picture has never been seen by the model. We make public two new datasets suitable for this purpose. Furthermore, we prove that a model trained with a high variability of recipes and ingredients is able to generalize better on new data, and visualize how it specializes each of its neurons to different ingredients.
CT-ADE: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results
Adverse drug events (ADEs) significantly impact clinical research, causing many clinical trial failures. ADE prediction is key for developing safer medications and enhancing patient outcomes. To support this effort, we introduce CT-ADE, a dataset for multilabel predictive modeling of ADEs in monopharmacy treatments. CT-ADE integrates data from 2,497 unique drugs, encompassing 168,984 drug-ADE pairs extracted from clinical trials, annotated with patient and contextual information, and comprehensive ADE concepts standardized across multiple levels of the MedDRA ontology. Preliminary analyses with large language models (LLMs) achieved F1-scores up to 55.90%. Models using patient and contextual information showed F1-score improvements of 21%-38% over models using only chemical structure data. Our results highlight the importance of target population and treatment regimens in the predictive modeling of ADEs, offering greater performance gains than LLM domain specialization and scaling. CT-ADE provides an essential tool for researchers aiming to leverage artificial intelligence and machine learning to enhance patient safety and minimize the impact of ADEs on pharmaceutical research and development. The dataset is publicly accessible at https://github.com/ds4dh/CT-ADE.
Happy Dance, Slow Clap: Using Reaction GIFs to Predict Induced Affect on Twitter
Datasets with induced emotion labels are scarce but of utmost importance for many NLP tasks. We present a new, automated method for collecting texts along with their induced reaction labels. The method exploits the online use of reaction GIFs, which capture complex affective states. We show how to augment the data with induced emotion and induced sentiment labels. We use our method to create and publish ReactionGIF, a first-of-its-kind affective dataset of 30K tweets. We provide baselines for three new tasks, including induced sentiment prediction and multilabel classification of induced emotions. Our method and dataset open new research opportunities in emotion detection and affective computing.
Towards Safer and Understandable Driver Intention Prediction
Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/
Integration of Large Language Models and Traditional Deep Learning for Social Determinants of Health Prediction
Social Determinants of Health (SDoH) are economic, social and personal circumstances that affect or influence an individual's health status. SDoHs have shown to be correlated to wellness outcomes, and therefore, are useful to physicians in diagnosing diseases and in decision-making. In this work, we automatically extract SDoHs from clinical text using traditional deep learning and Large Language Models (LLMs) to find the advantages and disadvantages of each on an existing publicly available dataset. Our models outperform a previous reference point on a multilabel SDoH classification by 10 points, and we present a method and model to drastically speed up classification (12X execution time) by eliminating expensive LLM processing. The method we present combines a more nimble and efficient solution that leverages the power of the LLM for precision and traditional deep learning methods for efficiency. We also show highly performant results on a dataset supplemented with synthetic data and several traditional deep learning models that outperform LLMs. Our models and methods offer the next iteration of automatic prediction of SDoHs that impact at-risk patients.
Learning Mixtures of Markov Chains and MDPs
We present an algorithm for learning mixtures of Markov chains and Markov decision processes (MDPs) from short unlabeled trajectories. Specifically, our method handles mixtures of Markov chains with optional control input by going through a multi-step process, involving (1) a subspace estimation step, (2) spectral clustering of trajectories using "pairwise distance estimators," along with refinement using the EM algorithm, (3) a model estimation step, and (4) a classification step for predicting labels of new trajectories. We provide end-to-end performance guarantees, where we only explicitly require the length of trajectories to be linear in the number of states and the number of trajectories to be linear in a mixing time parameter. Experimental results support these guarantees, where we attain 96.6% average accuracy on a mixture of two MDPs in gridworld, outperforming the EM algorithm with random initialization (73.2% average accuracy).
Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation
Supervised deep learning with pixel-wise training labels has great successes on multi-person part segmentation. However, data labeling at pixel-level is very expensive. To solve the problem, people have been exploring to use synthetic data to avoid the data labeling. Although it is easy to generate labels for synthetic data, the results are much worse compared to those using real data and manual labeling. The degradation of the performance is mainly due to the domain gap, i.e., the discrepancy of the pixel value statistics between real and synthetic data. In this paper, we observe that real and synthetic humans both have a skeleton (pose) representation. We found that the skeletons can effectively bridge the synthetic and real domains during the training. Our proposed approach takes advantage of the rich and realistic variations of the real data and the easily obtainable labels of the synthetic data to learn multi-person part segmentation on real images without any human-annotated labels. Through experiments, we show that without any human labeling, our method performs comparably to several state-of-the-art approaches which require human labeling on Pascal-Person-Parts and COCO-DensePose datasets. On the other hand, if part labels are also available in the real-images during training, our method outperforms the supervised state-of-the-art methods by a large margin. We further demonstrate the generalizability of our method on predicting novel keypoints in real images where no real data labels are available for the novel keypoints detection. Code and pre-trained models are available at https://github.com/kevinlin311tw/CDCL-human-part-segmentation
