new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA

A standard way to evaluate the abilities of LLM involves presenting a multiple-choice question and selecting the option with the highest logit as the model's predicted answer. However, such a format for evaluating LLMs has limitations, since even if the model knows the correct answer, it may struggle to select the corresponding letter simply due to difficulties in following this rigid format. To address this, we introduce new scores that better capture and reveal model's underlying knowledge: the Query-Key Score (QK-score), derived from the interaction between query and key representations in attention heads, and the Attention Score, based on attention weights. These scores are extracted from specific select-and-copy heads, which show consistent performance across popular Multi-Choice Question Answering (MCQA) datasets. Based on these scores, our method improves knowledge extraction, yielding up to 16\% gain for LLaMA2-7B and up to 10\% for larger models on popular MCQA benchmarks. At the same time, the accuracy on a simple synthetic dataset, where the model explicitly knows the right answer, increases by almost 60\%, achieving nearly perfect accuracy, therefore demonstrating the method's efficiency in mitigating MCQA format limitations. To support our claims, we conduct experiments on models ranging from 7 billion to 70 billion parameters in both zero- and few-shot setups.

  • 8 authors
·
Oct 3, 2024

ST-PPO: Stabilized Off-Policy Proximal Policy Optimization for Multi-Turn Agents Training

PPO has been widely adopted for training large language models (LLMs) at the token level in multi-turn dialogue and reasoning tasks. However, its performance is often unstable and prone to collapse. Through empirical analysis, we identify two main sources of instability in this setting: (1)~token-level importance sampling, which is misaligned with the natural granularity of multi-turn environments that have distinct turn-level stages, and (2) inaccurate advantage estimates from off-policy samples, where the critic has not learned to evaluate certain state-action pairs, resulting in high-variance gradients and unstable updates. To address these challenges, we introduce two complementary stabilization techniques: (1) turn-level importance sampling, which aligns optimization with the natural structure of multi-turn reasoning, and (2) clipping-bias correction, which normalizes gradients by downweighting unreliable, highly off-policy samples. Depending on how these components are combined, we obtain three variants: Turn-PPO (turn-level sampling only), S-PPO (clipping-bias correction applied to token-level PPO), and ST-PPO (turn-level sampling combined with clipping-bias correction). In our experiments, we primarily study ST-PPO and S-PPO, which together demonstrate how the two stabilization mechanisms address complementary sources of instability. Experiments on multi-turn search tasks across general QA, multi-hop QA, and medical multiple-choice QA benchmarks show that ST-PPO and S-PPO consistently prevent the performance collapses observed in large-model training, maintain lower clipping ratios throughout optimization, and achieve higher task performance than standard token-level PPO. These results demonstrate that combining turn-level importance sampling with clipping-bias correction provides a practical and scalable solution for stabilizing multi-turn LLM agent training.

  • 9 authors
·
Nov 25

Beyond Distillation: Pushing the Limits of Medical LLM Reasoning with Minimalist Rule-Based RL

Improving performance on complex tasks and enabling interpretable decision making in large language models (LLMs), especially for clinical applications, requires effective reasoning. Yet this remains challenging without supervised fine-tuning (SFT) on costly chain-of-thought (CoT) data distilled from closed-source models (e.g., GPT-4o). In this work, we present AlphaMed, the first medical LLM to show that reasoning capability can emerge purely through reinforcement learning (RL), using minimalist rule-based rewards on public multiple-choice QA datasets, without relying on SFT or distilled CoT data. AlphaMed achieves state-of-the-art results on six medical QA benchmarks, outperforming models trained with conventional SFT+RL pipelines. On challenging benchmarks (e.g., MedXpert), AlphaMed even surpasses larger or closed-source models such as DeepSeek-V3-671B and Claude-3.5-Sonnet. To understand the factors behind this success, we conduct a comprehensive data-centric analysis guided by three questions: (i) Can minimalist rule-based RL incentivize reasoning without distilled CoT supervision? (ii) How do dataset quantity and diversity impact reasoning? (iii) How does question difficulty shape the emergence and generalization of reasoning? Our findings show that dataset informativeness is a key driver of reasoning performance, and that minimalist RL on informative, multiple-choice QA data is effective at inducing reasoning without CoT supervision. We also observe divergent trends across benchmarks, underscoring limitations in current evaluation and the need for more challenging, reasoning-oriented medical QA benchmarks.

  • 9 authors
·
May 23 2

MVBench: A Comprehensive Multi-modal Video Understanding Benchmark

With the rapid development of Multi-modal Large Language Models (MLLMs), a number of diagnostic benchmarks have recently emerged to evaluate the comprehension capabilities of these models. However, most benchmarks predominantly assess spatial understanding in the static image tasks, while overlooking temporal understanding in the dynamic video tasks. To alleviate this issue, we introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench, which covers 20 challenging video tasks that cannot be effectively solved with a single frame. Specifically, we first introduce a novel static-to-dynamic method to define these temporal-related tasks. By transforming various static tasks into dynamic ones, we enable the systematic generation of video tasks that require a broad spectrum of temporal skills, ranging from perception to cognition. Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task. On one hand, such a distinct paradigm allows us to build MVBench efficiently, without much manual intervention. On the other hand, it guarantees evaluation fairness with ground-truth video annotations, avoiding the biased scoring of LLMs. Moreover, we further develop a robust video MLLM baseline, i.e., VideoChat2, by progressive multi-modal training with diverse instruction-tuning data. The extensive results on our MVBench reveal that, the existing MLLMs are far from satisfactory in temporal understanding, while our VideoChat2 largely surpasses these leading models by over 15% on MVBench. All models and data are available at https://github.com/OpenGVLab/Ask-Anything.

  • 12 authors
·
Nov 28, 2023

Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models

Recent Multi-modal Large Language Models (MLLMs) have been challenged by the computational overhead resulting from massive video frames, often alleviated through compression strategies. However, the visual content is not equally contributed to user instructions, existing strategies (\eg, average pool) inevitably lead to the loss of potentially useful information. To tackle this, we propose the Hybrid-level Instruction Injection Strategy for Conditional Token Compression in MLLMs (HICom), utilizing the instruction as a condition to guide the compression from both local and global levels. This encourages the compression to retain the maximum amount of user-focused information while reducing visual tokens to minimize computational burden. Specifically, the instruction condition is injected into the grouped visual tokens at the local level and the learnable tokens at the global level, and we conduct the attention mechanism to complete the conditional compression. From the hybrid-level compression, the instruction-relevant visual parts are highlighted while the temporal-spatial structure is also preserved for easier understanding of LLMs. To further unleash the potential of HICom, we introduce a new conditional pre-training stage with our proposed dataset HICom-248K. Experiments show that our HICom can obtain distinguished video understanding ability with fewer tokens, increasing the performance by 2.43\% average on three multiple-choice QA benchmarks and saving 78.8\% tokens compared with the SOTA method. The code is available at https://github.com/lntzm/HICom.

  • 8 authors
·
Mar 20

The Impossibility of Inverse Permutation Learning in Transformer Models

In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).

  • 4 authors
·
Sep 28

KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models

Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks.

  • 7 authors
·
Oct 15, 2023

Self-supervised pre-training and contrastive representation learning for multiple-choice video QA

Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.

  • 5 authors
·
Sep 16, 2020

TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish

Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU.

  • 5 authors
·
Jul 17, 2024

VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models

Despite recent advances in video understanding, the capabilities of Large Video Language Models (LVLMs) to perform video-based causal reasoning remains underexplored, largely due to the absence of relevant and dedicated benchmarks for evaluating causal reasoning in visually grounded and goal-driven settings. To fill this gap, we introduce a novel benchmark named Video-based long-form Causal Reasoning (VCRBench). We create VCRBench using procedural videos of simple everyday activities, where the steps are deliberately shuffled with each clip capturing a key causal event, to test whether LVLMs can identify, reason about, and correctly sequence the events needed to accomplish a specific goal. Moreover, the benchmark is carefully designed to prevent LVLMs from exploiting linguistic shortcuts, as seen in multiple-choice or binary QA formats, while also avoiding the challenges associated with evaluating open-ended QA. Our evaluation of state-of-the-art LVLMs on VCRBench suggests that these models struggle with video-based long-form causal reasoning, primarily due to their difficulty in modeling long-range causal dependencies directly from visual observations. As a simple step toward enabling such capabilities, we propose Recognition-Reasoning Decomposition (RRD), a modular approach that breaks video-based causal reasoning into two sub-tasks of video recognition and causal reasoning. Our experiments on VCRBench show that RRD significantly boosts accuracy on VCRBench, with gains of up to 25.2%. Finally, our thorough analysis reveals interesting insights, for instance, that LVLMs primarily rely on language knowledge for complex video-based long-form causal reasoning tasks.

  • 2 authors
·
May 13 2

FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes

We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.

Attentiveness to Answer Choices Doesn't Always Entail High QA Accuracy

When large language models (LMs) are applied in zero- or few-shot settings to discriminative tasks such as multiple-choice questions, their attentiveness (i.e., probability mass) is spread across many vocabulary tokens that are not valid choices. Such a spread across multiple surface forms with identical meaning is thought to cause an underestimation of a model's true performance, referred to as the "surface form competition" (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC or attentiveness? Are there direct ways of increasing attentiveness on valid choices? Does increasing attentiveness always improve task accuracy? We propose a mathematical formalism for studying this phenomenon, provide a metric for quantifying attentiveness, and identify a simple method for increasing it -- namely, in-context learning with even just one example containing answer choices. The formalism allows us to quantify SFC and bound its impact. Our experiments on three diverse datasets and six LMs reveal several surprising findings. For example, encouraging models to generate a valid answer choice can, in fact, be detrimental to task performance for some LMs, and prior probability normalization methods are less effective (sometimes even detrimental) to instruction-tuned LMs. We conclude with practical insights for effectively using prompted LMs for multiple-choice tasks.

  • 5 authors
·
May 23, 2023

Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores

Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.

  • 4 authors
·
Feb 22

MHQA: A Diverse, Knowledge Intensive Mental Health Question Answering Challenge for Language Models

Mental health remains a challenging problem all over the world, with issues like depression, anxiety becoming increasingly common. Large Language Models (LLMs) have seen a vast application in healthcare, specifically in answering medical questions. However, there is a lack of standard benchmarking datasets for question answering (QA) in mental health. Our work presents a novel multiple choice dataset, MHQA (Mental Health Question Answering), for benchmarking Language models (LMs). Previous mental health datasets have focused primarily on text classification into specific labels or disorders. MHQA, on the other hand, presents question-answering for mental health focused on four key domains: anxiety, depression, trauma, and obsessive/compulsive issues, with diverse question types, namely, factoid, diagnostic, prognostic, and preventive. We use PubMed abstracts as the primary source for QA. We develop a rigorous pipeline for LLM-based identification of information from abstracts based on various selection criteria and converting it into QA pairs. Further, valid QA pairs are extracted based on post-hoc validation criteria. Overall, our MHQA dataset consists of 2,475 expert-verified gold standard instances called MHQA-gold and ~56.1k pairs pseudo labeled using external medical references. We report F1 scores on different LLMs along with few-shot and supervised fine-tuning experiments, further discussing the insights for the scores.

  • 7 authors
·
Feb 21

VideoSAVi: Self-Aligned Video Language Models without Human Supervision

Recent advances in vision-language models (VLMs) have significantly enhanced video understanding tasks. Instruction tuning (i.e., fine-tuning models on datasets of instructions paired with desired outputs) has been key to improving model performance. However, creating diverse instruction-tuning datasets is challenging due to high annotation costs and the complexity of capturing temporal information in videos. Existing approaches often rely on large language models to generate instruction-output pairs, which can limit diversity and lead to responses that lack grounding in the video content. To address this, we propose VideoSAVi (Self-Aligned Video Language Model), a novel self-training pipeline that enables VLMs to generate their own training data without extensive manual annotation. The process involves three stages: (1) generating diverse video-specific questions, (2) producing multiple candidate answers, and (3) evaluating these responses for alignment with the video content. This self-generated data is then used for direct preference optimization (DPO), allowing the model to refine its own high-quality outputs and improve alignment with video content. Our experiments demonstrate that even smaller models (0.5B and 7B parameters) can effectively use this self-training approach, outperforming previous methods and achieving results comparable to those trained on proprietary preference data. VideoSAVi shows significant improvements across multiple benchmarks: up to 28% on multi-choice QA, 8% on zero-shot open-ended QA, and 12% on temporal reasoning benchmarks. These results demonstrate the effectiveness of our self-training approach in enhancing video understanding while reducing dependence on proprietary models.

  • 2 authors
·
Nov 30, 2024

ESGenius: Benchmarking LLMs on Environmental, Social, and Governance (ESG) and Sustainability Knowledge

We introduce ESGenius, a comprehensive benchmark for evaluating and enhancing the proficiency of Large Language Models (LLMs) in Environmental, Social and Governance (ESG) and sustainability-focused question answering. ESGenius comprises two key components: (i) ESGenius-QA, a collection of 1 136 multiple-choice questions generated by LLMs and rigorously validated by domain experts, covering a broad range of ESG pillars and sustainability topics. Each question is systematically linked to its corresponding source text, enabling transparent evaluation and supporting retrieval-augmented generation (RAG) methods; and (ii) ESGenius-Corpus, a meticulously curated repository of 231 foundational frameworks, standards, reports and recommendation documents from seven authoritative sources. Moreover, to fully assess the capabilities and adaptation potential of the model, we implement a rigorous two-stage evaluation protocol -- Zero-Shot and RAG. Extensive experiments across 50 LLMs (ranging from 0.5 B to 671 B parameters) demonstrate that state-of-the-art models achieve only moderate performance in zero-shot settings, with accuracies typically around 55--70\%, highlighting ESGenius's challenging nature for LLMs in interdisciplinary contexts. However, models employing RAG show significant performance improvements, particularly for smaller models. For example, "DeepSeek-R1-Distill-Qwen-14B" improves from 63.82\% (zero-shot) to 80.46\% with RAG. These results underscore the necessity of grounding responses in authoritative sources for enhanced ESG understanding. To the best of our knowledge, ESGenius is the first benchmark curated for LLMs and the relevant enhancement technologies that focuses on ESG and sustainability topics.

  • 12 authors
·
Jun 2

TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models

Understanding fine-grained temporal dynamics is crucial for multimodal video comprehension and generation. Due to the lack of fine-grained temporal annotations, existing video benchmarks mostly resemble static image benchmarks and are incompetent at evaluating models for temporal understanding. In this paper, we introduce TemporalBench, a new benchmark dedicated to evaluating fine-grained temporal understanding in videos. TemporalBench consists of ~10K video question-answer pairs, derived from ~2K high-quality human annotations detailing the temporal dynamics in video clips. As a result, our benchmark provides a unique testbed for evaluating various temporal understanding and reasoning abilities such as action frequency, motion magnitude, event order, etc. Moreover, it enables evaluations on various tasks like both video question answering and captioning, both short and long video understanding, as well as different models such as multimodal video embedding models and text generation models. Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench, demonstrating a significant gap (~30%) between humans and AI in temporal understanding. Furthermore, we notice a critical pitfall for multi-choice QA where LLMs can detect the subtle changes in negative captions and find a centralized description as a cue for its prediction, where we propose Multiple Binary Accuracy (MBA) to correct such bias. We hope that TemporalBench can foster research on improving models' temporal reasoning capabilities. Both dataset and evaluation code will be made available.

  • 15 authors
·
Oct 14, 2024 2

SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages

Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose SynDARin, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain human-curated paragraphs between English and the target language. We use the English data as context to generate synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English human-curated paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with 1.2K samples for the Armenian language. The human evaluation shows that 98% of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out sim70% of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language.

  • 4 authors
·
Jun 20, 2024

BMMR: A Large-Scale Bilingual Multimodal Multi-Discipline Reasoning Dataset

In this paper, we introduce BMMR, a large-scale bilingual, multimodal, multi-disciplinary reasoning dataset for the community to develop and evaluate large multimodal models (LMMs). BMMR comprises 110k college-level questions spanning 300 UNESCO-defined subjects, spanning diverse formats-multiple-choice, fill-in-the-blank, and open-ended QA-and sourced from both print and digital media such as books, exams, and quizzes. All data are curated and filtered via a human-in-the-loop and scalable framework, and each instance is paired with a high-quality reasoning path. The dataset is organized into two parts: BMMR-Eval that comprises 20,458 high-quality instances to comprehensively assess LMMs' knowledge and reasoning across multiple disciplines in both Chinese and English; and BMMR-Train that contains 88,991 instances to support further research and development, extending the current focus on mathematical reasoning to diverse disciplines and domains. In addition, we propose the process-based multi-discipline verifier (i.e., BMMR-Verifier) for accurate and fine-grained evaluation of reasoning paths. Extensive experiments on 24 models reveal that (i) even SOTA models (e.g., o3 and Gemini-2.5-Pro) leave substantial headroom on BMMR-Eval; (ii) reasoning models exhibit discipline bias and outperform LMMs only on specific subjects; (iii) open-source models still trail their proprietary counterparts; and (iv) fine-tuning on BMMR-Train narrows this gap. Additionally, we conduct reasoning-chain analyses using BMMR-Verifier and other in-depth studies, uncovering the challenges LMMs currently face in multidisciplinary reasoning. We will release the data, and we hope our work can offer insights and contributions to the community.

LLM-Coordination: Evaluating and Analyzing Multi-agent Coordination Abilities in Large Language Models

The emergent reasoning and Theory of Mind (ToM) abilities demonstrated by Large Language Models (LLMs) make them promising candidates for developing coordination agents. In this study, we introduce a new LLM-Coordination Benchmark aimed at a detailed analysis of LLMs within the context of Pure Coordination Games, where participating agents need to cooperate for the most gain. This benchmark evaluates LLMs through two distinct tasks: (1) Agentic Coordination, where LLMs act as proactive participants for cooperation in 4 pure coordination games; (2) Coordination Question Answering (QA), where LLMs are prompted to answer 198 multiple-choice questions from the 4 games for evaluation of three key reasoning abilities: Environment Comprehension, ToM Reasoning, and Joint Planning. Furthermore, to enable LLMs for multi-agent coordination, we introduce a Cognitive Architecture for Coordination (CAC) framework that can easily integrate different LLMs as plug-and-play modules for pure coordination games. Our findings indicate that LLM agents equipped with GPT-4-turbo achieve comparable performance to state-of-the-art reinforcement learning methods in games that require commonsense actions based on the environment. Besides, zero-shot coordination experiments reveal that, unlike RL methods, LLM agents are robust to new unseen partners. However, results on Coordination QA show a large room for improvement in the Theory of Mind reasoning and joint planning abilities of LLMs. The analysis also sheds light on how the ability of LLMs to understand their environment and their partner's beliefs and intentions plays a part in their ability to plan for coordination. Our code is available at https://github.com/eric-ai-lab/llm_coordination.

  • 4 authors
·
Oct 5, 2023

Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data

Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing Chat-TS, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the TS Instruct Training Dataset which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the TS Instruct Question and Answer (QA) Gold Dataset which provides multiple-choice questions designed to evaluate multimodal reasoning, and a TS Instruct Quantitative Probing Set which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL].}

  • 3 authors
·
Mar 13

Towards Efficient Methods in Medical Question Answering using Knowledge Graph Embeddings

In Natural Language Processing (NLP), Machine Reading Comprehension (MRC) is the task of answering a question based on a given context. To handle questions in the medical domain, modern language models such as BioBERT, SciBERT and even ChatGPT are trained on vast amounts of in-domain medical corpora. However, in-domain pre-training is expensive in terms of time and resources. In this paper, we propose a resource-efficient approach for injecting domain knowledge into a model without relying on such domain-specific pre-training. Knowledge graphs are powerful resources for accessing medical information. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from medical knowledge graphs with the embedding spaces of pre-trained language models (LMs). The aligned embeddings are fused with open-domain LMs BERT and RoBERTa that are fine-tuned for two MRC tasks, span detection (COVID-QA) and multiple-choice questions (PubMedQA). We compare our method to prior techniques that rely on a vocabulary overlap for embedding alignment and show how our method circumvents this requirement to deliver better performance. On both datasets, our method allows BERT/RoBERTa to either perform on par (occasionally exceeding) with stronger domain-specific models or show improvements in general over prior techniques. With the proposed approach, we signal an alternative method to in-domain pre-training to achieve domain proficiency.

  • 5 authors
·
Jan 15, 2024

TeleEgo: Benchmarking Egocentric AI Assistants in the Wild

Egocentric AI assistants in real-world settings must process multi-modal inputs (video, audio, text), respond in real time, and retain evolving long-term memory. However, existing benchmarks typically evaluate these abilities in isolation, lack realistic streaming scenarios, or support only short-term tasks. We introduce TeleEgo, a long-duration, streaming, omni-modal benchmark for evaluating egocentric AI assistants in realistic daily contexts. The dataset features over 14 hours per participant of synchronized egocentric video, audio, and text across four domains: work \& study, lifestyle \& routines, social activities, and outings \& culture. All data is aligned on a unified global timeline and includes high-quality visual narrations and speech transcripts, curated through human refinement.TeleEgo defines 12 diagnostic subtasks across three core capabilities: Memory (recalling past events), Understanding (interpreting the current moment), and Cross-Memory Reasoning (linking distant events). It contains 3,291 human-verified QA items spanning multiple question formats (single-choice, binary, multi-choice, and open-ended), evaluated strictly in a streaming setting. We propose two key metrics -- Real-Time Accuracy and Memory Persistence Time -- to jointly assess correctness, temporal responsiveness, and long-term retention. TeleEgo provides a realistic and comprehensive evaluation to advance the development of practical AI assistants.

  • 15 authors
·
Oct 27

Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong

One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.

  • 5 authors
·
Jan 16 2

Answer Matching Outperforms Multiple Choice for Language Model Evaluation

Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering

One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA). While open-ended question answering tasks are more challenging to evaluate, MCQA tasks are, in principle, easier to assess, as the model's answer is thought to be simple to extract and is directly compared to a set of predefined choices. However, recent studies have started to question the reliability of MCQA evaluation, showing that multiple factors can significantly impact the reported performance of LLMs, especially when the model generates free-form text before selecting one of the answer choices. In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons. We systematically analyze whether existing answer extraction methods are aligned with human judgment, and how they are influenced by answer constraints in the prompt across different domains. Our experiments demonstrate that traditional evaluation strategies often underestimate LLM capabilities, while LLM-based answer extractors are prone to systematic errors. Moreover, we reveal a fundamental trade-off between including format constraints in the prompt to simplify answer extraction and allowing models to generate free-form text to improve reasoning. Our findings call for standardized evaluation methodologies and highlight the need for more reliable and consistent MCQA evaluation practices.

  • 6 authors
·
Mar 19

A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning

Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A^2Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed AnsF1 reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A^2Search achieves new state-of-the-art performance. With only a single rollout, A^2Search-7B yields an average AnsF1@1 score of 48.4% across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B (46.2%). Extensive analyses further show that A^2Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

ChroniclingAmericaQA: A Large-scale Question Answering Dataset based on Historical American Newspaper Pages

Question answering (QA) and Machine Reading Comprehension (MRC) tasks have significantly advanced in recent years due to the rapid development of deep learning techniques and, more recently, large language models. At the same time, many benchmark datasets have become available for QA and MRC tasks. However, most existing large-scale benchmark datasets have been created predominantly using synchronous document collections like Wikipedia or the Web. Archival document collections, such as historical newspapers, contain valuable information from the past that is still not widely used to train large language models. To further contribute to advancing QA and MRC tasks and to overcome the limitation of previous datasets, we introduce ChroniclingAmericaQA, a large-scale dataset with 485K question-answer pairs created based on the historical newspaper collection Chronicling America. Our dataset is constructed from a subset of the Chronicling America newspaper collection spanning 120 years. One of the significant challenges for utilizing digitized historical newspaper collections is the low quality of OCR text. Therefore, to enable realistic testing of QA models, our dataset can be used in three different ways: answering questions from raw and noisy content, answering questions from cleaner, corrected version of the content, as well as answering questions from scanned images of newspaper pages. This and the fact that ChroniclingAmericaQA spans the longest time period among available QA datasets make it quite a unique and useful resource.

  • 3 authors
·
Mar 26, 2024 1

Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data

Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts.

  • 4 authors
·
Jun 4, 2024

Quizbowl: The Case for Incremental Question Answering

Scholastic trivia competitions test knowledge and intelligence through mastery of question answering. Modern question answering benchmarks are one variant of the Turing test. Specifically, answering a set of questions as well as a human is a minimum bar towards demonstrating human-like intelligence. This paper makes the case that the format of one competition -- where participants can answer in the middle of hearing a question (incremental) -- better differentiates the skill between (human or machine) players. Additionally, merging a sequential decision-making sub-task with question answering (QA) provides a good setting for research in model calibration and opponent modeling. Thus, embedded in this task are three machine learning challenges: (1) factoid QA over thousands of Wikipedia-like answers, (2) calibration of the QA model's confidence scores, and (3) sequential decision-making that incorporates knowledge of the QA model, its calibration, and what the opponent may do. We make two contributions: (1) collecting and curating a large factoid QA dataset and an accompanying gameplay dataset, and (2) developing a model that addresses these three machine learning challenges. In addition to offline evaluation, we pitted our model against some of the most accomplished trivia players in the world in a series of exhibition matches spanning several years. Throughout this paper, we show that collaborations with the vibrant trivia community have contributed to the quality of our dataset, spawned new research directions, and doubled as an exciting way to engage the public with research in machine learning and natural language processing.

  • 5 authors
·
Apr 9, 2019

AXNav: Replaying Accessibility Tests from Natural Language

Developers and quality assurance testers often rely on manual testing to test accessibility features throughout the product lifecycle. Unfortunately, manual testing can be tedious, often has an overwhelming scope, and can be difficult to schedule amongst other development milestones. Recently, Large Language Models (LLMs) have been used for a variety of tasks including automation of UIs, however to our knowledge no one has yet explored their use in controlling assistive technologies for the purposes of supporting accessibility testing. In this paper, we explore the requirements of a natural language based accessibility testing workflow, starting with a formative study. From this we build a system that takes as input a manual accessibility test (e.g., ``Search for a show in VoiceOver'') and uses an LLM combined with pixel-based UI Understanding models to execute the test and produce a chaptered, navigable video. In each video, to help QA testers we apply heuristics to detect and flag accessibility issues (e.g., Text size not increasing with Large Text enabled, VoiceOver navigation loops). We evaluate this system through a 10 participant user study with accessibility QA professionals who indicated that the tool would be very useful in their current work and performed tests similarly to how they would manually test the features. The study also reveals insights for future work on using LLMs for accessibility testing.

  • 6 authors
·
Oct 3, 2023

Implications of Deep Circuits in Improving Quality of Quantum Question Answering

Question Answering (QA) has proved to be an arduous challenge in the area of natural language processing (NLP) and artificial intelligence (AI). Many attempts have been made to develop complete solutions for QA as well as improving significant sub-modules of the QA systems to improve the overall performance through the course of time. Questions are the most important piece of QA, because knowing the question is equivalent to knowing what counts as an answer (Harrah in Philos Sci, 1961 [1]). In this work, we have attempted to understand questions in a better way by using Quantum Machine Learning (QML). The properties of Quantum Computing (QC) have enabled classically intractable data processing. So, in this paper, we have performed question classification on questions from two classes of SelQA (Selection-based Question Answering) dataset using quantum-based classifier algorithms-quantum support vector machine (QSVM) and variational quantum classifier (VQC) from Qiskit (Quantum Information Science toolKIT) for Python. We perform classification with both classifiers in almost similar environments and study the effects of circuit depths while comparing the results of both classifiers. We also use these classification results with our own rule-based QA system and observe significant performance improvement. Hence, this experiment has helped in improving the quality of QA in general.

  • 2 authors
·
May 12, 2023

Complex QA and language models hybrid architectures, Survey

This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.

  • 5 authors
·
Feb 17, 2023

Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers

Factual questions typically can be answered correctly at different levels of granularity. For example, both ``August 4, 1961'' and ``1961'' are correct answers to the question ``When was Barack Obama born?''. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model's uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.

  • 3 authors
·
Jan 9, 2024

RJUA-QA: A Comprehensive QA Dataset for Urology

We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset.

  • 17 authors
·
Dec 15, 2023

GPT Takes the Bar Exam

Nearly all jurisdictions in the United States require a professional license exam, commonly referred to as "the Bar Exam," as a precondition for law practice. To even sit for the exam, most jurisdictions require that an applicant completes at least seven years of post-secondary education, including three years at an accredited law school. In addition, most test-takers also undergo weeks to months of further, exam-specific preparation. Despite this significant investment of time and capital, approximately one in five test-takers still score under the rate required to pass the exam on their first try. In the face of a complex task that requires such depth of knowledge, what, then, should we expect of the state of the art in "AI?" In this research, we document our experimental evaluation of the performance of OpenAI's `text-davinci-003` model, often-referred to as GPT-3.5, on the multistate multiple choice (MBE) section of the exam. While we find no benefit in fine-tuning over GPT-3.5's zero-shot performance at the scale of our training data, we do find that hyperparameter optimization and prompt engineering positively impacted GPT-3.5's zero-shot performance. For best prompt and parameters, GPT-3.5 achieves a headline correct rate of 50.3% on a complete NCBE MBE practice exam, significantly in excess of the 25% baseline guessing rate, and performs at a passing rate for both Evidence and Torts. GPT-3.5's ranking of responses is also highly-correlated with correctness; its top two and top three choices are correct 71% and 88% of the time, respectively, indicating very strong non-entailment performance. While our ability to interpret these results is limited by nascent scientific understanding of LLMs and the proprietary nature of GPT, we believe that these results strongly suggest that an LLM will pass the MBE component of the Bar Exam in the near future.

  • 2 authors
·
Dec 29, 2022

A Comparative Study of Open-Source Large Language Models, GPT-4 and Claude 2: Multiple-Choice Test Taking in Nephrology

In recent years, there have been significant breakthroughs in the field of natural language processing, particularly with the development of large language models (LLMs). These LLMs have showcased remarkable capabilities on various benchmarks. In the healthcare field, the exact role LLMs and other future AI models will play remains unclear. There is a potential for these models in the future to be used as part of adaptive physician training, medical co-pilot applications, and digital patient interaction scenarios. The ability of AI models to participate in medical training and patient care will depend in part on their mastery of the knowledge content of specific medical fields. This study investigated the medical knowledge capability of LLMs, specifically in the context of internal medicine subspecialty multiple-choice test-taking ability. We compared the performance of several open-source LLMs (Koala 7B, Falcon 7B, Stable-Vicuna 13B, and Orca Mini 13B), to GPT-4 and Claude 2 on multiple-choice questions in the field of Nephrology. Nephrology was chosen as an example of a particularly conceptually complex subspecialty field within internal medicine. The study was conducted to evaluate the ability of LLM models to provide correct answers to nephSAP (Nephrology Self-Assessment Program) multiple-choice questions. The overall success of open-sourced LLMs in answering the 858 nephSAP multiple-choice questions correctly was 17.1% - 25.5%. In contrast, Claude 2 answered 54.4% of the questions correctly, whereas GPT-4 achieved a score of 73.3%. We show that current widely used open-sourced LLMs do poorly in their ability for zero-shot reasoning when compared to GPT-4 and Claude 2. The findings of this study potentially have significant implications for the future of subspecialty medical training and patient care.

  • 7 authors
·
Aug 9, 2023