Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNegVSR: Augmenting Negatives for Generalized Noise Modeling in Real-World Video Super-Resolution
The capability of video super-resolution (VSR) to synthesize high-resolution (HR) video from ideal datasets has been demonstrated in many works. However, applying the VSR model to real-world video with unknown and complex degradation remains a challenging task. First, existing degradation metrics in most VSR methods are not able to effectively simulate real-world noise and blur. On the contrary, simple combinations of classical degradation are used for real-world noise modeling, which led to the VSR model often being violated by out-of-distribution noise. Second, many SR models focus on noise simulation and transfer. Nevertheless, the sampled noise is monotonous and limited. To address the aforementioned problems, we propose a Negatives augmentation strategy for generalized noise modeling in Video Super-Resolution (NegVSR) task. Specifically, we first propose sequential noise generation toward real-world data to extract practical noise sequences. Then, the degeneration domain is widely expanded by negative augmentation to build up various yet challenging real-world noise sets. We further propose the augmented negative guidance loss to learn robust features among augmented negatives effectively. Extensive experiments on real-world datasets (e.g., VideoLQ and FLIR) show that our method outperforms state-of-the-art methods with clear margins, especially in visual quality.
RPMArt: Towards Robust Perception and Manipulation for Articulated Objects
Articulated objects are commonly found in daily life. It is essential that robots can exhibit robust perception and manipulation skills for articulated objects in real-world robotic applications. However, existing methods for articulated objects insufficiently address noise in point clouds and struggle to bridge the gap between simulation and reality, thus limiting the practical deployment in real-world scenarios. To tackle these challenges, we propose a framework towards Robust Perception and Manipulation for Articulated Objects (RPMArt), which learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud. Our primary contribution is a Robust Articulation Network (RoArtNet) that is able to predict both joint parameters and affordable points robustly by local feature learning and point tuple voting. Moreover, we introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer. Finally, with the estimated affordable point and articulation joint constraint, the robot can generate robust actions to manipulate articulated objects. After learning only from synthetic data, RPMArt is able to transfer zero-shot to real-world articulated objects. Experimental results confirm our approach's effectiveness, with our framework achieving state-of-the-art performance in both noise-added simulation and real-world environments. The code and data will be open-sourced for reproduction. More results are published on the project website at https://r-pmart.github.io .
Effective Noise-aware Data Simulation for Domain-adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation
Cross-domain speech enhancement (SE) is often faced with severe challenges due to the scarcity of noise and background information in an unseen target domain, leading to a mismatch between training and test conditions. This study puts forward a novel data simulation method to address this issue, leveraging noise-extractive techniques and generative adversarial networks (GANs) with only limited target noisy speech data. Notably, our method employs a noise encoder to extract noise embeddings from target-domain data. These embeddings aptly guide the generator to synthesize utterances acoustically fitted to the target domain while authentically preserving the phonetic content of the input clean speech. Furthermore, we introduce the notion of dynamic stochastic perturbation, which can inject controlled perturbations into the noise embeddings during inference, thereby enabling the model to generalize well to unseen noise conditions. Experiments on the VoiceBank-DEMAND benchmark dataset demonstrate that our domain-adaptive SE method outperforms an existing strong baseline based on data simulation.
Q-Cluster: Quantum Error Mitigation Through Noise-Aware Unsupervised Learning
Quantum error mitigation (QEM) is critical in reducing the impact of noise in the pre-fault-tolerant era, and is expected to complement error correction in fault-tolerant quantum computing (FTQC). In this paper, we propose a novel QEM approach, Q-Cluster, that uses unsupervised learning (clustering) to reshape the measured bit-string distribution. Our approach starts with a simplified bit-flip noise model. It first performs clustering on noisy measurement results, i.e., bit-strings, based on the Hamming distance. The centroid of each cluster is calculated using a qubit-wise majority vote. Next, the noisy distribution is adjusted with the clustering outcomes and the bit-flip error rates using Bayesian inference. Our simulation results show that Q-Cluster can mitigate high noise rates (up to 40% per qubit) with the simple bit-flip noise model. However, real quantum computers do not fit such a simple noise model. To address the problem, we (a) apply Pauli twirling to tailor the complex noise channels to Pauli errors, and (b) employ a machine learning model, ExtraTrees regressor, to estimate an effective bit-flip error rate using a feature vector consisting of machine calibration data (gate & measurement error rates), circuit features (number of qubits, numbers of different types of gates, etc.) and the shape of the noisy distribution (entropy). Our experimental results show that our proposed Q-Cluster scheme improves the fidelity by a factor of 1.46x, on average, compared to the unmitigated output distribution, for a set of low-entropy benchmarks on five different IBM quantum machines. Our approach outperforms the state-of-art QEM approaches M3 [24], Hammer [35], and QBEEP [33] by 1.29x, 1.47x, and 2.65x, respectively.
Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation via Neural Networks
In the emergent realm of quantum computing, the Variational Quantum Eigensolver (VQE) stands out as a promising algorithm for solving complex quantum problems, especially in the noisy intermediate-scale quantum (NISQ) era. However, the ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes. This research introduces a novel approach to ameliorate this challenge by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations. By employing the Qiskit framework, we crafted parameterized quantum circuits using the RY-RZ ansatz and examined their behavior under varying levels of depolarizing noise. Our investigations spanned from determining the expectation values of a Hamiltonian, defined as a tensor product of Z operators, under different noise intensities to extracting the ground state energy. To bridge the observed outcomes under noise with the ideal noise-free scenario, we trained a Feed Forward Neural Network on the error probabilities and their associated expectation values. Remarkably, our model proficiently predicted the VQE outcome under hypothetical noise-free conditions. By juxtaposing the simulation results with real quantum device executions, we unveiled the discrepancies induced by noise and showcased the efficacy of our neural network-based ZNE technique in rectifying them. This integrative approach not only paves the way for enhanced accuracy in VQE computations on NISQ devices but also underlines the immense potential of hybrid quantum-classical paradigms in circumventing the challenges posed by quantum noise. Through this research, we envision a future where quantum algorithms can be reliably executed on noisy devices, bringing us one step closer to realizing the full potential of quantum computing.
First Light And Reionisation Epoch Simulations (FLARES) XVI: Size Evolution of Massive Dusty Galaxies at Cosmic Dawn from UV to IR
We use the First Light And Reionisation Epoch Simulations (FLARES) to study the evolution of the rest-frame ultraviolet (UV) and far-infrared (FIR) sizes for a statistical sample of massive (gtrsim10^{9}M_{odot}) high redshift galaxies (z in [5,10]). Galaxies are post-processed using the SKIRT radiative transfer code, to self-consistently obtain the full spectral energy distribution and surface brightness distribution. We create mock observations of the galaxies for the Near Infrared Camera (NIRCam) to study the rest-frame UV 1500 xC5 morphology. We also generate mock rest-frame FIR (50 mum) photometry and mock ALMA (158 mum) (0.01"-0.03" and approx0.3" angular resolution) observations to study the dust-continuum. We find the effect of dust on observed sizes reduces with increasing wavelength from the UV to optical (sim0.6 times the UV at 0.4mum), with no evolution in FIR sizes. Observed sizes vary within 0.4-1.2 times the intrinsic sizes at different signal to noise ratios (SNR = 5-20) across redshifts. The effect of PSF and noise makes bright structures prominent, whereas fainter regions blend with noise, leading to an underestimation (factor of 0.4-0.8) of sizes at SNR=5. At SNR=15-20, the underestimation reduces (factor of 0.6-0.9) at z=5-8 but due to PSF, at z=9-10, bright cores are dominant, resulting in an overestimation (factor of 1.0-1.2). For ALMA, low resolution sizes are effected by noise which acts as extended emission. The size evolution in UV broadly agrees with current observational samples and other simulations. This work is one of the first to analyse the panchromatic sizes of a statistically significant sample of simulated high-redshift galaxies, complementing a growing body of research highlighting the importance of conducting an equivalent comparison between observed galaxies and their simulated counterparts in the early Universe.
Suppressing the sample variance of DESI-like galaxy clustering with fast simulations
Ongoing and upcoming galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) survey, will observe vast regions of sky and a wide range of redshifts. In order to model the observations and address various systematic uncertainties, N-body simulations are routinely adopted, however, the number of large simulations with sufficiently high mass resolution is usually limited by available computing time. Therefore, achieving a simulation volume with the effective statistical errors significantly smaller than those of the observations becomes prohibitively expensive. In this study, we apply the Convergence Acceleration by Regression and Pooling (CARPool) method to mitigate the sample variance of the DESI-like galaxy clustering in the AbacusSummit simulations, with the assistance of the quasi-N-body simulations FastPM. Based on the halo occupation distribution (HOD) models, we construct different FastPM galaxy catalogs, including the luminous red galaxies (LRGs), emission line galaxies (ELGs), and quasars, with their number densities and two-point clustering statistics well matched to those of AbacusSummit. We also employ the same initial conditions between AbacusSummit and FastPM to achieve high cross-correlation, as it is useful in effectively suppressing the variance. Our method of reducing noise in clustering is equivalent to performing a simulation with volume larger by a factor of 5 and 4 for LRGs and ELGs, respectively. We also mitigate the standard deviation of the LRG bispectrum with the triangular configurations k_2=2k_1=0.2 h/Mpc by a factor of 1.6. With smaller sample variance on galaxy clustering, we are able to constrain the baryon acoustic oscillations (BAO) scale parameters to higher precision. The CARPool method will be beneficial to better constrain the theoretical systematics of BAO, redshift space distortions (RSD) and primordial non-Gaussianity (NG).
Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation
Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community.
Active propulsion noise shaping for multi-rotor aircraft localization
Multi-rotor aerial autonomous vehicles (MAVs) primarily rely on vision for navigation purposes. However, visual localization and odometry techniques suffer from poor performance in low or direct sunlight, a limited field of view, and vulnerability to occlusions. Acoustic sensing can serve as a complementary or even alternative modality for vision in many situations, and it also has the added benefits of lower system cost and energy footprint, which is especially important for micro aircraft. This paper proposes actively controlling and shaping the aircraft propulsion noise generated by the rotors to benefit localization tasks, rather than considering it a harmful nuisance. We present a neural network architecture for selfnoise-based localization in a known environment. We show that training it simultaneously with learning time-varying rotor phase modulation achieves accurate and robust localization. The proposed methods are evaluated using a computationally affordable simulation of MAV rotor noise in 2D acoustic environments that is fitted to real recordings of rotor pressure fields.
TRADES: Generating Realistic Market Simulations with Diffusion Models
Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.
Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA Images
Segmentation of blood vessels in murine cerebral 3D OCTA images is foundational for in vivo quantitative analysis of the effects of neurovascular disorders, such as stroke or Alzheimer's, on the vascular network. However, to accurately segment blood vessels with state-of-the-art deep learning methods, a vast amount of voxel-level annotations is required. Since cerebral 3D OCTA images are typically plagued by artifacts and generally have a low signal-to-noise ratio, acquiring manual annotations poses an especially cumbersome and time-consuming task. To alleviate the need for manual annotations, we propose utilizing synthetic data to supervise segmentation algorithms. To this end, we extract patches from vessel graphs and transform them into synthetic cerebral 3D OCTA images paired with their matching ground truth labels by simulating the most dominant 3D OCTA artifacts. In extensive experiments, we demonstrate that our approach achieves competitive results, enabling annotation-free blood vessel segmentation in cerebral 3D OCTA images.
Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots
Modern robotic manipulation primarily relies on visual observations in a 2D color space for skill learning but suffers from poor generalization. In contrast, humans, living in a 3D world, depend more on physical properties-such as distance, size, and shape-than on texture when interacting with objects. Since such 3D geometric information can be acquired from widely available depth cameras, it appears feasible to endow robots with similar perceptual capabilities. Our pilot study found that using depth cameras for manipulation is challenging, primarily due to their limited accuracy and susceptibility to various types of noise. In this work, we propose Camera Depth Models (CDMs) as a simple plugin on daily-use depth cameras, which take RGB images and raw depth signals as input and output denoised, accurate metric depth. To achieve this, we develop a neural data engine that generates high-quality paired data from simulation by modeling a depth camera's noise pattern. Our results show that CDMs achieve nearly simulation-level accuracy in depth prediction, effectively bridging the sim-to-real gap for manipulation tasks. Notably, our experiments demonstrate, for the first time, that a policy trained on raw simulated depth, without the need for adding noise or real-world fine-tuning, generalizes seamlessly to real-world robots on two challenging long-horizon tasks involving articulated, reflective, and slender objects, with little to no performance degradation. We hope our findings will inspire future research in utilizing simulation data and 3D information in general robot policies.
Modular Degradation Simulation and Restoration for Under-Display Camera
Under-display camera (UDC) provides an elegant solution for full-screen smartphones. However, UDC captured images suffer from severe degradation since sensors lie under the display. Although this issue can be tackled by image restoration networks, these networks require large-scale image pairs for training. To this end, we propose a modular network dubbed MPGNet trained using the generative adversarial network (GAN) framework for simulating UDC imaging. Specifically, we note that the UDC imaging degradation process contains brightness attenuation, blurring, and noise corruption. Thus we model each degradation with a characteristic-related modular network, and all modular networks are cascaded to form the generator. Together with a pixel-wise discriminator and supervised loss, we can train the generator to simulate the UDC imaging degradation process. Furthermore, we present a Transformer-style network named DWFormer for UDC image restoration. For practical purposes, we use depth-wise convolution instead of the multi-head self-attention to aggregate local spatial information. Moreover, we propose a novel channel attention module to aggregate global information, which is critical for brightness recovery. We conduct evaluations on the UDC benchmark, and our method surpasses the previous state-of-the-art models by 1.23 dB on the P-OLED track and 0.71 dB on the T-OLED track, respectively.
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
Quantum reservoir computing is strongly emerging for sequential and time series data prediction in quantum machine learning. We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals that are efficiently learned with a single linear output layer. We address the need for quantum reservoir tuning with a novel and generally applicable approach to quantum circuit parameterization, in which tunable noise models are programmed to the quantum reservoir circuit to be fully controlled for effective optimization. Our systematic approach also involves reductions in quantum reservoir circuits in the number of qubits and entanglement scheme complexity. We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks that include the Mackey-Glass system for 100 steps ahead in the challenging chaotic regime.
PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional methods, even with limited training data (e.g., only 13% of training data required for SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning, offering improved accuracy and efficiency for image processing, enhanced process understanding, and broader applications to scientific research. We publicly release the complete source code at https://github.com/hasan-rakibul/PC-SRGAN.
First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts
Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes.
CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results
We present the data release and data reduction process for the Epoch 1 NIRCam observations for the Cosmic Evolution Early Release Science Survey (CEERS). These data consist of NIRCam imaging in six broadband filters (F115W, F150W, F200W, F277W, F356W and F444W) and one medium band filter (F410M) over four pointings, obtained in parallel with primary CEERS MIRI observations (Yang et al. in prep). We reduced the NIRCam imaging with the JWST Calibration Pipeline, with custom modifications and reduction steps designed to address additional features and challenges with the data. Here we provide a detailed description of each step in our reduction and a discussion of future expected improvements. Our reduction process includes corrections for known pre-launch issues such as 1/f noise, as well as in-flight issues including snowballs, wisps, and astrometric alignment. Many of our custom reduction processes were first developed with pre-launch simulated NIRCam imaging over the full 10 CEERS NIRCam pointings. We present a description of the creation and reduction of this simulated dataset in the Appendix. We provide mosaics of the real images in a public release, as well as our reduction scripts with detailed explanations to allow users to reproduce our final data products. These represent one of the first official public datasets released from the Directors Discretionary Early Release Science (DD-ERS) program.
WALLABY Pilot Survey & ASymba: Comparing HI Detection Asymmetries to the SIMBA Simulation
An avenue for understanding cosmological galaxy formation is to compare morphometric parameters in observations and simulations of galaxy assembly. In this second paper of the ASymba: Asymmetries of HI in SIMBA Galaxies series, we measure atomic gas HI asymmetries in spatially-resolved detections from the untargetted WALLABY survey, and compare them to realizations of WALLABY-like mock samples from the SIMBA cosmological simulations. We develop a Scanline Tracing method to create mock galaxy HI datacubes which minimizes shot noise along the spectral dimension compared to particle-based methods, and therefore spurious asymmetry contributions. We compute 1D and 3D asymmetries for spatially-resolved WALLABY Pilot Survey detections, and find that the highest 3D asymmetries A3D>0.5 stem from interacting systems or detections with strong bridges or tails. We then construct a series of WALLABY-like mock realizations drawn from the SIMBA 50 Mpc simulation volume, and compare their asymmetry distributions. We find that the incidence of high A3D detections is higher in WALLABY than in the SIMBA mocks, but that difference is not statistically significant (p-value = 0.05). The statistical power of quantitative comparisons of asymmetries such as the one presented here will improve as the WALLABY survey progresses, and as simulation volumes and resolutions increase.
First Light And Reionization Epoch Simulations (FLARES) -- XIX: Supermassive black hole mergers in the early Universe and their environmental dependence
The upcoming space-based gravitational wave (GW) observatory, LISA, is expected to detect GW signals from supermassive black hole (SMBH) mergers occurring at high redshifts. However, understanding the origin and growth of SMBHs in the early Universe remains an open problem in astrophysics. In this work, we utilize the First Light And Reionization Epoch Simulations (FLARES), a suite of cosmological hydrodynamical zoom-in simulations, to study SMBH mergers at 5 lesssim z lesssim 10 across a wide range of environments. Most mergers in FLARES involve secondary SMBHs near the seed mass (m_{seed} approx 1.5 times 10^{5} M_{odot}) while primary SMBHs span up to 10^{9} M_{odot}, resulting in mass ratios from q sim 10^{-4} to 1, with a peak at q sim 1. The number of mergers increases rapidly towards lower redshifts, and the comoving total number density scales with overdensity as n_{merger} = 10^{-3.80} (1 + delta)^{4.56}. Denser regions host more massive mergers, with higher merger redshifts and lower mass ratios. Within the FLARES redshift range, LISA is expected to detect mergers with 10^{5} lesssim M_{tot} / M_{odot} lesssim 10^{8} and q gtrsim 10^{-2}, corresponding to a detection rate of 0.030 yr^{-1} for events with signal-to-noise ratio SNR geq 10. Our study demonstrates the sensitivity of GW predictions at high redshifts to SMBH seed models and merger time delays, highlighting the need for improved modeling in future cosmological simulations to maximize LISA's scientific return.
Quantum circuit synthesis of Bell and GHZ states using projective simulation in the NISQ era
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have been huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits. The agent had the task of creating quantum circuits up to 5 qubits to generate GHZ states in the IBM Tenerife (IBM QX4) quantum processor. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
Quantum Architecture Search via Continual Reinforcement Learning
Quantum computing has promised significant improvement in solving difficult computational tasks over classical computers. Designing quantum circuits for practical use, however, is not a trivial objective and requires expert-level knowledge. To aid this endeavor, this paper proposes a machine learning-based method to construct quantum circuit architectures. Previous works have demonstrated that classical deep reinforcement learning (DRL) algorithms can successfully construct quantum circuit architectures without encoded physics knowledge. However, these DRL-based works are not generalizable to settings with changing device noises, thus requiring considerable amounts of training resources to keep the RL models up-to-date. With this in mind, we incorporated continual learning to enhance the performance of our algorithm. In this paper, we present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge. By conducting numerical simulations over various noise patterns, we demonstrate that the RL agent with PPR was able to find the quantum gate sequence to generate the two-qubit Bell state faster than the agent that was trained from scratch. The proposed framework is general and can be applied to other quantum gate synthesis or control problems -- including the automatic calibration of quantum devices.
Multisample Flow Matching: Straightening Flows with Minibatch Couplings
Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At very small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation.
Impact of local bunching factors in single-pass THz free electron lasers
In simulations for modern free-electron lasers (FEL), shot noise plays a crucial role. While it is inversely proportional to the number of electrons, shot noise is typically modeled using macroparticles, with their bunching factors corresponding to the bunching factors of the much larger number of electrons. For short-wavelength FELs, the macroparticles are assumed to be uniformly distributed on the scale of the resonant wavelength, since shot noise dominates the initial radiation - for instance, in the self-amplified spontaneous emission (SASE) regime. In this paper, we show that this assumption does not hold at longer wavelengths, particularly in the THz range, where the bunch current profile is not uniform even within the length of the resonant wavelength. Instead, the current profile dominates the initial bunching factors, which can be several orders of magnitude higher than shot noise. The slice-based bunching factors and bunching phases are derived for Gaussian distributions and compared with shot noise under the assumption that the current within each slice remains constant. Using the THz FEL at the photoinjector test facility at DESY in Zeuthen (PITZ) as a case study, the influence of the current profile has been benchmarked through simulations under very low bunch charge, where the full number of electrons can be modeled using the Genesis1.3 code. Additional simulations with the nominal working parameters of PITZ THz FEL have been compared with experimental data, indicating better agreement when the actual current profile is taken into account.
Building reliable sim driving agents by scaling self-play
Simulation agents are essential for designing and testing systems that interact with humans, such as autonomous vehicles (AVs). These agents serve various purposes, from benchmarking AV performance to stress-testing the system's limits, but all use cases share a key requirement: reliability. A simulation agent should behave as intended by the designer, minimizing unintended actions like collisions that can compromise the signal-to-noise ratio of analyses. As a foundation for reliable sim agents, we propose scaling self-play to thousands of scenarios on the Waymo Open Motion Dataset under semi-realistic limits on human perception and control. Training from scratch on a single GPU, our agents nearly solve the full training set within a day. They generalize effectively to unseen test scenes, achieving a 99.8% goal completion rate with less than 0.8% combined collision and off-road incidents across 10,000 held-out scenarios. Beyond in-distribution generalization, our agents show partial robustness to out-of-distribution scenes and can be fine-tuned in minutes to reach near-perfect performance in those cases. Demonstrations of agent behaviors can be found at this link. We open-source both the pre-trained agents and the complete code base. Demonstrations of agent behaviors can be found at https://sites.google.com/view/reliable-sim-agents.
Distributed Maximum Consensus over Noisy Links
We introduce a distributed algorithm, termed noise-robust distributed maximum consensus (RD-MC), for estimating the maximum value within a multi-agent network in the presence of noisy communication links. Our approach entails redefining the maximum consensus problem as a distributed optimization problem, allowing a solution using the alternating direction method of multipliers. Unlike existing algorithms that rely on multiple sets of noise-corrupted estimates, RD-MC employs a single set, enhancing both robustness and efficiency. To further mitigate the effects of link noise and improve robustness, we apply moving averaging to the local estimates. Through extensive simulations, we demonstrate that RD-MC is significantly more robust to communication link noise compared to existing maximum-consensus algorithms.
Study of Robust Adaptive Beamforming with Covariance Matrix Reconstruction Based on Power Spectral Estimation and Uncertainty Region
In this work, a simple and effective robust adaptive beamforming technique is proposed for uniform linear arrays, which is based on the power spectral estimation and uncertainty region (PSEUR) of the interference plus noise (IPN) components. In particular, two algorithms are presented to find the angular sector of interference in every snapshot based on the adopted spatial uncertainty region of the interference direction. Moreover, a power spectrum is introduced based on the estimation of the power of interference and noise components, which allows the development of a robust approach to IPN covariance matrix reconstruction. The proposed method has two main advantages. First, an angular region that contains the interference direction is updated based on the statistics of the array data. Secondly, the proposed IPN-PSEUR method avoids estimating the power spectrum of the whole range of possible directions of the interference sector. Simulation results show that the performance of the proposed IPN-PSEUR beamformer is almost always close to the optimal value across a wide range of signal-to-noise ratios.
LLM Swiss Round: Aggregating Multi-Benchmark Performance via Competitive Swiss-System Dynamics
The rapid proliferation of Large Language Models (LLMs) and diverse specialized benchmarks necessitates a shift from fragmented, task-specific metrics to a holistic, competitive ranking system that effectively aggregates performance across multiple ability dimensions. Primarily using static scoring, current evaluation methods are fundamentally limited. They struggle to determine the proper mix ratio across diverse benchmarks, and critically, they fail to capture a model's dynamic competitive fitness or its vulnerability when confronted with sequential, high-stakes tasks. To address this, we introduce the novel Competitive Swiss-System Dynamics (CSD) framework. CSD simulates a multi-round, sequential contest where models are dynamically paired across a curated sequence of benchmarks based on their accumulated win-loss record. And Monte Carlo Simulation (N=100,000 iterations) is used to approximate the statistically robust Expected Win Score (E[S_m]), which eliminates the noise of random pairing and early-round luck. Furthermore, we implement a Failure Sensitivity Analysis by parameterizing the per-round elimination quantity (T_k), which allows us to profile models based on their risk appetite--distinguishing between robust generalists and aggressive specialists. We demonstrate that CSD provides a more nuanced and context-aware ranking than traditional aggregate scoring and static pairwise models, representing a vital step towards risk-informed, next-generation LLM evaluation.
RealMAN: A Real-Recorded and Annotated Microphone Array Dataset for Dynamic Speech Enhancement and Localization
The training of deep learning-based multichannel speech enhancement and source localization systems relies heavily on the simulation of room impulse response and multichannel diffuse noise, due to the lack of large-scale real-recorded datasets. However, the acoustic mismatch between simulated and real-world data could degrade the model performance when applying in real-world scenarios. To bridge this simulation-to-real gap, this paper presents a new relatively large-scale Real-recorded and annotated Microphone Array speech&Noise (RealMAN) dataset. The proposed dataset is valuable in two aspects: 1) benchmarking speech enhancement and localization algorithms in real scenarios; 2) offering a substantial amount of real-world training data for potentially improving the performance of real-world applications. Specifically, a 32-channel array with high-fidelity microphones is used for recording. A loudspeaker is used for playing source speech signals. A total of 83-hour speech signals (48 hours for static speaker and 35 hours for moving speaker) are recorded in 32 different scenes, and 144 hours of background noise are recorded in 31 different scenes. Both speech and noise recording scenes cover various common indoor, outdoor, semi-outdoor and transportation environments, which enables the training of general-purpose speech enhancement and source localization networks. To obtain the task-specific annotations, the azimuth angle of the loudspeaker is annotated with an omni-direction fisheye camera by automatically detecting the loudspeaker. The direct-path signal is set as the target clean speech for speech enhancement, which is obtained by filtering the source speech signal with an estimated direct-path propagation filter.
DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC) Resource Scheduling
In this paper, we~present a novel scheduling solution for a class of System-on-Chip (SoC) systems where heterogeneous chip resources (DSP, FPGA, GPU, etc.) must be efficiently scheduled for continuously arriving hierarchical jobs with their tasks represented by a directed acyclic graph. Traditionally, heuristic algorithms have been widely used for many resource scheduling domains, and Heterogeneous Earliest Finish Time (HEFT) has been a dominating state-of-the-art technique across a broad range of heterogeneous resource scheduling domains over many years. Despite their long-standing popularity, HEFT-like algorithms are known to be vulnerable to a small amount of noise added to the environment. Our Deep Reinforcement Learning (DRL)-based SoC Scheduler (DeepSoCS), capable of learning the "best" task ordering under dynamic environment changes, overcomes the brittleness of rule-based schedulers such as HEFT with significantly higher performance across different types of jobs. We~describe a DeepSoCS design process using a real-time heterogeneous SoC scheduling emulator, discuss major challenges, and present two novel neural network design features that lead to outperforming HEFT: (i) hierarchical job- and task-graph embedding; and (ii) efficient use of real-time task information in the state space. Furthermore, we~introduce effective techniques to address two fundamental challenges present in our environment: delayed consequences and joint actions. Through an extensive simulation study, we~show that our DeepSoCS exhibits the significantly higher performance of job execution time than that of HEFT with a higher level of robustness under realistic noise conditions. We~conclude with a discussion of the potential improvements for our DeepSoCS neural scheduler.
Deep Learning-based galaxy image deconvolution
With the onset of large-scale astronomical surveys capturing millions of images, there is an increasing need to develop fast and accurate deconvolution algorithms that generalize well to different images. A powerful and accessible deconvolution method would allow for the reconstruction of a cleaner estimation of the sky. The deconvolved images would be helpful to perform photometric measurements to help make progress in the fields of galaxy formation and evolution. We propose a new deconvolution method based on the Learnlet transform. Eventually, we investigate and compare the performance of different Unet architectures and Learnlet for image deconvolution in the astrophysical domain by following a two-step approach: a Tikhonov deconvolution with a closed-form solution, followed by post-processing with a neural network. To generate our training dataset, we extract HST cutouts from the CANDELS survey in the F606W filter (V-band) and corrupt these images to simulate their blurred-noisy versions. Our numerical results based on these simulations show a detailed comparison between the considered methods for different noise levels.
Learning coordinated badminton skills for legged manipulators
Coordinating the motion between lower and upper limbs and aligning limb control with perception are substantial challenges in robotics, particularly in dynamic environments. To this end, we introduce an approach for enabling legged mobile manipulators to play badminton, a task that requires precise coordination of perception, locomotion, and arm swinging. We propose a unified reinforcement learning-based control policy for whole-body visuomotor skills involving all degrees of freedom to achieve effective shuttlecock tracking and striking. This policy is informed by a perception noise model that utilizes real-world camera data, allowing for consistent perception error levels between simulation and deployment and encouraging learned active perception behaviors. Our method includes a shuttlecock prediction model, constrained reinforcement learning for robust motion control, and integrated system identification techniques to enhance deployment readiness. Extensive experimental results in a variety of environments validate the robot's capability to predict shuttlecock trajectories, navigate the service area effectively, and execute precise strikes against human players, demonstrating the feasibility of using legged mobile manipulators in complex and dynamic sports scenarios.
AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks
AnalogVNN, a simulation framework built on PyTorch which can simulate the effects of optoelectronic noise, limited precision, and signal normalization present in photonic neural network accelerators. We use this framework to train and optimize linear and convolutional neural networks with up to 9 layers and ~1.7 million parameters, while gaining insights into how normalization, activation function, reduced precision, and noise influence accuracy in analog photonic neural networks. By following the same layer structure design present in PyTorch, the AnalogVNN framework allows users to convert most digital neural network models to their analog counterparts with just a few lines of code, taking full advantage of the open-source optimization, deep learning, and GPU acceleration libraries available through PyTorch. Code is available at https://analogvnn.github.io
NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our https://yuzeng-at-tri.github.io/ppd-page/{project page}.
MotionCraft: Physics-based Zero-Shot Video Generation
Generating videos with realistic and physically plausible motion is one of the main recent challenges in computer vision. While diffusion models are achieving compelling results in image generation, video diffusion models are limited by heavy training and huge models, resulting in videos that are still biased to the training dataset. In this work we propose MotionCraft, a new zero-shot video generator to craft physics-based and realistic videos. MotionCraft is able to warp the noise latent space of an image diffusion model, such as Stable Diffusion, by applying an optical flow derived from a physics simulation. We show that warping the noise latent space results in coherent application of the desired motion while allowing the model to generate missing elements consistent with the scene evolution, which would otherwise result in artefacts or missing content if the flow was applied in the pixel space. We compare our method with the state-of-the-art Text2Video-Zero reporting qualitative and quantitative improvements, demonstrating the effectiveness of our approach to generate videos with finely-prescribed complex motion dynamics. Project page: https://mezzelfo.github.io/MotionCraft/
CISSIR: Beam Codebooks with Self-Interference Reduction Guarantees for Integrated Sensing and Communication Beyond 5G
We propose a beam codebook design for integrated sensing and communication (ISAC) that reduces self-interference (SI) to alleviate analog distortion. Our optimization framework, which considers either tapered beamforming or phased arrays for both analog and hybrid schemes, modifies given reference codebooks such that a certain SI power level is achieved. In contrast to other low-SI codebooks, which often rely on hardly interpretable optimization parameters, we provide design guidelines to obtain sensing performance guarantees by deriving analytical bounds on saturation and analog-to-digital quantization in relation to the multipath SI level. By selecting standard reference codebooks in our simulations, we show how our method substantially improves the signal-to-noise ratio for sensing with little impact on 5G-NR communication.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
AISHELL-5: The First Open-Source In-Car Multi-Channel Multi-Speaker Speech Dataset for Automatic Speech Diarization and Recognition
This paper delineates AISHELL-5, the first open-source in-car multi-channel multi-speaker Mandarin automatic speech recognition (ASR) dataset. AISHLL-5 includes two parts: (1) over 100 hours of multi-channel speech data recorded in an electric vehicle across more than 60 real driving scenarios. This audio data consists of four far-field speech signals captured by microphones located on each car door, as well as near-field signals obtained from high-fidelity headset microphones worn by each speaker. (2) a collection of 40 hours of real-world environmental noise recordings, which supports the in-car speech data simulation. Moreover, we also provide an open-access, reproducible baseline system based on this dataset. This system features a speech frontend model that employs speech source separation to extract each speaker's clean speech from the far-field signals, along with a speech recognition module that accurately transcribes the content of each individual speaker. Experimental results demonstrate the challenges faced by various mainstream ASR models when evaluated on the AISHELL-5. We firmly believe the AISHELL-5 dataset will significantly advance the research on ASR systems under complex driving scenarios by establishing the first publicly available in-car ASR benchmark.
PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity
Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed.
AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos
This paper studies the problem of real-world video super-resolution (VSR) for animation videos, and reveals three key improvements for practical animation VSR. First, recent real-world super-resolution approaches typically rely on degradation simulation using basic operators without any learning capability, such as blur, noise, and compression. In this work, we propose to learn such basic operators from real low-quality animation videos, and incorporate the learned ones into the degradation generation pipeline. Such neural-network-based basic operators could help to better capture the distribution of real degradations. Second, a large-scale high-quality animation video dataset, AVC, is built to facilitate comprehensive training and evaluations for animation VSR. Third, we further investigate an efficient multi-scale network structure. It takes advantage of the efficiency of unidirectional recurrent networks and the effectiveness of sliding-window-based methods. Thanks to the above delicate designs, our method, AnimeSR, is capable of restoring real-world low-quality animation videos effectively and efficiently, achieving superior performance to previous state-of-the-art methods. Codes and models are available at https://github.com/TencentARC/AnimeSR.
Multiagent Evaluation under Incomplete Information
This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with recent works also using methods based on Nash equilibria. Unfortunately, Elo is unable to handle intransitive agent interactions, and other techniques are restricted to zero-sum, two-player settings or are limited by the fact that the Nash equilibrium is intractable to compute. Recently, a ranking method called α-Rank, relying on a new graph-based game-theoretic solution concept, was shown to tractably apply to general games. However, evaluations based on Elo or α-Rank typically assume noise-free game outcomes, despite the data often being collected from noisy simulations, making this assumption unrealistic in practice. This paper investigates multiagent evaluation in the incomplete information regime, involving general-sum many-player games with noisy outcomes. We derive sample complexity guarantees required to confidently rank agents in this setting. We propose adaptive algorithms for accurate ranking, provide correctness and sample complexity guarantees, then introduce a means of connecting uncertainties in noisy match outcomes to uncertainties in rankings. We evaluate the performance of these approaches in several domains, including Bernoulli games, a soccer meta-game, and Kuhn poker.
Benchmarking Label Noise in Instance Segmentation: Spatial Noise Matters
Obtaining accurate labels for instance segmentation is particularly challenging due to the complex nature of the task. Each image necessitates multiple annotations, encompassing not only the object's class but also its precise spatial boundaries. These requirements elevate the likelihood of errors and inconsistencies in both manual and automated annotation processes. By simulating different noise conditions, we provide a realistic scenario for assessing the robustness and generalization capabilities of instance segmentation models in different segmentation tasks, introducing COCO-N and Cityscapes-N. We also propose a benchmark for weakly annotation noise, dubbed COCO-WAN, which utilizes foundation models and weak annotations to simulate semi-automated annotation tools and their noisy labels. This study sheds light on the quality of segmentation masks produced by various models and challenges the efficacy of popular methods designed to address learning with label noise.
