new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data

As demand for large corpora increases with the size of current state-of-the-art language models, using web data as the main part of the pre-training corpus for these models has become a ubiquitous practice. This, in turn, has introduced an important challenge for NLP practitioners, as they are now confronted with the task of developing highly optimized models and pipelines for pre-processing large quantities of textual data, which implies, effectively classifying and filtering multilingual, heterogeneous and noisy data, at web scale. One of the main components of this pre-processing step for the pre-training corpora of large language models, is the removal of adult and harmful content. In this paper we explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data. We first show how traditional methods in harmful content detection, that seemingly perform quite well in small and specialized datasets quickly break down when confronted with heterogeneous noisy web data. We then resort to using a perplexity based approach but with a twist: Instead of using a so-called "clean" corpus to train a small language model and then use perplexity so select the documents with low perplexity, i.e., the documents that resemble this so-called "clean" corpus the most. We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold. This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity and will also allow us to obtain higher precision than with the traditional classification methods for detecting adult and harmful content.

  • 4 authors
·
Dec 20, 2022

Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection

The rapid advancement in large language models (LLMs) has significantly enhanced their ability to generate coherent and contextually relevant text, raising concerns about the misuse of AI-generated content and making it critical to detect it. However, the task remains challenging, particularly in unseen domains or with unfamiliar LLMs. Leveraging LLM next-token distribution outputs offers a theoretically appealing approach for detection, as they encapsulate insights from the models' extensive pre-training on diverse corpora. Despite its promise, zero-shot methods that attempt to operationalize these outputs have met with limited success. We hypothesize that one of the problems is that they use the mean to aggregate next-token distribution metrics across tokens, when some tokens are naturally easier or harder to predict and should be weighted differently. Based on this idea, we propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length. Although not zero-shot, our method allows us to cache the last hidden states and next-token distribution metrics on disk, greatly reducing the training resource requirements. PAWN shows competitive and even better performance in-distribution than the strongest baselines (fine-tuned LMs) with a fraction of their trainable parameters. Our model also generalizes better to unseen domains and source models, with smaller variability in the decision boundary across distribution shifts. It is also more robust to adversarial attacks, and if the backbone has multilingual capabilities, it presents decent generalization to languages not seen during supervised training, with LLaMA3-1B reaching a mean macro-averaged F1 score of 81.46% in cross-validation with nine languages.

  • 4 authors
·
Jan 7

Cascading Adversarial Bias from Injection to Distillation in Language Models

Model distillation has become essential for creating smaller, deployable language models that retain larger system capabilities. However, widespread deployment raises concerns about resilience to adversarial manipulation. This paper investigates vulnerability of distilled models to adversarial injection of biased content during training. We demonstrate that adversaries can inject subtle biases into teacher models through minimal data poisoning, which propagates to student models and becomes significantly amplified. We propose two propagation modes: Untargeted Propagation, where bias affects multiple tasks, and Targeted Propagation, focusing on specific tasks while maintaining normal behavior elsewhere. With only 25 poisoned samples (0.25% poisoning rate), student models generate biased responses 76.9% of the time in targeted scenarios - higher than 69.4% in teacher models. For untargeted propagation, adversarial bias appears 6x-29x more frequently in student models on unseen tasks. We validate findings across six bias types (targeted advertisements, phishing links, narrative manipulations, insecure coding practices), various distillation methods, and different modalities spanning text and code generation. Our evaluation reveals shortcomings in current defenses - perplexity filtering, bias detection systems, and LLM-based autorater frameworks - against these attacks. Results expose significant security vulnerabilities in distilled models, highlighting need for specialized safeguards. We propose practical design principles for building effective adversarial bias mitigation strategies.

  • 6 authors
·
May 30 2

AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models

The aligned Large Language Models (LLMs) are powerful language understanding and decision-making tools that are created through extensive alignment with human feedback. However, these large models remain susceptible to jailbreak attacks, where adversaries manipulate prompts to elicit malicious outputs that should not be given by aligned LLMs. Investigating jailbreak prompts can lead us to delve into the limitations of LLMs and further guide us to secure them. Unfortunately, existing jailbreak techniques suffer from either (1) scalability issues, where attacks heavily rely on manual crafting of prompts, or (2) stealthiness problems, as attacks depend on token-based algorithms to generate prompts that are often semantically meaningless, making them susceptible to detection through basic perplexity testing. In light of these challenges, we intend to answer this question: Can we develop an approach that can automatically generate stealthy jailbreak prompts? In this paper, we introduce AutoDAN, a novel jailbreak attack against aligned LLMs. AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm. Extensive evaluations demonstrate that AutoDAN not only automates the process while preserving semantic meaningfulness, but also demonstrates superior attack strength in cross-model transferability, and cross-sample universality compared with the baseline. Moreover, we also compare AutoDAN with perplexity-based defense methods and show that AutoDAN can bypass them effectively.

  • 4 authors
·
Oct 3, 2023

Grounding or Guessing? Visual Signals for Detecting Hallucinations in Sign Language Translation

Hallucination, where models generate fluent text unsupported by visual evidence, remains a major flaw in vision-language models and is particularly critical in sign language translation (SLT). In SLT, meaning depends on precise grounding in video, and gloss-free models are especially vulnerable because they map continuous signer movements directly into natural language without intermediate gloss supervision that serves as alignment. We argue that hallucinations arise when models rely on language priors rather than visual input. To capture this, we propose a token-level reliability measure that quantifies how much the decoder uses visual information. Our method combines feature-based sensitivity, which measures internal changes when video is masked, with counterfactual signals, which capture probability differences between clean and altered video inputs. These signals are aggregated into a sentence-level reliability score, providing a compact and interpretable measure of visual grounding. We evaluate the proposed measure on two SLT benchmarks (PHOENIX-2014T and CSL-Daily) with both gloss-based and gloss-free models. Our results show that reliability predicts hallucination rates, generalizes across datasets and architectures, and decreases under visual degradations. Beyond these quantitative trends, we also find that reliability distinguishes grounded tokens from guessed ones, allowing risk estimation without references; when combined with text-based signals (confidence, perplexity, or entropy), it further improves hallucination risk estimation. Qualitative analysis highlights why gloss-free models are more susceptible to hallucinations. Taken together, our findings establish reliability as a practical and reusable tool for diagnosing hallucinations in SLT, and lay the groundwork for more robust hallucination detection in multimodal generation.

  • 7 authors
·
Oct 21

DataMan: Data Manager for Pre-training Large Language Models

The performance emergence of large language models (LLMs) driven by data scaling laws makes the selection of pre-training data increasingly important. However, existing methods rely on limited heuristics and human intuition, lacking comprehensive and clear guidelines. To address this, we are inspired by ``reverse thinking'' -- prompting LLMs to self-identify which criteria benefit its performance. As its pre-training capabilities are related to perplexity (PPL), we derive 14 quality criteria from the causes of text perplexity anomalies and introduce 15 common application domains to support domain mixing. In this paper, we train a Data Manager (DataMan) to learn quality ratings and domain recognition from pointwise rating, and use it to annotate a 447B token pre-training corpus with 14 quality ratings and domain type. Our experiments validate our approach, using DataMan to select 30B tokens to train a 1.3B-parameter language model, demonstrating significant improvements in in-context learning (ICL), perplexity, and instruction-following ability over the state-of-the-art baseline. The best-performing model, based on the Overall Score l=5 surpasses a model trained with 50% more data using uniform sampling. We continue pre-training with high-rated, domain-specific data annotated by DataMan to enhance domain-specific ICL performance and thus verify DataMan's domain mixing ability. Our findings emphasize the importance of quality ranking, the complementary nature of quality criteria, and their low correlation with perplexity, analyzing misalignment between PPL and ICL performance. We also thoroughly analyzed our pre-training dataset, examining its composition, the distribution of quality ratings, and the original document sources.

  • 6 authors
·
Feb 26

POINTS: Improving Your Vision-language Model with Affordable Strategies

In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.

  • 6 authors
·
Sep 7, 2024 6

Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training

A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.

  • 4 authors
·
Mar 23, 2024

Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning

Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, single-shot inference often yields unreliable results for complex reasoning tasks, leading researchers to explore multiple reasoning paths through methods such as perplexity and self-consistency. In this paper, we present the first theoretical error decomposition analysis of these techniques, breaking down their error into estimation error and model error. Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function, while self-consistency exhibits high estimation error due to a slow error convergence rate. To overcome these limitations, we propose Reasoning-Pruning Perplexity Consistency (RPC). This approach combines Perplexity Consistency, which seamlessly integrates LLM perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths to effectively prevent the degeneration of estimation error reduction. Theoretical analysis demonstrates that RPC not only accelerates the convergence rate of estimation error to an exponential level but also holds strong potential for further reducing model error. Extensive empirical evaluations on seven benchmark datasets confirm that RPC can significantly improve reasoning performance, sample efficiency, and confidence reliability.

  • 7 authors
·
Feb 1

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30

Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims

False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations. The code and the dataset are at https://github.com/ICTMCG/MTM.

  • 5 authors
·
Dec 19, 2021

Semantic Volume: Quantifying and Detecting both External and Internal Uncertainty in LLMs

Large language models (LLMs) have demonstrated remarkable performance across diverse tasks by encoding vast amounts of factual knowledge. However, they are still prone to hallucinations, generating incorrect or misleading information, often accompanied by high uncertainty. Existing methods for hallucination detection primarily focus on quantifying internal uncertainty, which arises from missing or conflicting knowledge within the model. However, hallucinations can also stem from external uncertainty, where ambiguous user queries lead to multiple possible interpretations. In this work, we introduce Semantic Volume, a novel mathematical measure for quantifying both external and internal uncertainty in LLMs. Our approach perturbs queries and responses, embeds them in a semantic space, and computes the determinant of the Gram matrix of the embedding vectors, capturing their dispersion as a measure of uncertainty. Our framework provides a generalizable and unsupervised uncertainty detection method without requiring white-box access to LLMs. We conduct extensive experiments on both external and internal uncertainty detection, demonstrating that our Semantic Volume method consistently outperforms existing baselines in both tasks. Additionally, we provide theoretical insights linking our measure to differential entropy, unifying and extending previous sampling-based uncertainty measures such as the semantic entropy. Semantic Volume is shown to be a robust and interpretable approach to improving the reliability of LLMs by systematically detecting uncertainty in both user queries and model responses.

  • 6 authors
·
Feb 28

KNN-LM Does Not Improve Open-ended Text Generation

In this paper, we study the generation quality of interpolation-based retrieval-augmented language models (LMs). These methods, best exemplified by the KNN-LM, interpolate the LM's predicted distribution of the next word with a distribution formed from the most relevant retrievals for a given prefix. While the KNN-LM and related methods yield impressive decreases in perplexity, we discover that they do not exhibit corresponding improvements in open-ended generation quality, as measured by both automatic evaluation metrics (e.g., MAUVE) and human evaluations. Digging deeper, we find that interpolating with a retrieval distribution actually increases perplexity compared to a baseline Transformer LM for the majority of tokens in the WikiText-103 test set, even though the overall perplexity is lower due to a smaller number of tokens for which perplexity dramatically decreases after interpolation. However, when decoding a long sequence at inference time, significant improvements on this smaller subset of tokens are washed out by slightly worse predictions on most tokens. Furthermore, we discover that the entropy of the retrieval distribution increases faster than that of the base LM as the generated sequence becomes longer, which indicates that retrieval is less reliable when using model-generated text as queries (i.e., is subject to exposure bias). We hope that our analysis spurs future work on improved decoding algorithms and interpolation strategies for retrieval-augmented language models.

  • 6 authors
·
May 23, 2023

A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning

Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A^2Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed AnsF1 reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A^2Search achieves new state-of-the-art performance. With only a single rollout, A^2Search-7B yields an average AnsF1@1 score of 48.4% across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B (46.2%). Extensive analyses further show that A^2Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

Mirostat: A Neural Text Decoding Algorithm that Directly Controls Perplexity

Neural text decoding is important for generating high-quality texts using language models. To generate high-quality text, popular decoding algorithms like top-k, top-p (nucleus), and temperature-based sampling truncate or distort the unreliable low probability tail of the language model. Though these methods generate high-quality text after parameter tuning, they are ad hoc. Not much is known about the control they provide over the statistics of the output, which is important since recent reports show text quality is highest for a specific range of likelihoods. Here, first we provide a theoretical analysis of perplexity in top-k, top-p, and temperature sampling, finding that cross-entropy behaves approximately linearly as a function of p in top-p sampling whereas it is a nonlinear function of k in top-k sampling, under Zipfian statistics. We use this analysis to design a feedback-based adaptive top-k text decoding algorithm called mirostat that generates text (of any length) with a predetermined value of perplexity, and thereby high-quality text without any tuning. Experiments show that for low values of k and p in top-k and top-p sampling, perplexity drops significantly with generated text length, which is also correlated with excessive repetitions in the text (the boredom trap). On the other hand, for large values of k and p, we find that perplexity increases with generated text length, which is correlated with incoherence in the text (confusion trap). Mirostat avoids both traps: experiments show that cross-entropy has a near-linear relation with repetition in generated text. This relation is almost independent of the sampling method but slightly dependent on the model used. Hence, for a given language model, control over perplexity also gives control over repetitions. Experiments with human raters for fluency, coherence, and quality further verify our findings.

  • 4 authors
·
Jul 29, 2020

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.

  • 3 authors
·
Nov 21

Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals

Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to handle misleading retrievals and often fail to maintain their own reasoning when exposed to conflicting or selectively-framed evidence, making them vulnerable to real-world misinformation. In such real-world retrieval scenarios, misleading and conflicting information is rampant, particularly in the political domain, where evidence is often selectively framed, incomplete, or polarized. However, existing RAG benchmarks largely assume a clean retrieval setting, where models succeed by accurately retrieving and generating answers from gold-standard documents. This assumption fails to align with real-world conditions, leading to an overestimation of RAG system performance. To bridge this gap, we introduce RAGuard, a fact-checking dataset designed to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our dataset constructs its retrieval corpus from Reddit discussions, capturing naturally occurring misinformation. It categorizes retrieved evidence into three types: supporting, misleading, and irrelevant, providing a realistic and challenging testbed for assessing how well RAG systems navigate different retrieval information. Our benchmark experiments reveal that when exposed to misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), highlighting their susceptibility to noisy environments. To the best of our knowledge, RAGuard is the first benchmark to systematically assess RAG robustness against misleading evidence. We expect this benchmark will drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications.

  • 5 authors
·
Feb 22

PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies

Large Multimodal Models (LMMs) are increasingly applied to scientific research, yet it remains unclear whether they can reliably understand and reason over the multimodal complexity of papers. A central challenge lies in detecting and resolving inconsistencies across text, figures, tables, and equations, issues that are often subtle, domain-specific, and ultimately undermine clarity, reproducibility, and trust. Existing benchmarks overlook this issue, either isolating single modalities or relying on synthetic errors that fail to capture real-world complexity. We introduce PRISMM-Bench (Peer-Review-sourced Inconsistency Set for Multimodal Models), the first benchmark grounded in real reviewer-flagged inconsistencies in scientific papers. Through a multi-stage pipeline of review mining, LLM-assisted filtering and human verification, we curate 262 inconsistencies from 242 papers. Based on this set, we design three tasks, namely inconsistency identification, remedy and pair matching, which assess a model's capacity to detect, correct, and reason over inconsistencies across different modalities. Furthermore, to address the notorious problem of choice-only shortcuts in multiple-choice evaluation, where models exploit answer patterns without truly understanding the question, we further introduce structured JSON-based answer representations that minimize linguistic biases by reducing reliance on superficial stylistic cues. We benchmark 21 leading LMMs, including large open-weight models (GLM-4.5V 106B, InternVL3 78B) and proprietary models (Gemini 2.5 Pro, GPT-5 with high reasoning). Results reveal strikingly low performance (26.1-54.2%), underscoring the challenge of multimodal scientific reasoning and motivating progress towards trustworthy scientific assistants.

  • 7 authors
·
Oct 18 2

KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval

We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.

  • 8 authors
·
Oct 24, 2023 1

Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models

Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.

  • 6 authors
·
Nov 15, 2023

(Dynamic) Prompting might be all you need to repair Compressed LLMs

Large language models (LLMs), while transformative for NLP, come with significant computational demands, underlining the need for efficient, training-free compression. Notably, the reliability of perplexity as a benchmark for compressed model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal a significant performance drop in several realistic downstream tasks, underscoring the disparity between perplexity as a performance indicator and real-world performance. Investigation into the trade-off between resource-intensive post-compression re-training highlights the prospect of prompt-driven recovery as a lightweight adaption tool. However, existing studies, confined mainly to perplexity evaluations and simple tasks, fail to offer unequivocal confidence in the scalability and generalizability of prompting. We tackle this uncertainty in two key ways. First, we uncover the vulnerability of naive prompts in LLM compression as an over-reliance on a singular prompt per input. In response, we propose inference-time dynamic prompting (IDP), a mechanism that autonomously chooses from a set of curated prompts based on the context of each individual input. Second, we delve into a scientific understanding of why ``prompting might be all you need post-LLM compression". Our findings suggest that compression doesn't irretrievably erase LLM model knowledge but displace it, necessitating a new inference path. IDP effectively redirects this path, enabling the model to tap into its inherent yet displaced knowledge and thereby recover performance. Empirical tests affirm the value of IDP, demonstrating an average performance improvement of 1.24% across nine varied tasks spanning multiple knowledge domains.

  • 5 authors
·
Oct 1, 2023

CondAmbigQA: A Benchmark and Dataset for Conditional Ambiguous Question Answering

Large language models (LLMs) are prone to hallucinations in question-answering (QA) tasks when faced with ambiguous questions. Users often assume that LLMs share their cognitive alignment, a mutual understanding of context, intent, and implicit details, leading them to omit critical information in the queries. However, LLMs generate responses based on assumptions that can misalign with user intent, which may be perceived as hallucinations if they misalign with the user's intent. Therefore, identifying those implicit assumptions is crucial to resolve ambiguities in QA. Prior work, such as AmbigQA, reduces ambiguity in queries via human-annotated clarifications, which is not feasible in real application. Meanwhile, ASQA compiles AmbigQA's short answers into long-form responses but inherits human biases and fails capture explicit logical distinctions that differentiates the answers. We introduce Conditional Ambiguous Question-Answering (CondAmbigQA), a benchmark with 200 ambiguous queries and condition-aware evaluation metrics. Our study pioneers the concept of ``conditions'' in ambiguous QA tasks, where conditions stand for contextual constraints or assumptions that resolve ambiguities. The retrieval-based annotation strategy uses retrieved Wikipedia fragments to identify possible interpretations for a given query as its conditions and annotate the answers through those conditions. Such a strategy minimizes human bias introduced by different knowledge levels among annotators. By fixing retrieval results, CondAmbigQA evaluates how RAG systems leverage conditions to resolve ambiguities. Experiments show that models considering conditions before answering improve performance by 20%, with an additional 5% gain when conditions are explicitly provided. These results underscore the value of conditional reasoning in QA, offering researchers tools to rigorously evaluate ambiguity resolution.

  • 4 authors
·
Feb 3

The Impossibility of Inverse Permutation Learning in Transformer Models

In this technical note, we study the problem of inverse permutation learning in decoder-only transformers. Given a permutation and a string to which that permutation has been applied, the model is tasked with producing the original (``canonical'') string. We argue that this task models a natural robustness property across a variety of reasoning tasks, including long-context retrieval, multiple choice QA and in-context learning. Our primary contribution is an impossibility result: we show that an arbitrary depth, decoder-only transformer cannot learn this task. This result concerns the expressive capacity of decoder-only transformer models and is agnostic to training dynamics or sample complexity. We give a pair of alternative constructions under which inverse permutation learning is feasible. The first of these highlights the fundamental role of the causal attention mask, and reveals a gap between the expressivity of encoder-decoder transformers and the more popular decoder-only architecture. The latter result is more surprising: we show that simply padding the input with ``scratch tokens" yields a construction under which inverse permutation learning is possible. We conjecture that this may suggest an alternative mechanism by which chain-of-thought prompting or, more generally, intermediate ``thinking'' tokens can enable reasoning in large language models, even when these tokens encode no meaningful semantic information (e.g., the results of intermediate computations).

  • 4 authors
·
Sep 28

Neural models for Factual Inconsistency Classification with Explanations

Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.

  • 7 authors
·
Jun 15, 2023

Meta-Chunking: Learning Efficient Text Segmentation via Logical Perception

Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed two strategies based on LLMs: Margin Sampling Chunking and Perplexity Chunking. The former employs LLMs to perform binary classification on whether consecutive sentences need to be segmented, making decisions based on the probability difference obtained from margin sampling. The latter precisely identifies text chunk boundaries by analyzing the characteristics of perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines Meta-Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of single-hop and multi-hop question answering based on RAG. For instance, on the 2WikiMultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Our code is available at https://github.com/IAAR-Shanghai/Meta-Chunking.

  • 7 authors
·
Oct 16, 2024 4

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

  • 1 authors
·
Jan 7, 2019

Instructing Large Language Models to Identify and Ignore Irrelevant Conditions

Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.

  • 3 authors
·
Mar 19, 2024

A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning

Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.

LAMDA-NeSy NJU-IRP
·
Oct 17 6