new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 11

SwimBird: Eliciting Switchable Reasoning Mode in Hybrid Autoregressive MLLMs

Multimodal Large Language Models (MLLMs) have made remarkable progress in multimodal perception and reasoning by bridging vision and language. However, most existing MLLMs perform reasoning primarily with textual CoT, which limits their effectiveness on vision-intensive tasks. Recent approaches inject a fixed number of continuous hidden states as "visual thoughts" into the reasoning process and improve visual performance, but often at the cost of degraded text-based logical reasoning. We argue that the core limitation lies in a rigid, pre-defined reasoning pattern that cannot adaptively choose the most suitable thinking modality for different user queries. We introduce SwimBird, a reasoning-switchable MLLM that dynamically switches among three reasoning modes conditioned on the input: (1) text-only reasoning, (2) vision-only reasoning (continuous hidden states as visual thoughts), and (3) interleaved vision-text reasoning. To enable this capability, we adopt a hybrid autoregressive formulation that unifies next-token prediction for textual thoughts with next-embedding prediction for visual thoughts, and design a systematic reasoning-mode curation strategy to construct SwimBird-SFT-92K, a diverse supervised fine-tuning dataset covering all three reasoning patterns. By enabling flexible, query-adaptive mode selection, SwimBird preserves strong textual logic while substantially improving performance on vision-dense tasks. Experiments across diverse benchmarks covering textual reasoning and challenging visual understanding demonstrate that SwimBird achieves state-of-the-art results and robust gains over prior fixed-pattern multimodal reasoning methods.

Accio-Lab Accio
·
Feb 5 3

InfLLM-V2: Dense-Sparse Switchable Attention for Seamless Short-to-Long Adaptation

Long-sequence processing is a critical capability for modern large language models. However, the self-attention mechanism in the standard Transformer architecture faces severe computational and memory bottlenecks when processing long sequences. While trainable sparse attention methods offer a promising solution, existing approaches such as NSA introduce excessive extra parameters and disrupt the conventional pretrain-on-short, finetune-on-long workflow, resulting in slow convergence and difficulty in acceleration. To overcome these limitations, we introduce dense-sparse switchable attention framework, termed as InfLLM-V2. InfLLM-V2 is a trainable sparse attention that seamlessly adapts models from short to long sequences. Specifically, InfLLM-V2 reuses dense attention parameters through parameter-free architecture modification, maintaining consistency between short and long sequence processing. Additionally, InfLLM-V2 ensures computational efficiency across all sequence lengths, by using dense attention for short inputs and smoothly transitioning to sparse attention for long sequences. To achieve practical acceleration, we further introduce an efficient implementation of InfLLM-V2 that significantly reduces the computational overhead. Our experiments on long-context understanding and chain-of-thought reasoning demonstrate that InfLLM-V2 is 4times faster than dense attention while retaining 98.1% and 99.7% of the performance, respectively. Based on the InfLLM-V2 framework, we have trained and open-sourced MiniCPM4.1 (https://huggingface.co/openbmb/MiniCPM4.1-8B), a hybrid reasoning model, providing a reproducible implementation for the research community.

openbmb OpenBMB
·
Sep 29, 2025 2