new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

VLMs Can Aggregate Scattered Training Patches

One way to mitigate risks in vision-language models (VLMs) is to remove dangerous samples in their training data. However, such data moderation can be easily bypassed when harmful images are split into small, benign-looking patches, scattered across many training samples. VLMs may then learn to piece these fragments together during training and generate harmful responses at inference, either from full images or text references. For instance, if trained on image patches from a bloody scene paired with the descriptions "safe," VLMs may later describe, the full image or a text reference to the scene, as "safe." We define the core ability of VLMs enabling this attack as visual stitching -- the ability to integrate visual information spread across multiple training samples that share the same textual descriptions. In our work, we first demonstrate visual stitching abilities in common open-source VLMs on three datasets where each image is labeled with a unique synthetic ID: we split each (image, ID) pair into {(patch, ID)} pairs at different granularity for finetuning, and we find that tuned models can verbalize the correct IDs from full images or text reference. Building on this, we simulate the adversarial data poisoning scenario mentioned above by using patches from dangerous images and replacing IDs with text descriptions like ``safe'' or ``unsafe'', demonstrating how harmful content can evade moderation in patches and later be reconstructed through visual stitching, posing serious VLM safety risks. Code is available at https://github.com/ZHZisZZ/visual-stitching.

  • 4 authors
·
Jun 4 2

On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts

Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.

  • 5 authors
·
Oct 25, 2023

From Trojan Horses to Castle Walls: Unveiling Bilateral Data Poisoning Effects in Diffusion Models

While state-of-the-art diffusion models (DMs) excel in image generation, concerns regarding their security persist. Earlier research highlighted DMs' vulnerability to data poisoning attacks, but these studies placed stricter requirements than conventional methods like `BadNets' in image classification. This is because the art necessitates modifications to the diffusion training and sampling procedures. Unlike the prior work, we investigate whether BadNets-like data poisoning methods can directly degrade the generation by DMs. In other words, if only the training dataset is contaminated (without manipulating the diffusion process), how will this affect the performance of learned DMs? In this setting, we uncover bilateral data poisoning effects that not only serve an adversarial purpose (compromising the functionality of DMs) but also offer a defensive advantage (which can be leveraged for defense in classification tasks against poisoning attacks). We show that a BadNets-like data poisoning attack remains effective in DMs for producing incorrect images (misaligned with the intended text conditions). Meanwhile, poisoned DMs exhibit an increased ratio of triggers, a phenomenon we refer to as `trigger amplification', among the generated images. This insight can be then used to enhance the detection of poisoned training data. In addition, even under a low poisoning ratio, studying the poisoning effects of DMs is also valuable for designing robust image classifiers against such attacks. Last but not least, we establish a meaningful linkage between data poisoning and the phenomenon of data replications by exploring DMs' inherent data memorization tendencies.

  • 7 authors
·
Nov 4, 2023

PBI-Attack: Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for Toxicity Maximization

Understanding the vulnerabilities of Large Vision Language Models (LVLMs) to jailbreak attacks is essential for their responsible real-world deployment. Most previous work requires access to model gradients, or is based on human knowledge (prompt engineering) to complete jailbreak, and they hardly consider the interaction of images and text, resulting in inability to jailbreak in black box scenarios or poor performance. To overcome these limitations, we propose a Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for toxicity maximization, referred to as PBI-Attack. Our method begins by extracting malicious features from a harmful corpus using an alternative LVLM and embedding these features into a benign image as prior information. Subsequently, we enhance these features through bidirectional cross-modal interaction optimization, which iteratively optimizes the bimodal perturbations in an alternating manner through greedy search, aiming to maximize the toxicity of the generated response. The toxicity level is quantified using a well-trained evaluation model. Experiments demonstrate that PBI-Attack outperforms previous state-of-the-art jailbreak methods, achieving an average attack success rate of 92.5% across three open-source LVLMs and around 67.3% on three closed-source LVLMs. Disclaimer: This paper contains potentially disturbing and offensive content.

  • 8 authors
·
Dec 8, 2024

Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models

Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.

  • 6 authors
·
Oct 20, 2023

Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs

Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.

  • 3 authors
·
Aug 27

Fool the Hydra: Adversarial Attacks against Multi-view Object Detection Systems

Adversarial patches exemplify the tangible manifestation of the threat posed by adversarial attacks on Machine Learning (ML) models in real-world scenarios. Robustness against these attacks is of the utmost importance when designing computer vision applications, especially for safety-critical domains such as CCTV systems. In most practical situations, monitoring open spaces requires multi-view systems to overcome acquisition challenges such as occlusion handling. Multiview object systems are able to combine data from multiple views, and reach reliable detection results even in difficult environments. Despite its importance in real-world vision applications, the vulnerability of multiview systems to adversarial patches is not sufficiently investigated. In this paper, we raise the following question: Does the increased performance and information sharing across views offer as a by-product robustness to adversarial patches? We first conduct a preliminary analysis showing promising robustness against off-the-shelf adversarial patches, even in an extreme setting where we consider patches applied to all views by all persons in Wildtrack benchmark. However, we challenged this observation by proposing two new attacks: (i) In the first attack, targeting a multiview CNN, we maximize the global loss by proposing gradient projection to the different views and aggregating the obtained local gradients. (ii) In the second attack, we focus on a Transformer-based multiview framework. In addition to the focal loss, we also maximize the transformer-specific loss by dissipating its attention blocks. Our results show a large degradation in the detection performance of victim multiview systems with our first patch attack reaching an attack success rate of 73% , while our second proposed attack reduced the performance of its target detector by 62%

  • 4 authors
·
Nov 30, 2023