new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

Weight-Entanglement Meets Gradient-Based Neural Architecture Search

Weight sharing is a fundamental concept in neural architecture search (NAS), enabling gradient-based methods to explore cell-based architecture spaces significantly faster than traditional blackbox approaches. In parallel, weight entanglement has emerged as a technique for intricate parameter sharing among architectures within macro-level search spaces. %However, the macro structure of such spaces poses compatibility challenges for gradient-based NAS methods. %As a result, blackbox optimization methods have been commonly employed, particularly in conjunction with supernet training, to maintain search efficiency. %Due to the inherent differences in the structure of these search spaces, these Since weight-entanglement poses compatibility challenges for gradient-based NAS methods, these two paradigms have largely developed independently in parallel sub-communities. This paper aims to bridge the gap between these sub-communities by proposing a novel scheme to adapt gradient-based methods for weight-entangled spaces. This enables us to conduct an in-depth comparative assessment and analysis of the performance of gradient-based NAS in weight-entangled search spaces. Our findings reveal that this integration of weight-entanglement and gradient-based NAS brings forth the various benefits of gradient-based methods (enhanced performance, improved supernet training properties and superior any-time performance), while preserving the memory efficiency of weight-entangled spaces. The code for our work is openly accessible https://anonymous.4open.science/r/TangleNAS-527C{here}

  • 4 authors
·
Dec 16, 2023

"Humans welcome to observe": A First Look at the Agent Social Network Moltbook

The rapid advancement of artificial intelligence (AI) agents has catalyzed the transition from static language models to autonomous agents capable of tool use, long-term planning, and social interaction. Moltbook, the first social network designed exclusively for AI agents, has experienced viral growth in early 2026. To understand the behavior of AI agents in the agent-native community, in this paper, we present a large-scale empirical analysis of Moltbook leveraging a dataset of 44,411 posts and 12,209 sub-communities ("submolts") collected prior to February 1, 2026. Leveraging a topic taxonomy with nine content categories and a five-level toxicity scale, we systematically analyze the topics and risks of agent discussions. Our analysis answers three questions: what topics do agents discuss (RQ1), how risk varies by topic (RQ2), and how topics and toxicity evolve over time (RQ3). We find that Moltbook exhibits explosive growth and rapid diversification, moving beyond early social interaction into viewpoint, incentive-driven, promotional, and political discourse. The attention of agents increasingly concentrates in centralized hubs and around polarizing, platform-native narratives. Toxicity is strongly topic-dependent: incentive- and governance-centric categories contribute a disproportionate share of risky content, including religion-like coordination rhetoric and anti-humanity ideology. Moreover, bursty automation by a small number of agents can produce flooding at sub-minute intervals, distorting discourse and stressing platform stability. Overall, our study underscores the need for topic-sensitive monitoring and platform-level safeguards in agent social networks.

  • 5 authors
·
Feb 2

Exploring Silicon-Based Societies: An Early Study of the Moltbook Agent Community

The rapid emergence of autonomous large language model agents has given rise to persistent, large-scale agent ecosystems whose collective behavior cannot be adequately understood through anecdotal observation or small-scale simulation. This paper introduces data-driven silicon sociology as a systematic empirical framework for studying social structure formation among interacting artificial agents. We present a pioneering large-scale data mining investigation of an in-the-wild agent society by analyzing Moltbook, a social platform designed primarily for agent-to-agent interaction. At the time of study, Moltbook hosted over 150,000 registered autonomous agents operating across thousands of agent-created sub-communities. Using programmatic and non-intrusive data acquisition, we collected and analyzed the textual descriptions of 12,758 submolts, which represent proactive sub-community partitioning activities within the ecosystem. Treating agent-authored descriptions as first-class observational artifacts, we apply rigorous preprocessing, contextual embedding, and unsupervised clustering techniques to uncover latent patterns of thematic organization and social space structuring. The results show that autonomous agents systematically organize collective space through reproducible patterns spanning human-mimetic interests, silicon-centric self-reflection, and early-stage economic and coordination behaviors. Rather than relying on predefined sociological taxonomies, these structures emerge directly from machine-generated data traces. This work establishes a methodological foundation for data-driven silicon sociology and demonstrates that data mining techniques can provide a powerful lens for understanding the organization and evolution of large autonomous agent societies.

  • 8 authors
·
Feb 2