- Deep Reinforcement Learning Based Joint Downlink Beamforming and RIS Configuration in RIS-aided MU-MISO Systems Under Hardware Impairments and Imperfect CSI We introduce a novel deep reinforcement learning (DRL) approach to jointly optimize transmit beamforming and reconfigurable intelligent surface (RIS) phase shifts in a multiuser multiple input single output (MU-MISO) system to maximize the sum downlink rate under the phase-dependent reflection amplitude model. Our approach addresses the challenge of imperfect channel state information (CSI) and hardware impairments by considering a practical RIS amplitude model. We compare the performance of our approach against a vanilla DRL agent in two scenarios: perfect CSI and phase-dependent RIS amplitudes, and mismatched CSI and ideal RIS reflections. The results demonstrate that the proposed framework significantly outperforms the vanilla DRL agent under mismatch and approaches the golden standard. Our contributions include modifications to the DRL approach to address the joint design of transmit beamforming and phase shifts and the phase-dependent amplitude model. To the best of our knowledge, our method is the first DRL-based approach for the phase-dependent reflection amplitude model in RIS-aided MU-MISO systems. Our findings in this study highlight the potential of our approach as a promising solution to overcome hardware impairments in RIS-aided wireless communication systems. 3 authors · Oct 10, 2022
- Learning the CSI Denoising and Feedback Without Supervision In this work, we develop a joint denoising and feedback strategy for channel state information in frequency division duplex systems. In such systems, the biggest challenge is the overhead incurred when the mobile terminal has to send the downlink channel state information or corresponding partial information to the base station, where the complete estimates can subsequently be restored. To this end, we propose a novel learning-based framework for denoising and compression of channel estimates. Unlike existing studies, we extend a recently proposed approach and show that based solely on noisy uplink data available at the base station, it is possible to learn an autoencoder neural network that generalizes to downlink data. Subsequently, half of the autoencoder can be offloaded to the mobile terminals to generate channel feedback there as efficiently as possible, without any training effort at the terminals or corresponding transfer of training data. Numerical simulations demonstrate the excellent performance of the proposed method. 2 authors · Apr 11, 2021
- Performance Limits of Network Densification Network densification is a promising cellular deployment technique that leverages spatial reuse to enhance coverage and throughput. Recent work has identified that at some point ultra-densification will no longer be able to deliver significant throughput gains. In this paper, we provide a unified treatment of the performance limits of network densification. We develop a general framework, which incorporates multi-slope pathloss and the entire space of shadowing and small scale fading distributions, under strongest cell association in a Poisson field of interferers. First, our results show that there are three scaling regimes for the downlink signal-to-interference-plus-noise ratio (SINR), coverage probability, and average per-user rate. Specifically, depending on the near-field pathloss and the fading distribution, the user performance of 5G ultra dense networks (UDNs) would either monotonically increase, saturate, or decay with increasing network density. Second, we show that network performance in terms of coverage density and area spectral efficiency can scale with the network density better than the user performance does. Furthermore, we provide ordering results for both coverage and average rate as a means to qualitatively compare different transmission techniques that may exhibit the same performance scaling. Our results, which are verified by simulations, provide succinct insights and valuable design guidelines for the deployment of 5G UDNs. 2 authors · Nov 23, 2016
1 Stochastic Geometry Based Modeling and Analysis on Network NOMA in Downlink CoMP Systems This paper investigates the performance of network non-orthogonal multiple access (N-NOMA) in a downlink coordinated multi-point (CoMP) system. In the considered N-NOMA scheme, multiple base stations (BSs) cooperatively serve a CoMP user, meanwhile, each BS serves additional NOMA users by occupying the same resource block allocated to the CoMP user. The locations of the BSs and users are modeled by stochastic geometric models and the interference from the whole network is considered. Through rigorous derivations, the outage probabilities achieved by the CoMP and NOMA users are obtained, respectively. Numerical results are provided to verify the accuracy of the analytical results and also demonstrate the superior performance of N-NOMA compared to orthogonal multiple access (OMA) based CoMP scheme. 5 authors · Aug 1, 2023
- Market-based Short-Term Allocations in Small Cell Wireless Networks Mobile users (or UEs, to use 3GPP terminology) served by small cells in dense urban settings may abruptly experience a significant deterioration in their channel to their serving base stations (BSs) in several scenarios, such as after turning a corner around a tall building, or a sudden knot of traffic blocking the direct path between the UE and its serving BS. In this work, we propose a scheme to temporarily increase the data rate to/from this UE with additional bandwidth from the nearest Coordinated Multi-Point (CoMP) cluster of BSs, while the slower process of handover of the UE to a new serving BS is ongoing. We emphasize that this additional bandwidth is additional to the data rates the UE is getting over its primary connection to the current serving BS and, after the handover, to the new serving BS. The key novelty of the present work is the proposal of a decentralized market-based resource allocation method to perform resource allocation to support Coordinated Beamforming (CB) CoMP. It is scalable to large numbers of UEs and BSs, and it is fast because resource allocations are made bilaterally, between BSs and UEs. Once the resource allocation to the UE has been made, the coordinated of transmissions occurs as per the usual CB methods. Thus the proposed method has the benefit of giving the UE access to its desired amount of resources fast, without waiting for handover to complete, or reporting channel state information before it knows the resources it will be allocated for receiving transmissions from the serving BS. 2 authors · May 8, 2020
1 Learning the CSI Recovery in FDD Systems We propose an innovative machine learning-based technique to address the problem of channel acquisition at the base station in frequency division duplex systems. In this context, the base station reconstructs the full channel state information in the downlink frequency range based on limited downlink channel state information feedback from the mobile terminal. The channel state information recovery is based on a convolutional neural network which is trained exclusively on collected channel state samples acquired in the uplink frequency domain. No acquisition of training samples in the downlink frequency range is required at all. Finally, after a detailed presentation and analysis of the proposed technique and its performance, the "transfer learning'' assumption of the convolutional neural network that is central to the proposed approach is validated with an analysis based on the maximum mean discrepancy metric. 5 authors · Apr 3, 2021
- Using Waste Factor to Optimize Energy Efficiency in Multiple-Input Single-Output (MISO) and Multiple-Input Multiple-Output (MIMO) Systems This paper introduces Waste Factor (W) and Waste Figure (WF) to assess power efficiency in any multiple-input multiple-output (MIMO) or single-input multiple-output (SIMO) or multiple-input single-output (MISO) cascaded communication system. This paper builds upon the new theory of Waste Factor, which systematically models added wasted power in any cascade for parallel systems such as MISO, SIMO, and MIMO systems, which are prevalent in current wireless networks. Here, we also show the advantage of W compared to conventional metrics for quantifying and analyzing energy efficiency. This work explores the utility of W in assessing energy efficiency in communication channels, within Radio Access Networks (RANs). 3 authors · May 2, 2024
- Coverage and capacity scaling laws in downlink ultra-dense cellular networks Driven by new types of wireless devices and the proliferation of bandwidth-intensive applications, data traffic and the corresponding network load are increasing dramatically. Network densification has been recognized as a promising and efficient way to provide higher network capacity and enhanced coverage. Most prior work on performance analysis of ultra-dense networks (UDNs) has focused on random spatial deployment with idealized singular path loss models and Rayleigh fading. In this paper, we consider a more precise and general model, which incorporates multi-slope path loss and general fading distributions. We derive the tail behavior and scaling laws for the coverage probability and the capacity considering strongest base station association in a Poisson field network. Our analytical results identify the regimes in which the signal-to-interference-plus-noise ratio (SINR) either asymptotically grows, saturates, or decreases with increasing network density. We establish general results on when UDNs lead to worse or even zero SINR coverage and capacity, and we provide crisp insights on the fundamental limits of wireless network densification. 2 authors · Feb 10, 2016
- Mobile Traffic Classification through Physical Channel Fingerprinting: a Deep Learning Approach The automatic classification of applications and services is an invaluable feature for new generation mobile networks. Here, we propose and validate algorithms to perform this task, at runtime, from the raw physical channel of an operative mobile network, without having to decode and/or decrypt the transmitted flows. Towards this, we decode Downlink Control Information (DCI) messages carried within the LTE Physical Downlink Control CHannel (PDCCH). DCI messages are sent by the radio cell in clear text and, in this paper, are utilized to classify the applications and services executed at the connected mobile terminals. Two datasets are collected through a large measurement campaign: one labeled, used to train the classification algorithms, and one unlabeled, collected from four radio cells in the metropolitan area of Barcelona, in Spain. Among other approaches, our Convolutional Neural Network (CNN) classifier provides the highest classification accuracy of 99%. The CNN classifier is then augmented with the capability of rejecting sessions whose patterns do not conform to those learned during the training phase, and is subsequently utilized to attain a fine grained decomposition of the traffic for the four monitored radio cells, in an online and unsupervised fashion. 5 authors · Oct 25, 2019