Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEvalTalker: Learning to Evaluate Real-Portrait-Driven Multi-Subject Talking Humans
Speech-driven Talking Human (TH) generation, commonly known as "Talker," currently faces limitations in multi-subject driving capabilities. Extending this paradigm to "Multi-Talker," capable of animating multiple subjects simultaneously, introduces richer interactivity and stronger immersion in audiovisual communication. However, current Multi-Talkers still exhibit noticeable quality degradation caused by technical limitations, resulting in suboptimal user experiences. To address this challenge, we construct THQA-MT, the first large-scale Multi-Talker-generated Talking Human Quality Assessment dataset, consisting of 5,492 Multi-Talker-generated THs (MTHs) from 15 representative Multi-Talkers using 400 real portraits collected online. Through subjective experiments, we analyze perceptual discrepancies among different Multi-Talkers and identify 12 common types of distortion. Furthermore, we introduce EvalTalker, a novel TH quality assessment framework. This framework possesses the ability to perceive global quality, human characteristics, and identity consistency, while integrating Qwen-Sync to perceive multimodal synchrony. Experimental results demonstrate that EvalTalker achieves superior correlation with subjective scores, providing a robust foundation for future research on high-quality Multi-Talker generation and evaluation.
Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution
Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery.
Towards Human-AI Collaborative Urban Science Research Enabled by Pre-trained Large Language Models
Pre-trained large language models (PLMs) have the potential to support urban science research through content creation, information extraction, assisted programming, text classification, and other technical advances. In this research, we explored the opportunities, challenges, and prospects of PLMs in urban science research. Specifically, we discussed potential applications of PLMs to urban institution, urban space, urban information, and citizen behaviors research through seven examples using ChatGPT. We also examined the challenges of PLMs in urban science research from both technical and social perspectives. The prospects of the application of PLMs in urban science research were then proposed. We found that PLMs can effectively aid in understanding complex concepts in urban science, facilitate urban spatial form identification, assist in disaster monitoring, and sense public sentiment. At the same time, however, the applications of PLMs in urban science research face evident threats, such as technical limitations, security, privacy, and social bias. The development of fundamental models based on domain knowledge and human-AI collaboration may help improve PLMs to support urban science research in future.
OptiGrasp: Optimized Grasp Pose Detection Using RGB Images for Warehouse Picking Robots
In warehouse environments, robots require robust picking capabilities to manage a wide variety of objects. Effective deployment demands minimal hardware, strong generalization to new products, and resilience in diverse settings. Current methods often rely on depth sensors for structural information, which suffer from high costs, complex setups, and technical limitations. Inspired by recent advancements in computer vision, we propose an innovative approach that leverages foundation models to enhance suction grasping using only RGB images. Trained solely on a synthetic dataset, our method generalizes its grasp prediction capabilities to real-world robots and a diverse range of novel objects not included in the training set. Our network achieves an 82.3\% success rate in real-world applications. The project website with code and data will be available at http://optigrasp.github.io.
DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation
This research introduces DesignQA, a novel benchmark aimed at evaluating the proficiency of multimodal large language models (MLLMs) in comprehending and applying engineering requirements in technical documentation. Developed with a focus on real-world engineering challenges, DesignQA uniquely combines multimodal data-including textual design requirements, CAD images, and engineering drawings-derived from the Formula SAE student competition. Different from many existing MLLM benchmarks, DesignQA contains document-grounded visual questions where the input image and input document come from different sources. The benchmark features automatic evaluation metrics and is divided into segments-Rule Comprehension, Rule Compliance, and Rule Extraction-based on tasks that engineers perform when designing according to requirements. We evaluate state-of-the-art models like GPT4 and LLaVA against the benchmark, and our study uncovers the existing gaps in MLLMs' abilities to interpret complex engineering documentation. Key findings suggest that while MLLMs demonstrate potential in navigating technical documents, substantial limitations exist, particularly in accurately extracting and applying detailed requirements to engineering designs. This benchmark sets a foundation for future advancements in AI-supported engineering design processes. DesignQA is publicly available at: https://github.com/anniedoris/design_qa/.
UAVs Meet Agentic AI: A Multidomain Survey of Autonomous Aerial Intelligence and Agentic UAVs
Agentic UAVs represent a new frontier in autonomous aerial intelligence, integrating perception, decision-making, memory, and collaborative planning to operate adaptively in complex, real-world environments. Driven by recent advances in Agentic AI, these systems surpass traditional UAVs by exhibiting goal-driven behavior, contextual reasoning, and interactive autonomy. We provide a comprehensive foundation for understanding the architectural components and enabling technologies that distinguish Agentic UAVs from traditional autonomous UAVs. Furthermore, a detailed comparative analysis highlights advancements in autonomy with AI agents, learning, and mission flexibility. This study explores seven high-impact application domains precision agriculture, construction & mining, disaster response, environmental monitoring, infrastructure inspection, logistics, security, and wildlife conservation, illustrating the broad societal value of agentic aerial intelligence. Furthermore, we identify key challenges in technical constraints, regulatory limitations, and data-model reliability, and we present emerging solutions across hardware innovation, learning architectures, and human-AI interaction. Finally, a future roadmap is proposed, outlining pathways toward self-evolving aerial ecosystems, system-level collaboration, and sustainable, equitable deployments. This survey establishes a foundational framework for the future development, deployment, and governance of agentic aerial systems (Agentic UAVs) across diverse societal and industrial domains.
A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles
In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.
HunyuanOCR Technical Report
This paper presents HunyuanOCR, a commercial-grade, open-source, and lightweight (1B parameters) Vision-Language Model (VLM) dedicated to OCR tasks. The architecture comprises a Native Vision Transformer (ViT) and a lightweight LLM connected via an MLP adapter. HunyuanOCR demonstrates superior performance, outperforming commercial APIs, traditional pipelines, and larger models (e.g., Qwen3-VL-4B). Specifically, it surpasses current public solutions in perception tasks (Text Spotting, Parsing) and excels in semantic tasks (IE, Text Image Translation), securing first place in the ICDAR 2025 DIMT Challenge (Small Model Track). Furthermore, it achieves state-of-the-art (SOTA) results on OCRBench among VLMs with fewer than 3B parameters. HunyuanOCR achieves breakthroughs in three key aspects: 1) Unifying Versatility and Efficiency: We implement comprehensive support for core capabilities including spotting, parsing, IE, VQA, and translation within a lightweight framework. This addresses the limitations of narrow "OCR expert models" and inefficient "General VLMs". 2) Streamlined End-to-End Architecture: Adopting a pure end-to-end paradigm eliminates dependencies on pre-processing modules (e.g., layout analysis). This fundamentally resolves error propagation common in traditional pipelines and simplifies system deployment. 3) Data-Driven and RL Strategies: We confirm the critical role of high-quality data and, for the first time in the industry, demonstrate that Reinforcement Learning (RL) strategies yield significant performance gains in OCR tasks. HunyuanOCR is officially open-sourced on HuggingFace. We also provide a high-performance deployment solution based on vLLM, placing its production efficiency in the top tier. We hope this model will advance frontier research and provide a solid foundation for industrial applications.
ToolMind Technical Report: A Large-Scale, Reasoning-Enhanced Tool-Use Dataset
Large Language Model (LLM) agents have developed rapidly in recent years to solve complex real-world problems using external tools. However, the scarcity of high-quality trajectories still hinders the development of stronger LLM agents. Most existing works on multi-turn dialogue synthesis validate correctness only at the trajectory level, which may overlook turn-level errors that can propagate during training and degrade model performance. To address these limitations, we introduce ToolMind, a large-scale, high-quality tool-agentic dataset with 160k synthetic data instances generated using over 20k tools and 200k augmented open-source data instances. Our data synthesis pipeline first constructs a function graph based on parameter correlations and then uses a multi-agent framework to simulate realistic user-assistant-tool interactions. Beyond trajectory-level validation, we employ fine-grained turn-level filtering to remove erroneous or suboptimal steps, ensuring that only high-quality reasoning traces are retained. This approach mitigates error amplification during training while preserving self-corrective reasoning signals essential for robust tool-use learning. Models fine-tuned on ToolMind show significant improvements over baselines on several benchmarks.
Compass-V2 Technical Report
Predominant LLMs focus on high-resource languages while leaving low-resource languages, particularly those in Southeast Asia (SEA), underrepresented. In addition, those models are general-purpose and pay limited attention to the e-commerce domain. To overcome these limitations, we introduce Compass-v2, a lightweight Mixture-of-Experts (MoE) model specifically designed for Southeast Asian languages and e-commerce applications. To balance model performance and inference cost, the model is designed with 30B total parameters and 5B active parameters, incorporating both fine-grained and shared expert modules. To enhance multilingual performance, we curated and constructed a high-quality, industry-leading SEA dataset, to the best of our knowledge. To boost performance in the e-commerce domain, we built a dataset comprising hundreds of billions of tokens, sourced through external data mining and internal platform collection. Besides, we pioneered a hybrid reasoning model that supports both fast thinking and deep thinking within a unified framework to enhance the reasoning capabilities, diverging from the conventional industry practice of deploying two separate models. Through extensive experimental evaluations, our model demonstrates state-of-the-art SEA multilingual and e-commerce performance among sub-30B models, while maintaining significantly lower inference cost.
WiNGPT-3.0 Technical Report
Current Large Language Models (LLMs) exhibit significant limitations, notably in structured, interpretable, and verifiable medical reasoning, alongside practical deployment challenges related to computational resources and data privacy. This report focused on the development of WiNGPT-3.0, the 32-billion parameter LLMs, engineered with the objective of enhancing its capacity for medical reasoning and exploring its potential for effective integration within healthcare IT infrastructures. The broader aim is to advance towards clinically applicable models. The approach involved a multi-stage training pipeline tailored for general, medical, and clinical reasoning. This pipeline incorporated supervised fine-tuning (SFT) and reinforcement learning (RL), leveraging curated Long Chain-of-Thought (CoT) datasets, auxiliary reward models, and an evidence-based diagnostic chain simulation. WiNGPT-3.0 demonstrated strong performance: specific model variants achieved scores of 66.6 on MedCalc and 87.1 on MedQA-USMLE. Furthermore, targeted training improved performance on a clinical reasoning task from a baseline score of 58.1 to 62.5. These findings suggest that reinforcement learning, even when applied with a limited dataset of only a few thousand examples, can enhance medical reasoning accuracy. Crucially, this demonstration of RL's efficacy with limited data and computation paves the way for more trustworthy and practically deployable LLMs within clinical workflows and health information infrastructures.
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Pegasus-v1 Technical Report
This technical report introduces Pegasus-1, a multimodal language model specialized in video content understanding and interaction through natural language. Pegasus-1 is designed to address the unique challenges posed by video data, such as interpreting spatiotemporal information, to offer nuanced video content comprehension across various lengths. This technical report overviews Pegasus-1's architecture, training strategies, and its performance in benchmarks on video conversation, zero-shot video question answering, and video summarization. We also explore qualitative characteristics of Pegasus-1 , demonstrating its capabilities as well as its limitations, in order to provide readers a balanced view of its current state and its future direction.
Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models
Sora is a text-to-video generative AI model, released by OpenAI in February 2024. The model is trained to generate videos of realistic or imaginative scenes from text instructions and show potential in simulating the physical world. Based on public technical reports and reverse engineering, this paper presents a comprehensive review of the model's background, related technologies, applications, remaining challenges, and future directions of text-to-video AI models. We first trace Sora's development and investigate the underlying technologies used to build this "world simulator". Then, we describe in detail the applications and potential impact of Sora in multiple industries ranging from film-making and education to marketing. We discuss the main challenges and limitations that need to be addressed to widely deploy Sora, such as ensuring safe and unbiased video generation. Lastly, we discuss the future development of Sora and video generation models in general, and how advancements in the field could enable new ways of human-AI interaction, boosting productivity and creativity of video generation.
Qwen3Guard Technical Report
As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.
IACT: A Self-Organizing Recursive Model for General AI Agents: A Technical White Paper on the Architecture Behind kragent.ai
This technical white paper introduces the Interactive Agents Call Tree (IACT), a computational model designed to address the limitations of static, hard-coded agent workflows. Unlike traditional systems that require pre-defined graphs or specialized programming, IACT operates as a general-purpose autonomous system driven purely by user dialogue. Given a high-level objective, the system autonomously grows a dynamic, recursive agent topology incrementally tailored to the problem's structure. This allows it to scale its organizational complexity to match open-ended tasks. To mitigate the error propagation inherent in unidirectional function calls, IACT introduces interactional redundancy by replacing rigid invocations with bidirectional, stateful dialogues. This mechanism enables runtime error correction and ambiguity resolution. We describe the architecture, design principles, and practical lessons behind the production deployment of this model in the kragent.ai system, presenting qualitative evidence from real-world workflows rather than exhaustive benchmark results.
Dewey Long Context Embedding Model: A Technical Report
This technical report presents the training methodology and evaluation results of the open-source dewey_en_beta embedding model. The increasing demand for retrieval-augmented generation (RAG) systems and the expanding context window capabilities of large language models (LLMs) have created critical challenges for conventional embedding models. Current approaches often struggle to maintain semantic coherence when processing documents exceeding typical sequence length limitations, significantly impacting retrieval performance in knowledge-intensive applications. This paper presents dewey_en_beta, a novel text embedding model that achieves excellent performance on MTEB (Eng, v2) and LongEmbed benchmark while supporting 128K token sequences. Our technical contribution centers on chunk alignment training, an innovative methodology that enables the simultaneous generation of localized chunk embeddings and global document-level representations through distillation. Information regarding the model release can be found at https://huggingface.co/infgrad/dewey_en_beta.
OneRec-V2 Technical Report
Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
AndesVL Technical Report: An Efficient Mobile-side Multimodal Large Language Model
In recent years, while cloud-based MLLMs such as QwenVL, InternVL, GPT-4o, Gemini, and Claude Sonnet have demonstrated outstanding performance with enormous model sizes reaching hundreds of billions of parameters, they significantly surpass the limitations in memory, power consumption, and computing capacity of edge devices such as mobile phones. This paper introduces AndesVL, a suite of mobile-side MLLMs with 0.6B to 4B parameters based on Qwen3's LLM and various visual encoders. We comprehensively outline the model architectures, training pipeline, and training data of AndesVL, which achieves first-tier performance across a wide range of open-source benchmarks, including fields such as text-rich image understanding, reasoning and math, multi-image comprehension, general VQA, hallucination mitigation, multilingual understanding, and GUI-related tasks when compared with state-of-the-art models of a similar scale. Furthermore, we introduce a 1+N LoR
Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Technical Solutions
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
UI-TARS-2 Technical Report: Advancing GUI Agent with Multi-Turn Reinforcement Learning
The development of autonomous agents for graphical user interfaces (GUIs) presents major challenges in artificial intelligence. While recent advances in native agent models have shown promise by unifying perception, reasoning, action, and memory through end-to-end learning, open problems remain in data scalability, multi-turn reinforcement learning (RL), the limitations of GUI-only operation, and environment stability. In this technical report, we present UI-TARS-2, a native GUI-centered agent model that addresses these challenges through a systematic training methodology: a data flywheel for scalable data generation, a stabilized multi-turn RL framework, a hybrid GUI environment that integrates file systems and terminals, and a unified sandbox platform for large-scale rollouts. Empirical evaluation demonstrates that UI-TARS-2 achieves significant improvements over its predecessor UI-TARS-1.5. On GUI benchmarks, it reaches 88.2 on Online-Mind2Web, 47.5 on OSWorld, 50.6 on WindowsAgentArena, and 73.3 on AndroidWorld, outperforming strong baselines such as Claude and OpenAI agents. In game environments, it attains a mean normalized score of 59.8 across a 15-game suite-roughly 60% of human-level performance-and remains competitive with frontier proprietary models (e.g., OpenAI o3) on LMGame-Bench. Additionally, the model can generalize to long-horizon information-seeking tasks and software engineering benchmarks, highlighting its robustness across diverse agent tasks. Detailed analyses of training dynamics further provide insights into achieving stability and efficiency in large-scale agent RL. These results underscore UI-TARS-2's potential to advance the state of GUI agents and exhibit strong generalization to real-world interactive scenarios.
FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
RefactorCoderQA: Benchmarking LLMs for Multi-Domain Coding Question Solutions in Cloud and Edge Deployment
To optimize the reasoning and problem-solving capabilities of Large Language Models (LLMs), we propose a novel cloud-edge collaborative architecture that enables a structured, multi-agent prompting framework. This framework comprises three specialized components: GuideLLM, a lightweight model deployed at the edge to provide methodological guidance; SolverLLM, a more powerful model hosted in the cloud responsible for generating code solutions; and JudgeLLM, an automated evaluator for assessing solution correctness and quality. To evaluate and demonstrate the effectiveness of this architecture in realistic settings, we introduce RefactorCoderQA, a comprehensive benchmark designed to evaluate and enhance the performance of Large Language Models (LLMs) across multi-domain coding tasks. Motivated by the limitations of existing benchmarks, RefactorCoderQA systematically covers various technical domains, including Software Engineering, Data Science, Machine Learning, and Natural Language Processing, using authentic coding challenges from Stack Overflow. Extensive experiments reveal that our fine-tuned model, RefactorCoder-MoE, achieves state-of-the-art performance, significantly outperforming leading open-source and commercial baselines with an overall accuracy of 76.84%. Human evaluations further validate the interpretability, accuracy, and practical relevance of the generated solutions. In addition, we evaluate system-level metrics, such as throughput and latency, to gain deeper insights into the performance characteristics and trade-offs of the proposed architecture.
Do Multimodal Large Language Models Understand Welding?
This paper examines the performance of Multimodal LLMs (MLLMs) in skilled production work, with a focus on welding. Using a novel data set of real-world and online weld images, annotated by a domain expert, we evaluate the performance of two state-of-the-art MLLMs in assessing weld acceptability across three contexts: RV \& Marine, Aeronautical, and Farming. While both models perform better on online images, likely due to prior exposure or memorization, they also perform relatively well on unseen, real-world weld images. Additionally, we introduce WeldPrompt, a prompting strategy that combines Chain-of-Thought generation with in-context learning to mitigate hallucinations and improve reasoning. WeldPrompt improves model recall in certain contexts but exhibits inconsistent performance across others. These results underscore the limitations and potentials of MLLMs in high-stakes technical domains and highlight the importance of fine-tuning, domain-specific data, and more sophisticated prompting strategies to improve model reliability. The study opens avenues for further research into multimodal learning in industry applications.
CoRT: Code-integrated Reasoning within Thinking
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.
CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution
Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.
Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled Bail\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
This paper presents a critical examination of current approaches to replicating OpenAI's O1 model capabilities, with particular focus on the widespread but often undisclosed use of knowledge distillation techniques. While our previous work explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1's API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks. Through extensive experiments, we show that a base model fine-tuned on simply tens of thousands of samples O1-distilled long-thought chains outperforms O1-preview on the American Invitational Mathematics Examination (AIME) with minimal technical complexity. Moreover, our investigation extends beyond mathematical reasoning to explore the generalization capabilities of O1-distilled models across diverse tasks: hallucination, safety and open-domain QA. Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning. We deliberately make this finding public to promote transparency in AI research and to challenge the current trend of obscured technical claims in the field. Our work includes: (1) A detailed technical exposition of the distillation process and its effectiveness, (2) A comprehensive benchmark framework for evaluating and categorizing O1 replication attempts based on their technical transparency and reproducibility, (3) A critical discussion of the limitations and potential risks of over-relying on distillation approaches, our analysis culminates in a crucial bitter lesson: while the pursuit of more capable AI systems is important, the development of researchers grounded in first-principles thinking is paramount.
The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
Personalized Reasoning: Just-In-Time Personalization and Why LLMs Fail At It
Current large language model (LLM) development treats task-solving and preference alignment as separate challenges, optimizing first for objective correctness, then for alignment to aggregated human preferences. This paradigm fails in human-facing applications where solving a problem correctly is insufficient if the response mismatches the user's needs. This challenge intensifies in just-in-time scenarios where no prior user interaction history exists due to cold-start conditions or privacy constraints. LLMs need to identify what they don't know about user preferences, strategically elicit preference values through questioning, then adapt their reasoning processes and responses accordingly -- a complicated chain of cognitive processes which we term personalized reasoning. We introduce PREFDISCO, an evaluation methodology that transforms static benchmarks into interactive personalization tasks using psychologically-grounded personas with sparse preferences. Our framework creates scenarios where identical questions require different reasoning chains depending on user context, as optimal explanation approaches vary by individual expertise and preferences while maintaining factual accuracy. Evaluation of 21 frontier models across 10 tasks reveals 29.0% of naive personalization attempts produce worse preference alignment than generic responses, yet generic responses also fail to serve individual user needs effectively. These findings suggest personalized reasoning requires dedicated development rather than emerging naturally. PREFDISCO establishes personalized reasoning as a measurable research frontier and reveals fundamental limitations in current LLMs' interactive capabilities, providing a foundation for developing systems that can adapt to individual users in education, healthcare, and technical domains where personalization is critical.
Automating the Enterprise with Foundation Models
Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents
MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face
Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face -- one of the largest platforms for sharing and collaborating on ML models and datasets -- as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, while the Considerations for Using the Data section receives the lowest proportion of content. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.
A Hazard Analysis Framework for Code Synthesis Large Language Models
Codex, a large language model (LLM) trained on a variety of codebases, exceeds the previous state of the art in its capacity to synthesize and generate code. Although Codex provides a plethora of benefits, models that may generate code on such scale have significant limitations, alignment problems, the potential to be misused, and the possibility to increase the rate of progress in technical fields that may themselves have destabilizing impacts or have misuse potential. Yet such safety impacts are not yet known or remain to be explored. In this paper, we outline a hazard analysis framework constructed at OpenAI to uncover hazards or safety risks that the deployment of models like Codex may impose technically, socially, politically, and economically. The analysis is informed by a novel evaluation framework that determines the capacity of advanced code generation techniques against the complexity and expressivity of specification prompts, and their capability to understand and execute them relative to human ability.
How Much Content Do LLMs Generate That Induces Cognitive Bias in Users?
Large language models (LLMs) are increasingly integrated into applications ranging from review summarization to medical diagnosis support, where they affect human decisions. Even though LLMs perform well in many tasks, they may also inherit societal or cognitive biases, which can inadvertently transfer to humans. We investigate when and how LLMs expose users to biased content and quantify its severity. Specifically, we assess three LLM families in summarization and news fact-checking tasks, evaluating how much LLMs stay consistent with their context and/or hallucinate. Our findings show that LLMs expose users to content that changes the sentiment of the context in 21.86% of the cases, hallucinates on post-knowledge-cutoff data questions in 57.33% of the cases, and primacy bias in 5.94% of the cases. We evaluate 18 distinct mitigation methods across three LLM families and find that targeted interventions can be effective. Given the prevalent use of LLMs in high-stakes domains, such as healthcare or legal analysis, our results highlight the need for robust technical safeguards and for developing user-centered interventions that address LLM limitations.
TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
A Good Student is Cooperative and Reliable: CNN-Transformer Collaborative Learning for Semantic Segmentation
In this paper, we strive to answer the question "how to collaboratively learn convolutional neural network (CNN)-based and vision transformer (ViT)-based models by selecting and exchanging the reliable knowledge between them for semantic segmentation?" Accordingly, we propose an online knowledge distillation (KD) framework that can simultaneously learn compact yet effective CNN-based and ViT-based models with two key technical breakthroughs to take full advantage of CNNs and ViT while compensating their limitations. Firstly, we propose heterogeneous feature distillation (HFD) to improve students' consistency in low-layer feature space by mimicking heterogeneous features between CNNs and ViT. Secondly, to facilitate the two students to learn reliable knowledge from each other, we propose bidirectional selective distillation (BSD) that can dynamically transfer selective knowledge. This is achieved by 1) region-wise BSD determining the directions of knowledge transferred between the corresponding regions in the feature space and 2) pixel-wise BSD discerning which of the prediction knowledge to be transferred in the logit space. Extensive experiments on three benchmark datasets demonstrate that our proposed framework outperforms the state-of-the-art online distillation methods by a large margin, and shows its efficacy in learning collaboratively between ViT-based and CNN-based models.
Logics-Parsing Technical Report
Recent advances in Large Vision-Language models (LVLM) have spurred significant progress in document parsing task. Compared to traditional pipeline-based methods, end-to-end paradigms have shown their excellence in converting PDF images into structured outputs through integrated Optical Character Recognition (OCR), table recognition, mathematical formula recognition and so on. However, the absence of explicit analytical stages for document layouts and reading orders limits the LVLM's capability in handling complex document types such as multi-column newspapers or posters. To address this limitation, we propose in this report Logics-Parsing: an end-to-end LVLM-based model augmented with reinforcement learning. Our model incorporates meticulously designed reward mechanisms to optimize complex layout analysis and reading order inference. In addition, we expand the model's versatility by incorporating diverse data types such as chemical formulas and handwritten Chinese characters into supervised fine-tuning. Finally, to enable rigorous evaluation of our approach, we introduce LogicsParsingBench, a curated set of 1,078 page-level PDF images spanning nine major categories and over twenty sub-categories, which will be released later. Comprehensive experiments conducted on LogicsParsingBench have validated the efficacy and State-of-the-art (SOTA) performance of our proposed model across diverse document analysis scenarios. Project Page: https://github.com/alibaba/Logics-Parsing
NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce MetaChain-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, MetaChain comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, MetaChain also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate MetaChain's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, MetaChain's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.
