new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Bioformer: an efficient transformer language model for biomedical text mining

Pretrained language models such as Bidirectional Encoder Representations from Transformers (BERT) have achieved state-of-the-art performance in natural language processing (NLP) tasks. Recently, BERT has been adapted to the biomedical domain. Despite the effectiveness, these models have hundreds of millions of parameters and are computationally expensive when applied to large-scale NLP applications. We hypothesized that the number of parameters of the original BERT can be dramatically reduced with minor impact on performance. In this study, we present Bioformer, a compact BERT model for biomedical text mining. We pretrained two Bioformer models (named Bioformer8L and Bioformer16L) which reduced the model size by 60% compared to BERTBase. Bioformer uses a biomedical vocabulary and was pre-trained from scratch on PubMed abstracts and PubMed Central full-text articles. We thoroughly evaluated the performance of Bioformer as well as existing biomedical BERT models including BioBERT and PubMedBERT on 15 benchmark datasets of four different biomedical NLP tasks: named entity recognition, relation extraction, question answering and document classification. The results show that with 60% fewer parameters, Bioformer16L is only 0.1% less accurate than PubMedBERT while Bioformer8L is 0.9% less accurate than PubMedBERT. Both Bioformer16L and Bioformer8L outperformed BioBERTBase-v1.1. In addition, Bioformer16L and Bioformer8L are 2-3 fold as fast as PubMedBERT/BioBERTBase-v1.1. Bioformer has been successfully deployed to PubTator Central providing gene annotations over 35 million PubMed abstracts and 5 million PubMed Central full-text articles. We make Bioformer publicly available via https://github.com/WGLab/bioformer, including pre-trained models, datasets, and instructions for downstream use.

  • 5 authors
·
Feb 3, 2023

Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models

In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.

  • 2 authors
·
Apr 21

Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials

Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.

  • 7 authors
·
Apr 25, 2022

Talking Heads: Understanding Inter-layer Communication in Transformer Language Models

Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. By analyzing particular mechanism LMs use to accomplish this, we find that it is also used to recall items from a list, and show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by specific later layers, forming low-rank communication channels between layers. By decomposing attention head weight matrices with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.

  • 3 authors
·
Jun 13, 2024

LinkTransformer: A Unified Package for Record Linkage with Transformer Language Models

Linking information across sources is fundamental to a variety of analyses in social science, business, and government. While large language models (LLMs) offer enormous promise for improving record linkage in noisy datasets, in many domains approximate string matching packages in popular softwares such as R and Stata remain predominant. These packages have clean, simple interfaces and can be easily extended to a diversity of languages. Our open-source package LinkTransformer aims to extend the familiarity and ease-of-use of popular string matching methods to deep learning. It is a general purpose package for record linkage with transformer LLMs that treats record linkage as a text retrieval problem. At its core is an off-the-shelf toolkit for applying transformer models to record linkage with four lines of code. LinkTransformer contains a rich repository of pre-trained transformer semantic similarity models for multiple languages and supports easy integration of any transformer language model from Hugging Face or OpenAI. It supports standard functionality such as blocking and linking on multiple noisy fields. LinkTransformer APIs also perform other common text data processing tasks, e.g., aggregation, noisy de-duplication, and translation-free cross-lingual linkage. Importantly, LinkTransformer also contains comprehensive tools for efficient model tuning, to facilitate different levels of customization when off-the-shelf models do not provide the required accuracy. Finally, to promote reusability, reproducibility, and extensibility, LinkTransformer makes it easy for users to contribute their custom-trained models to its model hub. By combining transformer language models with intuitive APIs that will be familiar to many users of popular string matching packages, LinkTransformer aims to democratize the benefits of LLMs among those who may be less familiar with deep learning frameworks.

  • 2 authors
·
Sep 1, 2023

Circuit Component Reuse Across Tasks in Transformer Language Models

Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.

  • 3 authors
·
Oct 12, 2023

Unforgettable Generalization in Language Models

When language models (LMs) are trained to forget (or "unlearn'') a skill, how precisely does their behavior change? We study the behavior of transformer LMs in which tasks have been forgotten via fine-tuning on randomized labels. Such LMs learn to generate near-random predictions for individual examples in the "training'' set used for forgetting. Across tasks, however, LMs exhibit extreme variability in whether LM predictions change on examples outside the training set. In some tasks (like entailment classification), forgetting generalizes robustly, and causes models to produce uninformative predictions on new task instances; in other tasks (like physical commonsense reasoning and scientific question answering) forgetting affects only the training examples, and models continue to perform the "forgotten'' task accurately even for examples very similar to those that appeared in the training set. Dataset difficulty is not predictive of whether a behavior can be forgotten; instead, generalization in forgetting is (weakly) predicted by the confidence of LMs' initial task predictions and the variability of LM representations of training data, with low confidence and low variability both associated with greater generalization. Perhaps most surprisingly, random-label forgetting appears to be somewhat insensitive to the contents of the training set: for example, models trained on science questions with random labels continue to answer other science questions accurately, but begin to produce random labels on entailment classification tasks. Finally, we show that even generalizable forgetting is shallow: linear probes trained on LMs' representations can still perform tasks reliably after forgetting. Our results highlight the difficulty and unpredictability of performing targeted skill removal from models via fine-tuning.

  • 3 authors
·
Sep 3, 2024

Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning

Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization.

  • 2 authors
·
Jan 23, 2023

What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Large pretrained Transformer language models have been shown to exhibit zero-shot generalization, i.e. they can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train models with over 5 billion parameters for more than 170 billion tokens, thereby increasing the likelihood that our conclusions will transfer to even larger scales. Our experiments show that causal decoder-only models trained on an autoregressive language modeling objective exhibit the strongest zero-shot generalization after purely unsupervised pretraining. However, models with non-causal visibility on their input trained with a masked language modeling objective followed by multitask finetuning perform the best among our experiments. We therefore consider the adaptation of pretrained models across architectures and objectives. We find that pretrained non-causal decoder models can be adapted into performant generative causal decoder models, using autoregressive language modeling as a downstream task. Furthermore, we find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models, ultimately achieving competitive performance after multitask finetuning. Code and checkpoints are available at https://github.com/bigscience-workshop/architecture-objective.

  • 8 authors
·
Apr 12, 2022

PaLM: Scaling Language Modeling with Pathways

Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

  • 67 authors
·
Apr 5, 2022 2

Deconstructing Attention: Investigating Design Principles for Effective Language Modeling

The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.

  • 3 authors
·
Oct 13 2

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

Post-training quantization~(PTQ) of transformer language models faces significant challenges due to the existence of detrimental outliers in activations. We observe that these outliers are concentrated in specific channels and are asymmetric across channels. To address this issue, we propose the Outlier Suppression+~(OS+) framework, which contains the channel-wise shifting for asymmetry and channel-wise scaling for concentration. We show that these operations can be seamlessly migrated into subsequent modules while maintaining equivalence. Second, we propose a fast and stable scheme to calculate effective shifting and scaling values. The channel-wise shifting aligns the center of each channel for removal of outlier asymmetry. The channel-wise scaling quantitatively evaluates changes brought by migration and quantization for better quantization burden balance. We validate our OS+ under both standard and fine-grained quantization settings with models including BERT, OPT, BLOOM, BLOOMZ, and LLaMA. Comprehensive results across various tasks demonstrate the superiority of our approach. Especially, with standard quantization, OS+ can achieve near-floating-point performance on both small models and large language models on 8-bit and 6-bit. Besides, we establish a new state-of-the-art for 4-bit BERT with 15.5\% improvement. Our code is available at https://github.com/ModelTC/Outlier_Suppression_Plus.

  • 7 authors
·
Apr 18, 2023

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Recent work in language modeling demonstrates that training large transformer models advances the state of the art in Natural Language Processing applications. However, very large models can be quite difficult to train due to memory constraints. In this work, we present our techniques for training very large transformer models and implement a simple, efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9 billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy of 89.4%).

  • 6 authors
·
Sep 17, 2019

Short-Range Dependency Effects on Transformer Instability and a Decomposed Attention Solution

Transformer language models have driven significant progress across various fields, including natural language processing and computer vision. A central component of these models is the self-attention (SA) mechanism, which learns rich vector representations of tokens by modeling their relationships with others in a sequence. However, despite extensive research, transformers continue to suffer from training instability -- often manifesting as spikes or divergence in the training loss during a run. In this work, we identify one source of this instability: SA's limited ability to capture short-range dependencies, especially in tasks like language modeling, where almost every token heavily relies on its nearby neighbors. This limitation causes the pre-softmax logits of SA to grow rapidly, destabilizing training. To address this, we propose decomposing the SA into local (short-range) and global (long-range) attention heads. This decomposed attention, referred to as Long Short-attention (LS-attention), mitigates logit explosion and results in more stable training compared to an equivalent multi-head self-attention (MHSA). Empirical comparisons with two alternative training stabilization methods show that LS-attention reduces the validation perplexity to nearly 2/5 of that achieved by one method and reaches a similar perplexity as the other method using only 1/20 of the GPU hours. Additionally, our experiments demonstrate that LS-attention reduces inference latency by up to 36% compared to a state-of-the-art implementation of equivalent MHSA.

  • 1 authors
·
May 21

Efficient Transformer Knowledge Distillation: A Performance Review

As pretrained transformer language models continue to achieve state-of-the-art performance, the Natural Language Processing community has pushed for advances in model compression and efficient attention mechanisms to address high computational requirements and limited input sequence length. Despite these separate efforts, no investigation has been done into the intersection of these two fields. In this work, we provide an evaluation of model compression via knowledge distillation on efficient attention transformers. We provide cost-performance trade-offs for the compression of state-of-the-art efficient attention architectures and the gains made in performance in comparison to their full attention counterparts. Furthermore, we introduce a new long-context Named Entity Recognition dataset, GONERD, to train and test the performance of NER models on long sequences. We find that distilled efficient attention transformers can preserve a significant amount of original model performance, preserving up to 98.6% across short-context tasks (GLUE, SQUAD, CoNLL-2003), up to 94.6% across long-context Question-and-Answering tasks (HotpotQA, TriviaQA), and up to 98.8% on long-context Named Entity Recognition (GONERD), while decreasing inference times by up to 57.8%. We find that, for most models on most tasks, performing knowledge distillation is an effective method to yield high-performing efficient attention models with low costs.

  • 4 authors
·
Nov 22, 2023

Dynamic Chunking for End-to-End Hierarchical Sequence Modeling

Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.

  • 3 authors
·
Jul 10 4

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Models

Recently, DALL-E, a multimodal transformer language model, and its variants (including diffusion models) have shown high-quality text-to-image generation capabilities. However, despite the interesting image generation results, there has not been a detailed analysis on how to evaluate such models. In this work, we investigate the visual reasoning capabilities and social biases of different text-to-image models, covering both multimodal transformer language models and diffusion models. First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding. For this, we propose PaintSkills, a compositional diagnostic dataset and evaluation toolkit that measures these skills. In our experiments, there exists a large gap between the performance of recent text-to-image models and the upper bound accuracy in object counting and spatial relation understanding skills. Second, we assess gender and skin tone biases by measuring the variance of the gender/skin tone distribution based on automated and human evaluation. We demonstrate that recent text-to-image models learn specific gender/skin tone biases from web image-text pairs. We hope that our work will help guide future progress in improving text-to-image generation models on visual reasoning skills and learning socially unbiased representations. Code and data: https://github.com/j-min/DallEval

  • 3 authors
·
Feb 8, 2022

Pushing on Personality Detection from Verbal Behavior: A Transformer Meets Text Contours of Psycholinguistic Features

Research at the intersection of personality psychology, computer science, and linguistics has recently focused increasingly on modeling and predicting personality from language use. We report two major improvements in predicting personality traits from text data: (1) to our knowledge, the most comprehensive set of theory-based psycholinguistic features and (2) hybrid models that integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory (BLSTM) networks trained on within-text distributions ('text contours') of psycholinguistic features. We experiment with BLSTM models (with and without Attention) and with two techniques for applying pre-trained language representations from the transformer model - 'feature-based' and 'fine-tuning'. We evaluate the performance of the models we built on two benchmark datasets that target the two dominant theoretical models of personality: the Big Five Essay dataset and the MBTI Kaggle dataset. Our results are encouraging as our models outperform existing work on the same datasets. More specifically, our models achieve improvement in classification accuracy by 2.9% on the Essay dataset and 8.28% on the Kaggle MBTI dataset. In addition, we perform ablation experiments to quantify the impact of different categories of psycholinguistic features in the respective personality prediction models.

  • 4 authors
·
Apr 10, 2022

One Epoch Is All You Need

In unsupervised learning, collecting more data is not always a costly process unlike the training. For example, it is not hard to enlarge the 40GB WebText used for training GPT-2 by modifying its sampling methodology considering how many webpages there are in the Internet. On the other hand, given that training on this dataset already costs tens of thousands of dollars, training on a larger dataset naively is not cost-wise feasible. In this paper, we suggest to train on a larger dataset for only one epoch unlike the current practice, in which the unsupervised models are trained for from tens to hundreds of epochs. Furthermore, we suggest to adjust the model size and the number of iterations to be performed appropriately. We show that the performance of Transformer language model becomes dramatically improved in this way, especially if the original number of epochs is greater. For example, by replacing the training for 10 epochs with the one epoch training, this translates to 1.9-3.3x speedup in wall-clock time in our settings and more if the original number of epochs is greater. Under one epoch training, no overfitting occurs, and regularization method does nothing but slows down the training. Also, the curve of test loss over iterations follows power-law extensively. We compare the wall-clock time of the training of models with different parameter budget under one epoch training, and we show that size/iteration adjustment based on our proposed heuristics leads to 1-2.7x speedup in our cases. With the two methods combined, we achieve 3.3-5.1x speedup. Finally, we speculate various implications of one epoch training and size/iteration adjustment. In particular, based on our analysis we believe that we can reduce the cost to train the state-of-the-art models as BERT and GPT-2 dramatically, maybe even by the factor of 10.

  • 1 authors
·
Jun 16, 2019

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Understanding neural networks is challenging in part because of the dense, continuous nature of their hidden states. We explore whether we can train neural networks to have hidden states that are sparse, discrete, and more interpretable by quantizing their continuous features into what we call codebook features. Codebook features are produced by finetuning neural networks with vector quantization bottlenecks at each layer, producing a network whose hidden features are the sum of a small number of discrete vector codes chosen from a larger codebook. Surprisingly, we find that neural networks can operate under this extreme bottleneck with only modest degradation in performance. This sparse, discrete bottleneck also provides an intuitive way of controlling neural network behavior: first, find codes that activate when the desired behavior is present, then activate those same codes during generation to elicit that behavior. We validate our approach by training codebook Transformers on several different datasets. First, we explore a finite state machine dataset with far more hidden states than neurons. In this setting, our approach overcomes the superposition problem by assigning states to distinct codes, and we find that we can make the neural network behave as if it is in a different state by activating the code for that state. Second, we train Transformer language models with up to 410M parameters on two natural language datasets. We identify codes in these models representing diverse, disentangled concepts (ranging from negative emotions to months of the year) and find that we can guide the model to generate different topics by activating the appropriate codes during inference. Overall, codebook features appear to be a promising unit of analysis and control for neural networks and interpretability. Our codebase and models are open-sourced at https://github.com/taufeeque9/codebook-features.

  • 3 authors
·
Oct 26, 2023

Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph

There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.

  • 3 authors
·
May 22, 2023

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.

  • 4 authors
·
Aug 15, 2022 1

Observable Propagation: A Data-Efficient Approach to Uncover Feature Vectors in Transformers

A key goal of current mechanistic interpretability research in NLP is to find linear features (also called "feature vectors") for transformers: directions in activation space corresponding to concepts that are used by a given model in its computation. Present state-of-the-art methods for finding linear features require large amounts of labelled data -- both laborious to acquire and computationally expensive to utilize. In this work, we introduce a novel method, called "observable propagation" (in short: ObsProp), for finding linear features used by transformer language models in computing a given task -- using almost no data. Our paradigm centers on the concept of observables, linear functionals corresponding to given tasks. We then introduce a mathematical theory for the analysis of feature vectors: we provide theoretical motivation for why LayerNorm nonlinearities do not affect the direction of feature vectors; we also introduce a similarity metric between feature vectors called the coupling coefficient which estimates the degree to which one feature's output correlates with another's. We use ObsProp to perform extensive qualitative investigations into several tasks, including gendered occupational bias, political party prediction, and programming language detection. Our results suggest that ObsProp surpasses traditional approaches for finding feature vectors in the low-data regime, and that ObsProp can be used to better understand the mechanisms responsible for bias in large language models. Code for experiments can be found at github.com/jacobdunefsky/ObservablePropagation.

  • 2 authors
·
Dec 26, 2023

Interpreting Key Mechanisms of Factual Recall in Transformer-Based Language Models

In this paper, we delve into several mechanisms employed by Transformer-based language models (LLMs) for factual recall tasks. We outline a pipeline consisting of three major steps: (1) Given a prompt ``The capital of France is,'' task-specific attention heads extract the topic token, such as ``France,'' from the context and pass it to subsequent MLPs. (2) As attention heads' outputs are aggregated with equal weight and added to the residual stream, the subsequent MLP acts as an ``activation,'' which either erases or amplifies the information originating from individual heads. As a result, the topic token ``France'' stands out in the residual stream. (3) A deep MLP takes ``France'' and generates a component that redirects the residual stream towards the direction of the correct answer, i.e., ``Paris.'' This procedure is akin to applying an implicit function such as ``get\_capital(X),'' and the argument X is the topic token information passed by attention heads. To achieve the above quantitative and qualitative analysis for MLPs, we proposed a novel analytic method aimed at decomposing the outputs of the MLP into components understandable by humans. Additionally, we observed a universal anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. The above interpretations are evaluated across diverse tasks spanning various domains of factual knowledge, using various language models from the GPT-2 families, 1.3B OPT, up to 7B Llama-2, and in both zero- and few-shot setups.

  • 8 authors
·
Mar 28, 2024

SPT: Fine-Tuning Transformer-based Language Models Efficiently with Sparsification

Transformer-based large language models (e.g., BERT and GPT) achieve great success, and fine-tuning, which tunes a pre-trained model on a task-specific dataset, is the standard practice to utilize these models for downstream tasks. However, Transformer fine-tuning has long running time and high memory consumption due to the large size of the models. We propose the SPT system to fine-tune Transformer-based models efficiently by introducing sparsity. We observe that the memory consumption of Transformer mainly comes from storing attention weights for multi-head attention (MHA), and the majority of running time is spent on feed-forward network (FFN). Thus, we design the sparse MHA module, which computes and stores only large attention weights to reduce memory consumption, and the routed FFN module, which dynamically activates a subset of model parameters for each token to reduce computation cost. We implement SPT on PyTorch and customize CUDA kernels to run sparse MHA and routed FFN efficiently. Specifically, we use product quantization to identify the large attention weights and compute attention via sparse matrix multiplication for sparse MHA. For routed FFN, we batch the tokens according to their activated model parameters for efficient computation. We conduct extensive experiments to evaluate SPT on various model configurations. The results show that SPT consistently outperforms well-optimized baselines, reducing the peak memory consumption by up to 50% and accelerating fine-tuning by up to 2.2x.

  • 5 authors
·
Dec 16, 2023 2