new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

Discrete Diffusion Models with MLLMs for Unified Medical Multimodal Generation

Recent advances in generative medical models are constrained by modality-specific scenarios that hinder the integration of complementary evidence from imaging, pathology, and clinical notes. This fragmentation limits their evolution into foundation models that can learn and reason across the full spectrum of biomedical data. We propose MeDiM, the first medical discrete diffusion model that learns shared distributions across modalities without modality-specific components. MeDiM unifies multiple generative tasks: translating between images and text, and jointly producing image-report pairs across domains in response to prompts. Built on a discrete diffusion framework, MeDiM bridges vision and language representations through a shared probabilistic space. To enable unified and flexible medical generation, we employ a multimodal large language model (MLLM) as the diffusion backbone, leveraging its prior knowledge and cross-modal reasoning. Two key designs are introduced: (1) removing the causal attention mask for bidirectional context, and (2) injecting continuous timestep embeddings for diffusion awareness. Experiments demonstrate high-fidelity medical generation (FID 16.60 on MIMIC-CXR and FID 24.19 on PathGen) and accurate report generation (METEOR 0.2650 and 0.2580). Jointly generated image-report pairs further enhance downstream performance (plus6.43 percent BLEU-1, plus18.57 percent BLEU-2, plus31.58 percent BLEU-3, plus4.80 percent METEOR), showing that MeDiM supports coherent and clinically grounded multimodal outputs.

UCSC-VLAA UCSC-VLAA
·
Oct 7, 2025 2

FastKV: Decoupling of Context Reduction and KV Cache Compression for Prefill-Decoding Acceleration

While large language models (LLMs) excel at handling long-context sequences, they require substantial prefill computation and key-value (KV) cache, which can heavily burden computational efficiency and memory usage in both prefill and decoding stages. Recent works that compress KV caches with prefill acceleration reduce this cost but inadvertently tie the prefill compute reduction to the decoding KV budget. This coupling arises from overlooking the layer-dependent variation of critical context, often leading to accuracy degradation. To address this issue, we introduce FastKV, a KV cache compression framework designed to reduce latency in both prefill and decoding by leveraging the stabilization of token importance in later layers. FastKV performs full-context computation until a Token-Selective Propagation (TSP) layer, which forwards only the most informative tokens to subsequent layers. From these propagated tokens, FastKV independently selects salient KV entries for caching, thereby decoupling KV budget from the prefill compute reduction based on the TSP decision. This independent control of the TSP rate and KV retention rate enables flexible optimization of efficiency and accuracy. Experimental results show that FastKV achieves speedups of up to 1.82times in prefill and 2.87times in decoding compared to the full-context baseline, while matching the accuracy of the baselines that only accelerate the decoding stage. Our code is available at https://github.com/dongwonjo/FastKV.

Detecting Corpus-Level Knowledge Inconsistencies in Wikipedia with Large Language Models

Wikipedia is the largest open knowledge corpus, widely used worldwide and serving as a key resource for training large language models (LLMs) and retrieval-augmented generation (RAG) systems. Ensuring its accuracy is therefore critical. But how accurate is Wikipedia, and how can we improve it? We focus on inconsistencies, a specific type of factual inaccuracy, and introduce the task of corpus-level inconsistency detection. We present CLAIRE, an agentic system that combines LLM reasoning with retrieval to surface potentially inconsistent claims along with contextual evidence for human review. In a user study with experienced Wikipedia editors, 87.5% reported higher confidence when using CLAIRE, and participants identified 64.7% more inconsistencies in the same amount of time. Combining CLAIRE with human annotation, we contribute WIKICOLLIDE, the first benchmark of real Wikipedia inconsistencies. Using random sampling with CLAIRE-assisted analysis, we find that at least 3.3% of English Wikipedia facts contradict another fact, with inconsistencies propagating into 7.3% of FEVEROUS and 4.0% of AmbigQA examples. Benchmarking strong baselines on this dataset reveals substantial headroom: the best fully automated system achieves an AUROC of only 75.1%. Our results show that contradictions are a measurable component of Wikipedia and that LLM-based systems like CLAIRE can provide a practical tool to help editors improve knowledge consistency at scale.

V-Thinker: Interactive Thinking with Images

Empowering Large Multimodal Models (LMMs) to deeply integrate image interaction with long-horizon reasoning capabilities remains a long-standing challenge in this field. Recent advances in vision-centric reasoning explore a promising "Thinking with Images" paradigm for LMMs, marking a shift from image-assisted reasoning to image-interactive thinking. While this milestone enables models to focus on fine-grained image regions, progress remains constrained by limited visual tool spaces and task-specific workflow designs. To bridge this gap, we present V-Thinker, a general-purpose multimodal reasoning assistant that enables interactive, vision-centric thinking through end-to-end reinforcement learning. V-Thinker comprises two key components: (1) a Data Evolution Flywheel that automatically synthesizes, evolves, and verifies interactive reasoning datasets across three dimensions-diversity, quality, and difficulty; and (2) a Visual Progressive Training Curriculum that first aligns perception via point-level supervision, then integrates interactive reasoning through a two-stage reinforcement learning framework. Furthermore, we introduce VTBench, an expert-verified benchmark targeting vision-centric interactive reasoning tasks. Extensive experiments demonstrate that V-Thinker consistently outperforms strong LMM-based baselines in both general and interactive reasoning scenarios, providing valuable insights for advancing image-interactive reasoning applications.

  • 13 authors
·
Nov 6, 2025 8

One RL to See Them All: Visual Triple Unified Reinforcement Learning

Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.

  • 10 authors
·
May 23, 2025 2

OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning

While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".

  • 11 authors
·
May 13, 2025 3

V-STaR: Benchmarking Video-LLMs on Video Spatio-Temporal Reasoning

Human processes video reasoning in a sequential spatio-temporal reasoning logic, we first identify the relevant frames ("when") and then analyse the spatial relationships ("where") between key objects, and finally leverage these relationships to draw inferences ("what"). However, can Video Large Language Models (Video-LLMs) also "reason through a sequential spatio-temporal logic" in videos? Existing Video-LLM benchmarks primarily focus on assessing object presence, neglecting relational reasoning. Consequently, it is difficult to measure whether a model truly comprehends object interactions (actions/events) in videos or merely relies on pre-trained "memory" of co-occurrences as biases in generating answers. In this work, we introduce a Video Spatio-Temporal Reasoning (V-STaR) benchmark to address these shortcomings. The key idea is to decompose video understanding into a Reverse Spatio-Temporal Reasoning (RSTR) task that simultaneously evaluates what objects are present, when events occur, and where they are located while capturing the underlying Chain-of-thought (CoT) logic. To support this evaluation, we construct a dataset to elicit the spatial-temporal reasoning process of Video-LLMs. It contains coarse-to-fine CoT questions generated by a semi-automated GPT-4-powered pipeline, embedding explicit reasoning chains to mimic human cognition. Experiments from 14 Video-LLMs on our V-STaR reveal significant gaps between current Video-LLMs and the needs for robust and consistent spatio-temporal reasoning.

  • 6 authors
·
Mar 14, 2025 2

V-MAGE: A Game Evaluation Framework for Assessing Visual-Centric Capabilities in Multimodal Large Language Models

Recent advancements in Multimodal Large Language Models (MLLMs) have led to significant improvements across various multimodal benchmarks. However, as evaluations shift from static datasets to open-world, dynamic environments, current game-based benchmarks remain inadequate because they lack visual-centric tasks and fail to assess the diverse reasoning skills required for real-world decision-making. To address this, we introduce Visual-centric Multiple Abilities Game Evaluation (V-MAGE), a game-based evaluation framework designed to assess visual reasoning capabilities of MLLMs. V-MAGE features five diverse games with 30+ handcrafted levels, testing models on core visual skills such as positioning, trajectory tracking, timing, and visual memory, alongside higher-level reasoning like long-term planning and deliberation. We use V-MAGE to evaluate leading MLLMs, revealing significant challenges in their visual perception and reasoning. In all game environments, the top-performing MLLMs, as determined by Elo rating comparisons, exhibit a substantial performance gap compared to humans. Our findings highlight critical limitations, including various types of perceptual errors made by the models, and suggest potential avenues for improvement from an agent-centric perspective, such as refining agent strategies and addressing perceptual inaccuracies. Code is available at https://github.com/CSU-JPG/V-MAGE.

  • 8 authors
·
Apr 8, 2025 2

V-REX: Benchmarking Exploratory Visual Reasoning via Chain-of-Questions

While many vision-language models (VLMs) are developed to answer well-defined, straightforward questions with highly specified targets, as in most benchmarks, they often struggle in practice with complex open-ended tasks, which usually require multiple rounds of exploration and reasoning in the visual space. Such visual thinking paths not only provide step-by-step exploration and verification as an AI detective but also produce better interpretations of the final answers. However, these paths are challenging to evaluate due to the large exploration space of intermediate steps. To bridge the gap, we develop an evaluation suite, ``Visual Reasoning with multi-step EXploration (V-REX)'', which is composed of a benchmark of challenging visual reasoning tasks requiring native multi-step exploration and an evaluation protocol. V-REX covers rich application scenarios across diverse domains. V-REX casts the multi-step exploratory reasoning into a Chain-of-Questions (CoQ) and disentangles VLMs' capability to (1) Planning: breaking down an open-ended task by selecting a chain of exploratory questions; and (2) Following: answering curated CoQ sequentially to collect information for deriving the final answer. By curating finite options of questions and answers per step, V-REX achieves a reliable quantitative and fine-grained analysis of the intermediate steps. By assessing SOTA proprietary and open-sourced VLMs, we reveal consistent scaling trends, significant differences between planning and following abilities, and substantial room for improvement in multi-step exploratory reasoning.

  • 6 authors
·
Dec 12, 2025 4

V-Zen: Efficient GUI Understanding and Precise Grounding With A Novel Multimodal LLM

In the rapidly evolving landscape of AI research and application, Multimodal Large Language Models (MLLMs) have emerged as a transformative force, adept at interpreting and integrating information from diverse modalities such as text, images, and Graphical User Interfaces (GUIs). Despite these advancements, the nuanced interaction and understanding of GUIs pose a significant challenge, limiting the potential of existing models to enhance automation levels. To bridge this gap, this paper presents V-Zen, an innovative Multimodal Large Language Model (MLLM) meticulously crafted to revolutionise the domain of GUI understanding and grounding. Equipped with dual-resolution image encoders, V-Zen establishes new benchmarks in efficient grounding and next-action prediction, thereby laying the groundwork for self-operating computer systems. Complementing V-Zen is the GUIDE dataset, an extensive collection of real-world GUI elements and task-based sequences, serving as a catalyst for specialised fine-tuning. The successful integration of V-Zen and GUIDE marks the dawn of a new era in multimodal AI research, opening the door to intelligent, autonomous computing experiences. This paper extends an invitation to the research community to join this exciting journey, shaping the future of GUI automation. In the spirit of open science, our code, data, and model will be made publicly available, paving the way for multimodal dialogue scenarios with intricate and precise interactions.

  • 7 authors
·
May 24, 2024

Spend Search Where It Pays: Value-Guided Structured Sampling and Optimization for Generative Recommendation

Generative recommendation via autoregressive models has unified retrieval and ranking into a single conditional generation framework. However, fine-tuning these models with Reinforcement Learning (RL) often suffers from a fundamental probability-reward mismatch. Conventional likelihood-dominated decoding (e.g., beam search) exhibits a myopic bias toward locally probable prefixes, which causes two critical failures: (1) insufficient exploration, where high-reward items in low-probability branches are prematurely pruned and rarely sampled, and (2) advantage compression, where trajectories sharing high-probability prefixes receive highly correlated rewards with low within-group variance, yielding a weak comparative signal for RL. To address these challenges, we propose V-STAR, a Value-guided Sampling and Tree-structured Advantage Reinforcement framework. V-STAR forms a self-evolving loop via two synergistic components. First, a Value-Guided Efficient Decoding (VED) is developed to identify decisive nodes and selectively deepen high-potential prefixes. This improves exploration efficiency without exhaustive tree search. Second, we propose Sibling-GRPO, which exploits the induced tree topology to compute sibling-relative advantages and concentrates learning signals on decisive branching decisions. Extensive experiments on both offline and online datasets demonstrate that V-STAR outperforms state-of-the-art baselines, delivering superior accuracy and candidate-set diversity under strict latency constraints.

  • 7 authors
·
Feb 11 2

Value-Based Pre-Training with Downstream Feedback

Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.

V-LoL: A Diagnostic Dataset for Visual Logical Learning

Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to capture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Trains, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Trains provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even state-of-the-art AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations specific to each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.

  • 5 authors
·
Jun 13, 2023

Causality-Aware Temporal Projection for Video Understanding in Video-LLMs

Recent Video Large Language Models (Video-LLMs) have shown strong multimodal reasoning capabilities, yet remain challenged by video understanding tasks that require consistent temporal ordering and causal coherence. Many parameter-efficient Video-LLMs rely on unconstrained bidirectional projectors to model inter-frame interactions, which can blur temporal ordering by allowing later frames to influence earlier representations, without explicit architectural mechanisms to respect the directional nature of video reasoning. To address this limitation, we propose V-CORE, a parameter-efficient framework that introduces explicit temporal ordering constraints for video understanding. V-CORE consists of two key components: (1) Learnable Spatial Aggregation (LSA), which adaptively selects salient spatial tokens to reduce redundancy, and (2) a Causality-Aware Temporal Projector (CATP), which enforces structured unidirectional information flow via block-causal attention and a terminal dynamic summary token acting as a causal sink. This design preserves intra-frame spatial interactions while ensuring that temporal information is aggregated in a strictly ordered manner. With 4-bit QLoRA and a frozen LLM backbone, V-CORE can be trained efficiently on a single consumer GPU. Experiments show that V-CORE achieves strong performance on the challenging NExT-QA benchmark, reaching 61.2% accuracy, and remains competitive across MSVD-QA, MSRVTT-QA, and TGIF-QA, with gains concentrated in temporal and causal reasoning subcategories (+3.5% and +5.2% respectively), directly validating the importance of explicit temporal ordering constraints.

  • 7 authors
·
Jan 5

V-Warper: Appearance-Consistent Video Diffusion Personalization via Value Warping

Video personalization aims to generate videos that faithfully reflect a user-provided subject while following a text prompt. However, existing approaches often rely on heavy video-based finetuning or large-scale video datasets, which impose substantial computational cost and are difficult to scale. Furthermore, they still struggle to maintain fine-grained appearance consistency across frames. To address these limitations, we introduce V-Warper, a training-free coarse-to-fine personalization framework for transformer-based video diffusion models. The framework enhances fine-grained identity fidelity without requiring any additional video training. (1) A lightweight coarse appearance adaptation stage leverages only a small set of reference images, which are already required for the task. This step encodes global subject identity through image-only LoRA and subject-embedding adaptation. (2) A inference-time fine appearance injection stage refines visual fidelity by computing semantic correspondences from RoPE-free mid-layer query--key features. These correspondences guide the warping of appearance-rich value representations into semantically aligned regions of the generation process, with masking ensuring spatial reliability. V-Warper significantly improves appearance fidelity while preserving prompt alignment and motion dynamics, and it achieves these gains efficiently without large-scale video finetuning.

  • 7 authors
·
Dec 13, 2025

V-Rex: Real-Time Streaming Video LLM Acceleration via Dynamic KV Cache Retrieval

Streaming video large language models (LLMs) are increasingly used for real-time multimodal tasks such as video captioning, question answering, conversational agents, and augmented reality. However, these models face fundamental memory and computational challenges because their key-value (KV) caches grow substantially with continuous streaming video input. This process requires an iterative prefill stage, which is a unique feature of streaming video LLMs. Due to its iterative prefill stage, it suffers from significant limitations, including extensive computation, substantial data transfer, and degradation in accuracy. Crucially, this issue is exacerbated for edge deployment, which is the primary target for these models. In this work, we propose V-Rex, the first software-hardware co-designed accelerator that comprehensively addresses both algorithmic and hardware bottlenecks in streaming video LLM inference. At its core, V-Rex introduces ReSV, a training-free dynamic KV cache retrieval algorithm. ReSV exploits temporal and spatial similarity-based token clustering to reduce excessive KV cache memory across video frames. To fully realize these algorithmic benefits, V-Rex offers a compact, low-latency hardware accelerator with a dynamic KV cache retrieval engine (DRE), featuring bit-level and early-exit based computing units. V-Rex achieves unprecedented real-time of 3.9-8.3 FPS and energy-efficient streaming video LLM inference on edge deployment with negligible accuracy loss. While DRE only accounts for 2.2% power and 2.0% area, the system delivers 1.9-19.7x speedup and 3.1-18.5x energy efficiency improvements over AGX Orin GPU. This work is the first to comprehensively tackle KV cache retrieval across algorithms and hardware, enabling real-time streaming video LLM inference on resource-constrained edge devices.

  • 4 authors
·
Dec 13, 2025

V-HUB: A Visual-Centric Humor Understanding Benchmark for Video LLMs

AI models capable of comprehending humor hold real-world promise -- for example, enhancing engagement in human-machine interactions. To gauge and diagnose the capacity of multimodal large language models (MLLMs) for humor understanding, we introduce v-HUB, a novel visual-centric video humor understanding benchmark. v-HUB comprises a curated collection of minimally verbal short videos, sourced from classic silent films and online resources, and reflecting real-world scenarios where humor can be appreciated purely through visual cues. Each video clip is paired with rich annotations, including captions, descriptions, and explanations, supporting evaluation tasks like caption matching and humor explanation. To broaden its applicability, we further construct an open-ended video QA task, making it readily integrable into existing video understanding benchmarks. We evaluate a diverse set of MLLMs, from specialized Video-LLMs to versatile OmniLLMs that can process audio, covering both open-source and proprietary domains. The experimental results expose the difficulties MLLMs face in comprehending humor from visual cues alone. For example, all models exhibit a marked performance drop on caption matching when moving from text-based to video-based evaluation (without audio). Our findings also demonstrate that incorporating audio helps with video humor understanding, highlighting the informativeness of sound and the promise of integrating richer modalities for complex video understanding tasks.

  • 10 authors
·
Sep 30, 2025

DreamID-V:Bridging the Image-to-Video Gap for High-Fidelity Face Swapping via Diffusion Transformer

Video Face Swapping (VFS) requires seamlessly injecting a source identity into a target video while meticulously preserving the original pose, expression, lighting, background, and dynamic information. Existing methods struggle to maintain identity similarity and attribute preservation while preserving temporal consistency. To address the challenge, we propose a comprehensive framework to seamlessly transfer the superiority of Image Face Swapping (IFS) to the video domain. We first introduce a novel data pipeline SyncID-Pipe that pre-trains an Identity-Anchored Video Synthesizer and combines it with IFS models to construct bidirectional ID quadruplets for explicit supervision. Building upon paired data, we propose the first Diffusion Transformer-based framework DreamID-V, employing a core Modality-Aware Conditioning module to discriminatively inject multi-model conditions. Meanwhile, we propose a Synthetic-to-Real Curriculum mechanism and an Identity-Coherence Reinforcement Learning strategy to enhance visual realism and identity consistency under challenging scenarios. To address the issue of limited benchmarks, we introduce IDBench-V, a comprehensive benchmark encompassing diverse scenes. Extensive experiments demonstrate DreamID-V outperforms state-of-the-art methods and further exhibits exceptional versatility, which can be seamlessly adapted to various swap-related tasks.

ByteDance ByteDance
·
Jan 4 6

Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning

Vision-language models~(VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.

  • 13 authors
·
Nov 27, 2024 2

GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts

Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

zju Zhejiang University
·
Sep 29, 2025 1

Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models

Humans draw to facilitate reasoning: we draw auxiliary lines when solving geometry problems; we mark and circle when reasoning on maps; we use sketches to amplify our ideas and relieve our limited-capacity working memory. However, such actions are missing in current multimodal language models (LMs). Current chain-of-thought and tool-use paradigms only use text as intermediate reasoning steps. In this work, we introduce Sketchpad, a framework that gives multimodal LMs a visual sketchpad and tools to draw on the sketchpad. The LM conducts planning and reasoning according to the visual artifacts it has drawn. Different from prior work, which uses text-to-image models to enable LMs to draw, Sketchpad enables LMs to draw with lines, boxes, marks, etc., which is closer to human sketching and better facilitates reasoning. Sketchpad can also use specialist vision models during the sketching process (e.g., draw bounding boxes with object detection models, draw masks with segmentation models), to further enhance visual perception and reasoning. We experiment with a wide range of math tasks (including geometry, functions, graphs, and chess) and complex visual reasoning tasks. Sketchpad substantially improves performance on all tasks over strong base models with no sketching, yielding an average gain of 12.7% on math tasks, and 8.6% on vision tasks. GPT-4o with Sketchpad sets a new state of the art on all tasks, including V*Bench (80.3%), BLINK spatial reasoning (83.9%), and visual correspondence (80.8%). All codes and data are in https://visualsketchpad.github.io/.

  • 8 authors
·
Jun 13, 2024 1

An Anatomy of Vision-Language-Action Models: From Modules to Milestones and Challenges

Vision-Language-Action (VLA) models are driving a revolution in robotics, enabling machines to understand instructions and interact with the physical world. This field is exploding with new models and datasets, making it both exciting and challenging to keep pace with. This survey offers a clear and structured guide to the VLA landscape. We design it to follow the natural learning path of a researcher: we start with the basic Modules of any VLA model, trace the history through key Milestones, and then dive deep into the core Challenges that define recent research frontier. Our main contribution is a detailed breakdown of the five biggest challenges in: (1) Representation, (2) Execution, (3) Generalization, (4) Safety, and (5) Dataset and Evaluation. This structure mirrors the developmental roadmap of a generalist agent: establishing the fundamental perception-action loop, scaling capabilities across diverse embodiments and environments, and finally ensuring trustworthy deployment-all supported by the essential data infrastructure. For each of them, we review existing approaches and highlight future opportunities. We position this paper as both a foundational guide for newcomers and a strategic roadmap for experienced researchers, with the dual aim of accelerating learning and inspiring new ideas in embodied intelligence. A live version of this survey, with continuous updates, is maintained on our https://suyuz1.github.io/Survery/{project page}.

IRootech IROOTECH TECHNOLOGY
·
Dec 12, 2025 2

VLM2Vec-V2: Advancing Multimodal Embedding for Videos, Images, and Visual Documents

Multimodal embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering over different modalities. However, existing multimodal embeddings like VLM2Vec, E5-V, GME are predominantly focused on natural images, with limited support for other visual forms such as videos and visual documents. This restricts their applicability in real-world scenarios, including AI agents, multi-modal search and recommendation, and retrieval-augmented generation (RAG). To close this gap, we propose VLM2Vec-V2, a unified framework for learning embeddings across diverse visual forms. First, we introduce MMEB-V2, a comprehensive benchmark that extends MMEB with five new task types: visual document retrieval, video retrieval, temporal grounding, video classification and video question answering - spanning text, image, video, and visual document inputs. Next, we train VLM2Vec-V2, a general-purpose embedding model that supports text, image, video, and visual document inputs. Extensive experiments show that VLM2Vec-V2 achieves strong performance not only on the newly introduced video and document retrieval tasks, but also improves over prior baselines on the original image benchmarks. Through extensive evaluation, our study offers insights into the generalizability of various multimodal embedding models and highlights effective strategies for unified embedding learning, laying the groundwork for more scalable and adaptable representation learning in both research and real-world settings.

  • 13 authors
·
Jul 6, 2025 3

VLM-R$^3$: Region Recognition, Reasoning, and Refinement for Enhanced Multimodal Chain-of-Thought

Recently, reasoning-based MLLMs have achieved a degree of success in generating long-form textual reasoning chains. However, they still struggle with complex tasks that necessitate dynamic and iterative focusing on and revisiting of visual regions to achieve precise grounding of textual reasoning in visual evidence. We introduce VLM-R^3 (Visual Language Model with Region Recognition and Reasoning), a framework that equips an MLLM with the ability to (i) decide when additional visual evidence is needed, (ii) determine where to ground within the image, and (iii) seamlessly weave the relevant sub-image content back into an interleaved chain-of-thought. The core of our method is Region-Conditioned Reinforcement Policy Optimization (R-GRPO), a training paradigm that rewards the model for selecting informative regions, formulating appropriate transformations (e.g.\ crop, zoom), and integrating the resulting visual context into subsequent reasoning steps. To bootstrap this policy, we compile a modest but carefully curated Visuo-Lingual Interleaved Rationale (VLIR) corpus that provides step-level supervision on region selection and textual justification. Extensive experiments on MathVista, ScienceQA, and other benchmarks show that VLM-R^3 sets a new state of the art in zero-shot and few-shot settings, with the largest gains appearing on questions demanding subtle spatial reasoning or fine-grained visual cue extraction.

  • 9 authors
·
May 21, 2025 5

Rethinking JEPA: Compute-Efficient Video SSL with Frozen Teachers

Video Joint Embedding Predictive Architectures (V-JEPA) learn generalizable off-the-shelf video representation by predicting masked regions in latent space with an exponential moving average (EMA)-updated teacher. While EMA prevents representation collapse, it complicates scalable model selection and couples teacher and student architectures. We revisit masked-latent prediction and show that a frozen teacher suffices. Concretely, we (i) train a target encoder with a simple pixel-reconstruction objective under V-JEPA masking, then (ii) freeze it and train a student to predict the teacher's latents on masked regions. This leads to a two-stage, unregularized scheme that we refer to as SALT (Static-teacher Asymmetric Latent Training). SALT decouples optimization into pixel reconstruction (teacher) and masked latent prediction (student), increasing transparency, efficiency, and scalability while preserving the ability of representation to generalize under frozen evaluation. Empirically, our student models outperform recently proposed V-JEPA 2 encoders under frozen backbone evaluation across diverse benchmarks. They are also more compute-optimal: at matched pretraining FLOPs, our method achieves higher probing accuracy, and its scaling curves dominate V-JEPA's accuracy-FLOPs Pareto frontier. Finally, we find that student quality is remarkably robust to teacher quality: high-performing students emerge even with small, sub-optimal teachers. This points to a compute budget allocation that should overwhelmingly favor the student. These results position SALT as a simple, scalable, and compute-efficient alternative to EMA-based self-distillation for video representation learning.

apple Apple
·
Sep 29, 2025 2

V^3: Viewing Volumetric Videos on Mobiles via Streamable 2D Dynamic Gaussians

Experiencing high-fidelity volumetric video as seamlessly as 2D videos is a long-held dream. However, current dynamic 3DGS methods, despite their high rendering quality, face challenges in streaming on mobile devices due to computational and bandwidth constraints. In this paper, we introduce V3(Viewing Volumetric Videos), a novel approach that enables high-quality mobile rendering through the streaming of dynamic Gaussians. Our key innovation is to view dynamic 3DGS as 2D videos, facilitating the use of hardware video codecs. Additionally, we propose a two-stage training strategy to reduce storage requirements with rapid training speed. The first stage employs hash encoding and shallow MLP to learn motion, then reduces the number of Gaussians through pruning to meet the streaming requirements, while the second stage fine tunes other Gaussian attributes using residual entropy loss and temporal loss to improve temporal continuity. This strategy, which disentangles motion and appearance, maintains high rendering quality with compact storage requirements. Meanwhile, we designed a multi-platform player to decode and render 2D Gaussian videos. Extensive experiments demonstrate the effectiveness of V3, outperforming other methods by enabling high-quality rendering and streaming on common devices, which is unseen before. As the first to stream dynamic Gaussians on mobile devices, our companion player offers users an unprecedented volumetric video experience, including smooth scrolling and instant sharing. Our project page with source code is available at https://authoritywang.github.io/v3/.

  • 8 authors
·
Sep 20, 2024 2

Video Reasoning without Training

Video reasoning using Large Multimodal Models (LMMs) relies on costly reinforcement learning (RL) and verbose chain-of-thought, resulting in substantial computational overhead during both training and inference. Moreover, the mechanisms that control the thinking process in these reasoning models are very limited. In this paper, using entropy of the model's output as a signal, we discover that the high-quality models go through a series of micro-explorations and micro-exploitations which keep the reasoning process grounded (i.e., avoid excessive randomness while the model is exploring or thinking through an answer). We further observe that once this "thinking" process is over, more accurate models demonstrate a better convergence by reducing the entropy significantly via a final exploitation phase (i.e., a more certain convergence towards a solution trajectory). We then use these novel, theoretically-grounded insights to tune the model's behavior directly at inference, without using any RL or supervised fine-tuning. Specifically, during inference, our proposed approach called V-Reason (Video-Reason) adapts the value cache of the LMM via a few optimization steps on a small, trainable controller using an entropy-based objective, i.e., no supervision from any dataset or RL is necessary. This tuning improves the model's micro-exploration and exploitation behavior during inference. Our experiments show that our proposed method achieves significant improvements over the base instruction-tuned models across several video reasoning datasets, narrowing the gap with RL-trained models to within 0.6% average accuracy without any training, while offering massive efficiency benefits: output tokens are reduced by 58.6% compared to the RL model.

qualcomm Qualcomm
·
Oct 19, 2025 2

VideoLights: Feature Refinement and Cross-Task Alignment Transformer for Joint Video Highlight Detection and Moment Retrieval

Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video analysis. Recent joint prediction transformer models often overlook their cross-task dynamics and video-text alignment and refinement. Moreover, most models typically use limited, uni-directional attention mechanisms, resulting in weakly integrated representations and suboptimal performance in capturing the interdependence between video and text modalities. Although large-language and vision-language models (LLM/LVLMs) have gained prominence across various domains, their application in this field remains relatively underexplored. Here we propose VideoLights, a novel HD/MR framework addressing these limitations through (i) Convolutional Projection and Feature Refinement modules with an alignment loss for better video-text feature alignment, (ii) Bi-Directional Cross-Modal Fusion network for strongly coupled query-aware clip representations, and (iii) Uni-directional joint-task feedback mechanism enhancing both tasks through correlation. In addition, (iv) we introduce hard positive/negative losses for adaptive error penalization and improved learning, and (v) leverage LVLMs like BLIP-2 for enhanced multimodal feature integration and intelligent pretraining using synthetic data generated from LVLMs. Comprehensive experiments on QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-art performance. Codes and models are available at https://github.com/dpaul06/VideoLights .

  • 4 authors
·
Dec 2, 2024 2

Visual Counter Turing Test (VCT^2): Discovering the Challenges for AI-Generated Image Detection and Introducing Visual AI Index (V_AI)

The proliferation of AI techniques for image generation, coupled with their increasing accessibility, has raised significant concerns about the potential misuse of these images to spread misinformation. Recent AI-generated image detection (AGID) methods include CNNDetection, NPR, DM Image Detection, Fake Image Detection, DIRE, LASTED, GAN Image Detection, AIDE, SSP, DRCT, RINE, OCC-CLIP, De-Fake, and Deep Fake Detection. However, we argue that the current state-of-the-art AGID techniques are inadequate for effectively detecting contemporary AI-generated images and advocate for a comprehensive reevaluation of these methods. We introduce the Visual Counter Turing Test (VCT^2), a benchmark comprising ~130K images generated by contemporary text-to-image models (Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and Midjourney 6). VCT^2 includes two sets of prompts sourced from tweets by the New York Times Twitter account and captions from the MS COCO dataset. We also evaluate the performance of the aforementioned AGID techniques on the VCT^2 benchmark, highlighting their ineffectiveness in detecting AI-generated images. As image-generative AI models continue to evolve, the need for a quantifiable framework to evaluate these models becomes increasingly critical. To meet this need, we propose the Visual AI Index (V_AI), which assesses generated images from various visual perspectives, including texture complexity and object coherence, setting a new standard for evaluating image-generative AI models. To foster research in this domain, we make our https://huggingface.co/datasets/anonymous1233/COCO_AI and https://huggingface.co/datasets/anonymous1233/twitter_AI datasets publicly available.

  • 14 authors
·
Nov 24, 2024 2

VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks

Embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering. Recently, there has been a surge of interest in developing universal text embedding models that can generalize across tasks (e.g., MTEB). However, progress in learning universal multimodal embedding models has been relatively slow despite their importance. In this work, we aim to explore the potential for building universal embeddings capable of handling a wide range of downstream tasks. Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB. Unlike previous models such as CLIP and BLIP, VLM2Vec can process any combination of images and text to generate a fixed-dimensional vector based on task instructions. We build a series of VLM2Vec models on Phi-3.5-V and evaluate them on MMEB's evaluation split. Our results show that \model achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models on both in-distribution and out-of-distribution datasets in MMEB.

  • 6 authors
·
Oct 7, 2024 2

VALLR: Visual ASR Language Model for Lip Reading

Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.

  • 3 authors
·
Mar 27, 2025

VENUS: Visual Editing with Noise Inversion Using Scene Graphs

State-of-the-art text-based image editing models often struggle to balance background preservation with semantic consistency, frequently resulting either in the synthesis of entirely new images or in outputs that fail to realize the intended edits. In contrast, scene graph-based image editing addresses this limitation by providing a structured representation of semantic entities and their relations, thereby offering improved controllability. However, existing scene graph editing methods typically depend on model fine-tuning, which incurs high computational cost and limits scalability. To this end, we introduce VENUS (Visual Editing with Noise inversion Using Scene graphs), a training-free framework for scene graph-guided image editing. Specifically, VENUS employs a split prompt conditioning strategy that disentangles the target object of the edit from its background context, while simultaneously leveraging noise inversion to preserve fidelity in unedited regions. Moreover, our proposed approach integrates scene graphs extracted from multimodal large language models with diffusion backbones, without requiring any additional training. Empirically, VENUS substantially improves both background preservation and semantic alignment on PIE-Bench, increasing PSNR from 22.45 to 24.80, SSIM from 0.79 to 0.84, and reducing LPIPS from 0.100 to 0.070 relative to the state-of-the-art scene graph editing model (SGEdit). In addition, VENUS enhances semantic consistency as measured by CLIP similarity (24.97 vs. 24.19). On EditVal, VENUS achieves the highest fidelity with a 0.87 DINO score and, crucially, reduces per-image runtime from 6-10 minutes to only 20-30 seconds. Beyond scene graph-based editing, VENUS also surpasses strong text-based editing baselines such as LEDIT++ and P2P+DirInv, thereby demonstrating consistent improvements across both paradigms.

  • 4 authors
·
Jan 12

VeRPO: Verifiable Dense Reward Policy Optimization for Code Generation

Effective reward design is a central challenge in Reinforcement Learning (RL) for code generation. Mainstream pass/fail outcome rewards enforce functional correctness via executing unit tests, but the resulting sparsity limits potential performance gains. While recent work has explored external Reward Models (RM) to generate richer, continuous rewards, the learned RMs suffer from reward misalignment and prohibitive computational cost. In this paper, we introduce VeRPO (Verifiable Dense Reward Policy Optimization), a novel RL framework for code generation that synthesizes robust and dense rewards fully grounded in verifiable execution feedback. The core idea of VeRPO is constructing dense rewards from weighted partial success: by dynamically estimating the difficulty weight of each unit test based on the execution statistics during training, a dense reward is derived from the sum of weights of the passed unit tests. To solidify the consistency between partial success and end-to-end functional correctness, VeRPO further integrates the dense signal with global execution outcomes, establishing a robust and dense reward paradigm relying solely on verifiable execution feedback. Extensive experiments across diverse benchmarks and settings demonstrate that VeRPO consistently outperforms outcome-driven and RM-based baselines, achieving up to +8.83\% gain in pass@1 with negligible time cost (< 0.02\%) and zero GPU memory overhead.

  • 9 authors
·
Jan 6

Evaluating Multimodal Large Language Models on Video Captioning via Monte Carlo Tree Search

Video captioning can be used to assess the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, existing benchmarks and evaluation protocols suffer from crucial issues, such as inadequate or homogeneous creation of key points, exorbitant cost of data creation, and limited evaluation scopes. To address these issues, we propose an automatic framework, named AutoCaption, which leverages Monte Carlo Tree Search (MCTS) to construct numerous and diverse descriptive sentences (i.e., key points) that thoroughly represent video content in an iterative way. This iterative captioning strategy enables the continuous enhancement of video details such as actions, objects' attributes, environment details, etc. We apply AutoCaption to curate MCTS-VCB, a fine-grained video caption benchmark covering video details, thereby enabling a comprehensive evaluation of MLLMs on the video captioning task. We evaluate more than 20 open- and closed-source MLLMs of varying sizes on MCTS-VCB. Results show that MCTS-VCB can effectively and comprehensively evaluate the video captioning capability, with Gemini-1.5-Pro achieving the highest F1 score of 71.2. Interestingly, we fine-tune InternVL2.5-8B with the AutoCaption-generated data, which helps the model achieve an overall improvement of 25.0% on MCTS-VCB and 16.3% on DREAM-1K, further demonstrating the effectiveness of AutoCaption. The code and data are available at https://github.com/tjunlp-lab/MCTS-VCB.

  • 10 authors
·
Jun 11, 2025

Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance

Large, general-purpose robotic policies trained on diverse demonstration datasets have been shown to be remarkably effective both for controlling a variety of robots in a range of different scenes, and for acquiring broad repertoires of manipulation skills. However, the data that such policies are trained on is generally of mixed quality -- not only are human-collected demonstrations unlikely to perform the task perfectly, but the larger the dataset is, the harder it is to curate only the highest quality examples. It also remains unclear how optimal data from one embodiment is for training on another embodiment. In this paper, we present a general and broadly applicable approach that enhances the performance of such generalist robot policies at deployment time by re-ranking their actions according to a value function learned via offline RL. This approach, which we call Value-Guided Policy Steering (V-GPS), is compatible with a wide range of different generalist policies, without needing to fine-tune or even access the weights of the policy. We show that the same value function can improve the performance of five different state-of-the-art policies with different architectures, even though they were trained on distinct datasets, attaining consistent performance improvement on multiple robotic platforms across a total of 12 tasks. Code and videos can be found at: https://nakamotoo.github.io/V-GPS

  • 4 authors
·
Oct 17, 2024 1

Video Background Music Generation: Dataset, Method and Evaluation

Music is essential when editing videos, but selecting music manually is difficult and time-consuming. Thus, we seek to automatically generate background music tracks given video input. This is a challenging task since it requires music-video datasets, efficient architectures for video-to-music generation, and reasonable metrics, none of which currently exist. To close this gap, we introduce a complete recipe including dataset, benchmark model, and evaluation metric for video background music generation. We present SymMV, a video and symbolic music dataset with various musical annotations. To the best of our knowledge, it is the first video-music dataset with rich musical annotations. We also propose a benchmark video background music generation framework named V-MusProd, which utilizes music priors of chords, melody, and accompaniment along with video-music relations of semantic, color, and motion features. To address the lack of objective metrics for video-music correspondence, we design a retrieval-based metric VMCP built upon a powerful video-music representation learning model. Experiments show that with our dataset, V-MusProd outperforms the state-of-the-art method in both music quality and correspondence with videos. We believe our dataset, benchmark model, and evaluation metric will boost the development of video background music generation. Our dataset and code are available at https://github.com/zhuole1025/SymMV.

  • 10 authors
·
Nov 21, 2022

VSA: Learning Varied-Size Window Attention in Vision Transformers

Attention within windows has been widely explored in vision transformers to balance the performance, computation complexity, and memory footprint. However, current models adopt a hand-crafted fixed-size window design, which restricts their capacity of modeling long-term dependencies and adapting to objects of different sizes. To address this drawback, we propose Varied-Size Window Attention (VSA) to learn adaptive window configurations from data. Specifically, based on the tokens within each default window, VSA employs a window regression module to predict the size and location of the target window, i.e., the attention area where the key and value tokens are sampled. By adopting VSA independently for each attention head, it can model long-term dependencies, capture rich context from diverse windows, and promote information exchange among overlapped windows. VSA is an easy-to-implement module that can replace the window attention in state-of-the-art representative models with minor modifications and negligible extra computational cost while improving their performance by a large margin, e.g., 1.1\% for Swin-T on ImageNet classification. In addition, the performance gain increases when using larger images for training and test. Experimental results on more downstream tasks, including object detection, instance segmentation, and semantic segmentation, further demonstrate the superiority of VSA over the vanilla window attention in dealing with objects of different sizes. The code will be released https://github.com/ViTAE-Transformer/ViTAE-VSA.

  • 4 authors
·
Apr 18, 2022

A continental-scale dataset of ground beetles with high-resolution images and validated morphological trait measurements

Despite the ecological significance of invertebrates, global trait databases remain heavily biased toward vertebrates and plants, limiting comprehensive ecological analyses of high-diversity groups like ground beetles. Ground beetles (Coleoptera: Carabidae) serve as critical bioindicators of ecosystem health, providing valuable insights into biodiversity shifts driven by environmental changes. While the National Ecological Observatory Network (NEON) maintains an extensive collection of carabid specimens from across the United States, these primarily exist as physical collections, restricting widespread research access and large-scale analysis. To address these gaps, we present a multimodal dataset digitizing over 13,200 NEON carabids from 30 sites spanning the continental US and Hawaii through high-resolution imaging, enabling broader access and computational analysis. The dataset includes digitally measured elytra length and width of each specimen, establishing a foundation for automated trait extraction using AI. Validated against manual measurements, our digital trait extraction achieves sub-millimeter precision, ensuring reliability for ecological and computational studies. By addressing invertebrate under-representation in trait databases, this work supports AI-driven tools for automated species identification and trait-based research, fostering advancements in biodiversity monitoring and conservation.

  • 21 authors
·
Jan 14

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

Group-based policy optimization methods like GRPO and GSPO have become standard for training multimodal models, leveraging group-wise rollouts and relative advantage estimation. However, they suffer from a critical gradient vanishing problem when all responses within a group receive identical rewards, causing advantage estimates to collapse and training signals to diminish. Existing attempts to mitigate this issue fall into two paradigms: filtering-based and sampling-based methods. Filtering-based methods first generate rollouts broadly and then retroactively filter out uninformative groups, leading to substantial computational overhead. Sampling-based methods proactively select effective samples before rollout but rely on static criteria or prior dataset knowledge, lacking real-time adaptability. To address these issues, we propose VADE, a Variance-Aware Dynamic sampling framework via online sample-level difficulty Estimation. Our framework integrates three key components: online sample-level difficulty estimation using Beta distributions, a Thompson sampler that maximizes information gain through the estimated correctness probability, and a two-scale prior decay mechanism that maintains robust estimation under policy evolution. This three components design enables VADE to dynamically select the most informative samples, thereby amplifying training signals while eliminating extra rollout costs. Extensive experiments on multimodal reasoning benchmarks show that VADE consistently outperforms strong baselines in both performance and sample efficiency, while achieving a dramatic reduction in computational overhead. More importantly, our framework can serves as a plug-and-play component to be seamlessly integrated into existing group-based RL algorithms. Code and models are available at https://VADE-RL.github.io.

  • 8 authors
·
Nov 24, 2025

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2, 2025

VQ-Logits: Compressing the Output Bottleneck of Large Language Models via Vector Quantized Logits

Large Language Models (LLMs) have achieved remarkable success but face significant computational and memory challenges, particularly due to their extensive output vocabularies. The final linear projection layer, mapping hidden states to vocabulary-sized logits, often constitutes a substantial portion of the model's parameters and computational cost during inference. Existing methods like adaptive softmax or hierarchical softmax introduce structural complexities. In this paper, we propose VQ-Logits, a novel approach that leverages Vector Quantization (VQ) to drastically reduce the parameter count and computational load of the LLM output layer. VQ-Logits replaces the large V * dmodel output embedding matrix with a small, shared codebook of K embedding vectors (K << V ). Each token in the vocabulary is mapped to one of these K codebook vectors. The LLM predicts logits over this compact codebook, which are then efficiently "scattered" to the full vocabulary space using the learned or preassigned mapping. We demonstrate through extensive experiments on standard language modeling benchmarks (e.g., WikiText-103, C4) that VQ-Logits can achieve up to 99% parameter reduction in the output layer and 6x speedup in logit computation, with only a marginal 4% increase in perplexity compared to full softmax baselines. We further provide detailed ablation studies on codebook size, initialization, and learning strategies, showcasing the robustness and effectiveness of our approach.

  • 7 authors
·
May 15, 2025

V2X-Radar: A Multi-modal Dataset with 4D Radar for Cooperative Perception

Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby enhancing the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged; however, these datasets primarily focus on cameras and LiDAR, neglecting 4D Radar, a sensor used in single-vehicle autonomous driving to provide robust perception in adverse weather conditions. In this paper, to bridge the gap created by the absence of 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large-scale, real-world multi-modal dataset featuring 4D Radar. V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data encompasses sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as various typical challenging scenarios. The dataset consists of 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, including 350K annotated boxes across five categories. To support various research domains, we have established V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. Furthermore, we provide comprehensive benchmarks across these three sub-datasets. We will release all datasets and benchmark codebase at http://openmpd.com/column/V2X-Radar and https://github.com/yanglei18/V2X-Radar.

  • 13 authors
·
Nov 16, 2024 1

VERIFIED: A Video Corpus Moment Retrieval Benchmark for Fine-Grained Video Understanding

Existing Video Corpus Moment Retrieval (VCMR) is limited to coarse-grained understanding, which hinders precise video moment localization when given fine-grained queries. In this paper, we propose a more challenging fine-grained VCMR benchmark requiring methods to localize the best-matched moment from the corpus with other partially matched candidates. To improve the dataset construction efficiency and guarantee high-quality data annotations, we propose VERIFIED, an automatic VidEo-text annotation pipeline to generate captions with RelIable FInE-grained statics and Dynamics. Specifically, we resort to large language models (LLM) and large multimodal models (LMM) with our proposed Statics and Dynamics Enhanced Captioning modules to generate diverse fine-grained captions for each video. To filter out the inaccurate annotations caused by the LLM hallucination, we propose a Fine-Granularity Aware Noise Evaluator where we fine-tune a video foundation model with disturbed hard-negatives augmented contrastive and matching losses. With VERIFIED, we construct a more challenging fine-grained VCMR benchmark containing Charades-FIG, DiDeMo-FIG, and ActivityNet-FIG which demonstrate a high level of annotation quality. We evaluate several state-of-the-art VCMR models on the proposed dataset, revealing that there is still significant scope for fine-grained video understanding in VCMR. Code and Datasets are in https://github.com/hlchen23/VERIFIED{https://github.com/hlchen23/VERIFIED}.

  • 8 authors
·
Oct 11, 2024

Euclid. II. The VIS Instrument

This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

  • 435 authors
·
May 22, 2024

VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations

Rotation estimation of high precision from an RGB-D object observation is a huge challenge in 6D object pose estimation, due to the difficulty of learning in the non-linear space of SO(3). In this paper, we propose a novel rotation estimation network, termed as VI-Net, to make the task easier by decoupling the rotation as the combination of a viewpoint rotation and an in-plane rotation. More specifically, VI-Net bases the feature learning on the sphere with two individual branches for the estimates of two factorized rotations, where a V-Branch is employed to learn the viewpoint rotation via binary classification on the spherical signals, while another I-Branch is used to estimate the in-plane rotation by transforming the signals to view from the zenith direction. To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution (SPA-SConv), which settles the boundary problem of spherical signals via feature padding and realizesviewpoint-equivariant feature extraction by symmetric convolutional operations. We apply the proposed VI-Net to the challenging task of category-level 6D object pose estimation for predicting the poses of unknown objects without available CAD models; experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision.

  • 4 authors
·
Aug 19, 2023

Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers

Deep neural networks (DNNs) can be manipulated to exhibit specific behaviors when exposed to specific trigger patterns, without affecting their performance on benign samples, dubbed backdoor attack. Currently, implementing backdoor attacks in physical scenarios still faces significant challenges. Physical attacks are labor-intensive and time-consuming, and the triggers are selected in a manual and heuristic way. Moreover, expanding digital attacks to physical scenarios faces many challenges due to their sensitivity to visual distortions and the absence of counterparts in the real world. To address these challenges, we define a novel trigger called the Visible, Semantic, Sample-Specific, and Compatible (VSSC) trigger, to achieve effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects. To implement the VSSC trigger, we propose an automated pipeline comprising three modules: a trigger selection module that systematically identifies suitable triggers leveraging large language models, a trigger insertion module that employs generative models to seamlessly integrate triggers into images, and a quality assessment module that ensures the natural and successful insertion of triggers through vision-language models. Extensive experimental results and analysis validate the effectiveness, stealthiness, and robustness of the VSSC trigger. It can not only maintain robustness under visual distortions but also demonstrates strong practicality in the physical scenario. We hope that the proposed VSSC trigger and implementation approach could inspire future studies on designing more practical triggers in backdoor attacks.

  • 5 authors
·
Jun 1, 2023

VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks

Recently, fine-tuning language models pre-trained on large text corpora have provided huge improvements on vision-and-language (V&L) tasks as well as on pure language tasks. However, fine-tuning the entire parameter set of pre-trained models becomes impractical since the model size is growing rapidly. Hence, in this paper, we introduce adapter-based parameter-efficient transfer learning techniques to V&L models such as VL-BART and VLT5. We evaluate our methods in a unified multi-task setup on both image-text and video-text benchmarks. For the image-text tasks, we use four diverse V&L datasets: VQAv2, GQA, NLVR2 , and MSCOCO image captioning. For video-text tasks, we use TVQA, How2QA, TVC, and YC2C. With careful training and thorough experiments, we benchmark three popular adapter-based methods (Adapter, Hyperformer, Compacter) against the standard full fine-tuning and the recently proposed prompt-tuning approach. We also enhance the efficiency and performance of adapters by sharing their weights to attain knowledge across tasks. Our results demonstrate that training the adapter with the weight-sharing technique (4.18% of total parameters for image-text tasks and 3.39% for video-text tasks) can match the performance of fine-tuning the entire model. Lastly, we present a comprehensive analysis including the combination of adapter and task-specific prompts and the impact of V&L pre-training on adapters. Our code is available at: https://github.com/ylsung/VL_adapter.

  • 3 authors
·
Dec 13, 2021

Taming Visually Guided Sound Generation

Recent advances in visually-induced audio generation are based on sampling short, low-fidelity, and one-class sounds. Moreover, sampling 1 second of audio from the state-of-the-art model takes minutes on a high-end GPU. In this work, we propose a single model capable of generating visually relevant, high-fidelity sounds prompted with a set of frames from open-domain videos in less time than it takes to play it on a single GPU. We train a transformer to sample a new spectrogram from the pre-trained spectrogram codebook given the set of video features. The codebook is obtained using a variant of VQGAN trained to produce a compact sampling space with a novel spectrogram-based perceptual loss. The generated spectrogram is transformed into a waveform using a window-based GAN that significantly speeds up generation. Considering the lack of metrics for automatic evaluation of generated spectrograms, we also build a family of metrics called FID and MKL. These metrics are based on a novel sound classifier, called Melception, and designed to evaluate the fidelity and relevance of open-domain samples. Both qualitative and quantitative studies are conducted on small- and large-scale datasets to evaluate the fidelity and relevance of generated samples. We also compare our model to the state-of-the-art and observe a substantial improvement in quality, size, and computation time. Code, demo, and samples: v-iashin.github.io/SpecVQGAN

  • 2 authors
·
Oct 17, 2021

MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream

A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)

  • 4 authors
·
Jul 16, 2018

BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning

Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. Code and checkpoints are available at https://github.com/microsoft/BridgeTower.

  • 6 authors
·
Jun 17, 2022

Large Language Models are Pretty Good Zero-Shot Video Game Bug Detectors

Video game testing requires game-specific knowledge as well as common sense reasoning about the events in the game. While AI-driven agents can satisfy the first requirement, it is not yet possible to meet the second requirement automatically. Therefore, video game testing often still relies on manual testing, and human testers are required to play the game thoroughly to detect bugs. As a result, it is challenging to fully automate game testing. In this study, we explore the possibility of leveraging the zero-shot capabilities of large language models for video game bug detection. By formulating the bug detection problem as a question-answering task, we show that large language models can identify which event is buggy in a sequence of textual descriptions of events from a game. To this end, we introduce the GameBugDescriptions benchmark dataset, which consists of 167 buggy gameplay videos and a total of 334 question-answer pairs across 8 games. We extensively evaluate the performance of six models across the OPT and InstructGPT large language model families on our benchmark dataset. Our results show promising results for employing language models to detect video game bugs. With the proper prompting technique, we could achieve an accuracy of 70.66%, and on some video games, up to 78.94%. Our code, evaluation data and the benchmark can be found on https://asgaardlab.github.io/LLMxBugs

  • 5 authors
·
Oct 5, 2022

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that "the person is riding a horse-drawn carriage". In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answers.

  • 12 authors
·
Feb 23, 2016