--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: Alibaba-NLP/gte-multilingual-base widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6571428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6571428571428571 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5171428571428571 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.316 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.18895238095238095 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13384126984126984 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10433333333333335 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0678253733846715 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5470006025464504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7399645316315758 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8452891149669638 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8838497168796887 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9109269128757174 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6571428571428571 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6953571805621692 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7150421121165462 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7679394555495317 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7856911059911225 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7969632777290026 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6571428571428571 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8138095238095239 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8138095238095239 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8138095238095239 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8138095238095239 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8138095238095239 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6571428571428571 name: Cosine Map@1 - type: cosine_map@20 value: 0.5578605627627369 name: Cosine Map@20 - type: cosine_map@50 value: 0.5471407389299809 name: Cosine Map@50 - type: cosine_map@100 value: 0.5795933384755297 name: Cosine Map@100 - type: cosine_map@150 value: 0.5874505508842796 name: Cosine Map@150 - type: cosine_map@200 value: 0.5912226659397186 name: Cosine Map@200 - type: cosine_map@500 value: 0.5952587557760031 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5718918918918919 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3885405405405405 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25172972972972973 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1904864864864865 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1521891891891892 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0036619075252531876 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3842245968041533 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5640822196868902 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6741986120580108 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7463851968088967 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7825399601398452 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6139182209948354 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5873893466818746 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6144038475288277 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6498632077214272 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6680602466150343 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5581081081081081 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5581081081081081 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5581081081081081 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5581081081081081 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5581081081081081 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.47988875190050484 name: Cosine Map@20 - type: cosine_map@50 value: 0.4249833337950364 name: Cosine Map@50 - type: cosine_map@100 value: 0.430155652024808 name: Cosine Map@100 - type: cosine_map@150 value: 0.4458862132745998 name: Cosine Map@150 - type: cosine_map@200 value: 0.45334655744992447 name: Cosine Map@200 - type: cosine_map@500 value: 0.4656066165331343 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9704433497536946 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9852216748768473 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9852216748768473 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5083743842364532 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3654187192118227 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.24133004926108376 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.18036124794745487 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.14467980295566504 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3221185941380065 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5024502430161547 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6247617904371989 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6829583450315939 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7216293640715983 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5393376062142305 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5267125529267169 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.55793511917882 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5879547828450983 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6071252185389439 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5104381157401634 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5109752961295605 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5109752961295605 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5110222114474118 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5110222114474118 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.40097257642946377 name: Cosine Map@20 - type: cosine_map@50 value: 0.35882787401455 name: Cosine Map@50 - type: cosine_map@100 value: 0.3633182590941781 name: Cosine Map@100 - type: cosine_map@150 value: 0.3776727961080201 name: Cosine Map@150 - type: cosine_map@200 value: 0.3848401555555339 name: Cosine Map@200 - type: cosine_map@500 value: 0.3978065874082948 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6601941747572816 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9805825242718447 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6601941747572816 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4781553398058253 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28951456310679613 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17572815533980585 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12595469255663433 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09815533980582528 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06151358631979527 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5107966412908705 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6922746152164951 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8004152884148357 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8465065661615649 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8770990926698364 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6601941747572816 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6539867858378715 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6707332209240133 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.72342020484322 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7437750875502527 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7553648453187212 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6601941747572816 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8037216828478965 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8040950958426687 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8040950958426687 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8040950958426687 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8040950958426687 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6601941747572816 name: Cosine Map@1 - type: cosine_map@20 value: 0.5087334164702914 name: Cosine Map@20 - type: cosine_map@50 value: 0.49260246320797585 name: Cosine Map@50 - type: cosine_map@100 value: 0.5217412166882693 name: Cosine Map@100 - type: cosine_map@150 value: 0.529859818130126 name: Cosine Map@150 - type: cosine_map@200 value: 0.533378795921413 name: Cosine Map@200 - type: cosine_map@500 value: 0.5386011712914499 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7280291211648466 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9599583983359334 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9791991679667187 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9942797711908476 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9958398335933437 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9973998959958398 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7280291211648466 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12433697347893914 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05145085803432139 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02625065002600105 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017621771537528162 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013283931357254294 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.28133620582918556 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9183394002426764 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9499306638932224 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9700901369388107 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9767724042295025 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9818166059975733 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7280291211648466 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8043549768911603 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.81295852465432 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.817339429558165 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8186380742931886 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8195485984235017 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7280291211648466 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7968549154271433 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7974653825839162 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7976914864910069 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7977044635908871 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7977139196654446 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7280291211648466 name: Cosine Map@1 - type: cosine_map@20 value: 0.7350836192117531 name: Cosine Map@20 - type: cosine_map@50 value: 0.7374205090112232 name: Cosine Map@50 - type: cosine_map@100 value: 0.737988888492803 name: Cosine Map@100 - type: cosine_map@150 value: 0.7381133157945164 name: Cosine Map@150 - type: cosine_map@200 value: 0.7381788581828236 name: Cosine Map@200 - type: cosine_map@500 value: 0.7382854440643231 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6703068122724909 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9505980239209568 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9776391055642226 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9864794591783671 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9932397295891836 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9947997919916797 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6703068122724909 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.1251690067602704 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.052282891315652634 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026729069162766517 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.01799965331946611 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013541341653666149 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.25235742763043856 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9095857167620037 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9482405962905183 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.96845207141619 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9781591263650546 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9810192407696308 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6703068122724909 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7735712514376322 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7843644592705362 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7889444470773866 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7908660087982327 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.791403470160319 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6703068122724909 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7520307321055828 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7529374175534339 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7530616872072472 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7531202644382351 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7531293951311296 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6703068122724909 name: Cosine Map@1 - type: cosine_map@20 value: 0.6967639778693541 name: Cosine Map@20 - type: cosine_map@50 value: 0.699575457224443 name: Cosine Map@50 - type: cosine_map@100 value: 0.70027844357658 name: Cosine Map@100 - type: cosine_map@150 value: 0.7004487000056766 name: Cosine Map@150 - type: cosine_map@200 value: 0.7004863395843564 name: Cosine Map@200 - type: cosine_map@500 value: 0.7005835771389989 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.19084763390535622 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.19084763390535622 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06137978852487433 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.19084763390535622 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5474303590499686 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5474303590499686 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5474303590499686 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5474303590499686 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5474303590499686 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.19084763390535622 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4093433087972877 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4093433087972877 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4093433087972877 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4093433087972877 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4093433087972877 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.19084763390535622 name: Cosine Map@1 - type: cosine_map@20 value: 0.32981711891302556 name: Cosine Map@20 - type: cosine_map@50 value: 0.32981711891302556 name: Cosine Map@50 - type: cosine_map@100 value: 0.32981711891302556 name: Cosine Map@100 - type: cosine_map@150 value: 0.32981711891302556 name: Cosine Map@150 - type: cosine_map@200 value: 0.32981711891302556 name: Cosine Map@200 - type: cosine_map@500 value: 0.32981711891302556 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base (v1) Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 | | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 | | cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 | | cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 | | cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 | | cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 | | cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 | | cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 | | cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 | | cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 | | cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 | | cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 | | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 | | cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 | | cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 | | cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 | | **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** | | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 | | cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 | | cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 | | cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 | | cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 | | cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 | | cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 | | cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 | ## Training Details ### Training Datasets
full_en #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | air commodore | flight lieutenant | | command and control officer | flight officer | | air commodore | command and control officer | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_de #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | Staffelkommandantin | Kommodore | | Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin | | Staffelkommandantin | Luftwaffenoffizierin | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_es #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | jefe de escuadrón | instructor | | comandante de aeronave | instructor de simulador | | instructor | oficial del Ejército del Aire | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_zh #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:---------------------| | 技术总监 | 技术和运营总监 | | 技术总监 | 技术主管 | | 技术总监 | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
mix #### mix * Dataset: mix * Size: 21,760 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | technical manager | Technischer Direktor für Bühne, Film und Fernsehen | | head of technical | directora técnica | | head of technical department | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 | | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 | | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 | | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 | | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 | | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 | | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 | | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 | | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 | | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 | | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 | | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 | | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 | | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 | | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 | | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 | | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 | | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 | | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 | | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 | | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 | | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - | | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 | | 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - | | 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 | | 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - | | 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 | | 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - | | 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```