--- license: mit language: - en library_name: transformers tags: - text-generation - information-retrieval - ranking - reranking - blockrank - mistral base_model: mistralai/Mistral-7B-Instruct-v0.3 datasets: - quicktensor/blockrank-msmarco-train-10p metrics: - ndcg - mrr --- # BlockRank-Mistral-7B: Scalable In-context Ranking with Generative Models [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nilesh2797/BlockRank/blob/main/quickstart.ipynb) **BlockRank-Mistral-7B** is a fine-tuned version of [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) optimized for efficient in-context document ranking. It implements BlockRank, a method that makes LLMs efficient and scalable for ranking by aligning their internal attention mechanisms with the structure of the ranking task.

BlockRank Architecture

### Key Features - **Linear Complexity Attention**: Structured sparse attention reduces complexity from O(n²) to O(n) - **2-4× Faster Inference**: Attention-based scoring eliminates autoregressive decoding - **Auxiliary Contrastive Loss**: Mid-layer contrastive objective improves relevance signals - **Strong Zero-shot Generalization**: SOTA performance on BEIR benchmarks ## Citation If you use this model, please cite: ```bibtex @article{gupta2025blockrank, title={Scalable In-context Ranking with Generative Models}, author={Gupta, Nilesh and You, Chong and Bhojanapalli, Srinadh and Kumar, Sanjiv and Dhillon, Inderjit and Yu, Felix}, journal={arXiv preprint arXiv:2510.05396}, year={2025} } ``` ## Model Card Contact For questions or issues, please open an issue on [GitHub](https://github.com/nilesh2797/BlockRank/issues). ## Additional Resources - **Paper**: [arXiv:2510.05396](https://arxiv.org/abs/2510.05396) - **Code**: [GitHub Repository](https://github.com/nilesh2797/BlockRank) - **Dataset**: [HuggingFace Dataset](https://huggingface.co/datasets/nilesh2797/icr-msmarco-10p-train) - **Demo**: [Colab Notebook](https://colab.research.google.com/github/nilesh2797/BlockRank/blob/main/examples/quickstart.ipynb) ## License This model is released under the MIT License. See [LICENSE](https://github.com/nilesh2797/BlockRank/blob/main/LICENSE) for details.