--- license: mit tags: - medical - vision - pytorch - optometry pipeline_tag: image-regression library_name: timm --- # Visionary-Net **AI-Powered Refractive Error Estimation** Visionary-Net is a deep learning model that acts as a "Neural Auto-Refractor." It analyzes blur patterns in an image to estimate the optical prescription needed to correct them. ## ⚡ Model Specs - **Backbone:** EfficientNet-B0 - **Input:** 224x224 RGB Image - **Output:** Sphere (SPH), Cylinder (CYL), Axis (Sin/Cos) - **Best Checkpoint:** `model_v1_ep9.pth` (Included in repo) ## 💻 How to Use You need `timm`, `torch`, and `opencv-python`. ```python import torch import torch.nn as nn import timm import cv2 import numpy as np from huggingface_hub import hf_hub_download # 1. Define Architecture class VisionaryNet(nn.Module): def __init__(self): super().__init__() self.backbone = timm.create_model('efficientnet_b0', pretrained=False, num_classes=0) self.head = nn.Sequential( nn.Linear(1280, 512), nn.ReLU(), nn.Dropout(0.2), nn.Linear(512, 4) ) def forward(self, x): return self.head(self.backbone(x)) # 2. Load the Best Checkpoint (Epoch 9) model_path = hf_hub_download(repo_id="sanskxr02/Visionary-Net", filename="model_v1_ep9.pth") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = VisionaryNet().to(device) model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() # 3. Predict on an Image img = cv2.imread("test_blur.jpg") # Load image img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB img = cv2.resize(img, (224, 224)) / 255.0 # Resize & Normalize img_t = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float().to(device) with torch.no_grad(): preds = model(img_t)[0].cpu().numpy() sph, cyl, sin_a, cos_a = preds axis = np.degrees(np.arctan2(sin_a, cos_a)) / 2.0 if axis < 0: axis += 180 print(f"👁️ Prescription: SPH {sph:.2f} D | CYL {cyl:.2f} D | AXIS {axis:.0f}°")