# # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from functools import partial import onnxruntime import torch import numpy as np import whisper from typing import Callable import torchaudio.compliance.kaldi as kaldi import torchaudio import os import re import inflect # try: # import ttsfrd # use_ttsfrd = True # except ImportError: # print("failed to import ttsfrd, use WeTextProcessing instead") from tn.chinese.normalizer import Normalizer as ZhNormalizer from tn.english.normalizer import Normalizer as EnNormalizer use_ttsfrd = False from ..utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph class CosyVoiceFrontEnd: def __init__(self, get_tokenizer: Callable, feat_extractor: Callable, campplus_model: str, speech_tokenizer_model: str, spk2info: str = '', instruct: bool = False, allowed_special: str = 'all'): self.tokenizer = get_tokenizer() self.feat_extractor = feat_extractor self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') option = onnxruntime.SessionOptions() option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL option.intra_op_num_threads = 1 self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"]) self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider" if torch.cuda.is_available() else "CPUExecutionProvider"]) if os.path.exists(spk2info): self.spk2info = torch.load(spk2info, map_location=self.device) else: self.spk2info = {} self.instruct = instruct self.allowed_special = allowed_special self.inflect_parser = inflect.engine() self.use_ttsfrd = use_ttsfrd if self.use_ttsfrd: self.frd = ttsfrd.TtsFrontendEngine() ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) assert self.frd.initialize('/mnt/workspace/baipeng/project/Marco-Voice/Models/marco_voice/utils/pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \ 'failed to initialize ttsfrd resource' self.frd.set_lang_type('pinyinvg') self.frd.enable_pinyin_mix(True) self.frd.set_breakmodel_index(1) else: self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False) self.en_tn_model = EnNormalizer() def _extract_text_token(self, text): text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special) text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device) text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device) # 14 21 return text_token, text_token_len def _extract_speech_token(self, speech): assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s' feat = whisper.log_mel_spectrogram(speech, n_mels=128) speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(), self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device) speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device) return speech_token, speech_token_len def _extract_spk_embedding(self, speech): feat = kaldi.fbank(speech, num_mel_bins=80, dither=0, sample_frequency=16000) feat = feat - feat.mean(dim=0, keepdim=True) embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() embedding = torch.tensor([embedding]).to(self.device) return embedding def _extract_speech_feat(self, speech): speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device) speech_feat = speech_feat.unsqueeze(dim=0) speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device) return speech_feat, speech_feat_len def text_normalize(self, text, split=True): text = text.strip() if contains_chinese(text): if self.use_ttsfrd: text = self.frd.get_frd_extra_info(text, 'input') else: text = self.zh_tn_model.normalize(text) text = text.replace("\n", "") text = replace_blank(text) text = replace_corner_mark(text) text = text.replace(".", "。") text = text.replace(" - ", ",") text = remove_bracket(text) text = re.sub(r'[,,、]+$', '。', text) texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False)) else: if self.use_ttsfrd: text = self.frd.get_frd_extra_info(text, 'input') else: text = self.en_tn_model.normalize(text) text = spell_out_number(text, self.inflect_parser) texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False)) if split is False: return text return texts def frontend_sft(self, tts_text, spk_id): tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) embedding = self.spk2info[spk_id]['embedding'] model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding} return model_input def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, emotion_speakerminus): tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text) prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k) speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050) speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k) embedding = self._extract_spk_embedding(prompt_speech_16k) model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len, 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len, 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, 'llm_embedding': embedding, 'emotion_embedding': emotion_speakerminus, 'flow_embedding': embedding} return model_input def frontend_cross_lingual(self, tts_text, prompt_speech_16k): model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k) # in cross lingual mode, we remove prompt in llm del model_input['prompt_text'] del model_input['prompt_text_len'] del model_input['llm_prompt_speech_token'] del model_input['llm_prompt_speech_token_len'] return model_input def frontend_instruct(self, tts_text, spk_id, instruct_text): model_input = self.frontend_sft(tts_text, spk_id) # in instruct mode, we remove spk_embedding in llm due to information leakage del model_input['llm_embedding'] instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '') model_input['prompt_text'] = instruct_text_token model_input['prompt_text_len'] = instruct_text_token_len return model_input def frontend_vc(self, source_speech_16k, prompt_speech_16k): prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k) prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k) prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050) embedding = self._extract_spk_embedding(prompt_speech_16k) source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k) model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len, 'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len, 'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len, 'flow_embedding': embedding} return model_input