Spaces:
Runtime error
Runtime error
Delete app.py
#5
by
Juno360219
- opened
app.py
DELETED
|
@@ -1,101 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
| 4 |
-
from huggingface_hub import hf_hub_download
|
| 5 |
-
from safetensors.torch import load_file
|
| 6 |
-
import spaces
|
| 7 |
-
import os
|
| 8 |
-
from PIL import Image
|
| 9 |
-
|
| 10 |
-
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
| 11 |
-
|
| 12 |
-
# Constants
|
| 13 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 14 |
-
repo = "ByteDance/SDXL-Lightning"
|
| 15 |
-
checkpoints = {
|
| 16 |
-
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
| 17 |
-
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
| 18 |
-
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
| 19 |
-
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
| 20 |
-
}
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 24 |
-
if torch.cuda.is_available():
|
| 25 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 26 |
-
|
| 27 |
-
if SAFETY_CHECKER:
|
| 28 |
-
from safety_checker import StableDiffusionSafetyChecker
|
| 29 |
-
from transformers import CLIPFeatureExtractor
|
| 30 |
-
|
| 31 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 32 |
-
"CompVis/stable-diffusion-safety-checker"
|
| 33 |
-
).to("cuda")
|
| 34 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 35 |
-
"openai/clip-vit-base-patch32"
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
def check_nsfw_images(
|
| 39 |
-
images: list[Image.Image],
|
| 40 |
-
) -> tuple[list[Image.Image], list[bool]]:
|
| 41 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
| 42 |
-
has_nsfw_concepts = safety_checker(
|
| 43 |
-
images=[images],
|
| 44 |
-
clip_input=safety_checker_input.pixel_values.to("cuda")
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
return images, has_nsfw_concepts
|
| 48 |
-
|
| 49 |
-
# Function
|
| 50 |
-
@spaces.GPU(enable_queue=True)
|
| 51 |
-
def generate_image(prompt, ckpt):
|
| 52 |
-
|
| 53 |
-
checkpoint = checkpoints[ckpt][0]
|
| 54 |
-
num_inference_steps = checkpoints[ckpt][1]
|
| 55 |
-
|
| 56 |
-
if num_inference_steps==1:
|
| 57 |
-
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
| 58 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
| 59 |
-
else:
|
| 60 |
-
# Ensure sampler uses "trailing" timesteps.
|
| 61 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 62 |
-
|
| 63 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
| 64 |
-
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 65 |
-
|
| 66 |
-
if SAFETY_CHECKER:
|
| 67 |
-
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 68 |
-
if any(has_nsfw_concepts):
|
| 69 |
-
gr.Warning("NSFW content detected.")
|
| 70 |
-
return Image.new("RGB", (512, 512))
|
| 71 |
-
return images[0]
|
| 72 |
-
return results.images[0]
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# Gradio Interface
|
| 77 |
-
description = """
|
| 78 |
-
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
| 79 |
-
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
| 80 |
-
"""
|
| 81 |
-
|
| 82 |
-
with gr.Blocks(css="style.css") as demo:
|
| 83 |
-
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
| 84 |
-
gr.Markdown(description)
|
| 85 |
-
with gr.Group():
|
| 86 |
-
with gr.Row():
|
| 87 |
-
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
| 88 |
-
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
| 89 |
-
submit = gr.Button(scale=1, variant='primary')
|
| 90 |
-
img = gr.Image(label='SDXL-Lightning Generated Image')
|
| 91 |
-
|
| 92 |
-
prompt.submit(fn=generate_image,
|
| 93 |
-
inputs=[prompt, ckpt],
|
| 94 |
-
outputs=img,
|
| 95 |
-
)
|
| 96 |
-
submit.click(fn=generate_image,
|
| 97 |
-
inputs=[prompt, ckpt],
|
| 98 |
-
outputs=img,
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|