File size: 7,004 Bytes
df103d9
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
df103d9
 
89aa5ab
d2c9b66
 
 
89aa5ab
d2c9b66
89aa5ab
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89aa5ab
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import numpy as np
import random
import json
import spaces
import torch
from diffusers import DiffusionPipeline
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from videox_fun.pipeline import ZImageControlPipeline
from videox_fun.models import ZImageControlTransformer2DModel
from transformers import AutoTokenizer, Qwen3ForCausalLM
from diffusers import AutoencoderKL
from image_utils import get_image_latent, scale_image
# from videox_fun.utils.utils import get_image_latent


# MODEL_REPO = "Tongyi-MAI/Z-Image-Turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280

# git clone https://huggingface.co/Tongyi-MAI/Z-Image-Turbo
MODEL_LOCAL = "models/Z-Image-Turbo/"
# curl -L -o Z-Image-Turbo-Fun-Controlnet-Union.safetensors https://huggingface.co/alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union/resolve/main/Z-Image-Turbo-Fun-Controlnet-Union.safetensors
TRANSFORMER_LOCAL = "models/Z-Image-Turbo-Fun-Controlnet-Union.safetensors"

weight_dtype = torch.bfloat16

# load transformer
transformer = ZImageControlTransformer2DModel.from_pretrained(
    MODEL_LOCAL,
    subfolder="transformer",
    low_cpu_mem_usage=True,
    torch_dtype=torch.bfloat16,
    transformer_additional_kwargs={
        "control_layers_places": [0, 5, 10, 15, 20, 25],
        "control_in_dim": 16
    },
).to(torch.bfloat16)

if TRANSFORMER_LOCAL is not None:
    print(f"From checkpoint: {TRANSFORMER_LOCAL}")
    if TRANSFORMER_LOCAL.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(TRANSFORMER_LOCAL)
    else:
        state_dict = torch.load(TRANSFORMER_LOCAL, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = transformer.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# load ZImageControlPipeline
vae = AutoencoderKL.from_pretrained(
    MODEL_LOCAL,
    subfolder="vae"
).to(weight_dtype)

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_LOCAL, subfolder="tokenizer"
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
    MODEL_LOCAL, subfolder="text_encoder", torch_dtype=weight_dtype,
    low_cpu_mem_usage=True,
)
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3)
pipe = ZImageControlPipeline(
    vae=vae,
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    transformer=transformer,
    scheduler=scheduler,
)
pipe.transformer = transformer
pipe.to("cuda")

# ======== AoTI compilation + FA3 ========
pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
spaces.aoti_blocks_load(pipe.transformer.layers,
                        "zerogpu-aoti/Z-Image", variant="fa3")


@spaces.GPU
def inference(
    prompt,
    input_image,
    image_scale=1.0,
    control_context_scale = 0.75,
    seed=42,
    randomize_seed=True,
    guidance_scale=1.5,
    num_inference_steps=8,
    progress=gr.Progress(track_tqdm=True),
):
    # process image
    if input_image is None:
        print("Error: input_image is empty.")
        return None
    
    input_image, width, height = scale_image(input_image, image_scale)

    control_image = get_image_latent(input_image, sample_size=[height, width])[:, :, 0]

    # generation
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        generator=generator,
        guidance_scale=guidance_scale,
        control_image=control_image,
        num_inference_steps=num_inference_steps,
        control_context_scale=control_context_scale,
    ).images[0]

    return image, seed


def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with open('static/data.json', 'r') as file:
    data = json.load(file)
examples = data['examples']

with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Column():
            gr.HTML(read_file("static/header.html"))
        with gr.Row(equal_height=True):
            with gr.Column():
                input_image = gr.Image(
                    height=290, sources=['upload', 'clipboard'], 
                    image_mode='RGB', 
                    # elem_id="image_upload", 
                    type="pil", label="Upload")
                    
                prompt = gr.Textbox(
                    label="Prompt",
                    show_label=False,
                    lines=2,
                    placeholder="Enter your prompt",
                    container=False,
                )

                run_button = gr.Button("Run", variant="primary")
            with gr.Column():
                output_image = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    image_scale = gr.Slider(
                        label="Image scale",
                        minimum=0.5,
                        maximum=2.0,
                        step=0.1,
                        value=1.0,
                    )
                    control_context_scale = gr.Slider(
                        label="Control context scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.75,
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=2.5,
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=30,
                        step=1,
                        value=8,
                    )
        gr.Examples(examples=examples, inputs=[input_image, prompt])
        
        gr.HTML(read_file("static/footer.html"))
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            input_image,
            image_scale,
            control_context_scale,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[output_image, seed],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)