File size: 2,570 Bytes
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
from PIL import Image
import numpy as np

def scale_image(img, scale):
    w, h = img.size
    new_w = int(w * scale)
    new_h = int(h * scale)

    # Adjust to nearest multiple of 32
    new_w = (new_w // 32) * 32
    new_h = (new_h // 32) * 32

    return img.resize((new_w, new_h), Image.LANCZOS), new_w, new_h

def padding_image(images, new_width, new_height):
    new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255))

    aspect_ratio = images.width / images.height
    if new_width / new_height > 1:
        if aspect_ratio > new_width / new_height:
            new_img_width = new_width
            new_img_height = int(new_img_width / aspect_ratio)
        else:
            new_img_height = new_height
            new_img_width = int(new_img_height * aspect_ratio)
    else:
        if aspect_ratio > new_width / new_height:
            new_img_width = new_width
            new_img_height = int(new_img_width / aspect_ratio)
        else:
            new_img_height = new_height
            new_img_width = int(new_img_height * aspect_ratio)

    resized_img = images.resize((new_img_width, new_img_height))

    paste_x = (new_width - new_img_width) // 2
    paste_y = (new_height - new_img_height) // 2

    new_image.paste(resized_img, (paste_x, paste_y))

    return new_image


def get_image_latent(ref_image=None, sample_size=None, padding=False):
    if ref_image is not None:
        if isinstance(ref_image, str):
            ref_image = Image.open(ref_image).convert("RGB")
            if padding:
                ref_image = padding_image(
                    ref_image, sample_size[1], sample_size[0])
            ref_image = ref_image.resize((sample_size[1], sample_size[0]))
            ref_image = torch.from_numpy(np.array(ref_image))
            ref_image = ref_image.unsqueeze(0).permute(
                [3, 0, 1, 2]).unsqueeze(0) / 255
        elif isinstance(ref_image, Image.Image):
            ref_image = ref_image.convert("RGB")
            if padding:
                ref_image = padding_image(
                    ref_image, sample_size[1], sample_size[0])
            ref_image = ref_image.resize((sample_size[1], sample_size[0]))
            ref_image = torch.from_numpy(np.array(ref_image))
            ref_image = ref_image.unsqueeze(0).permute(
                [3, 0, 1, 2]).unsqueeze(0) / 255
        else:
            ref_image = torch.from_numpy(np.array(ref_image))
            ref_image = ref_image.unsqueeze(0).permute(
                [3, 0, 1, 2]).unsqueeze(0) / 255

    return ref_image