import torch from PIL import Image import numpy as np def scale_image(img, scale): w, h = img.size new_w = int(w * scale) new_h = int(h * scale) # Adjust to nearest multiple of 32 new_w = (new_w // 32) * 32 new_h = (new_h // 32) * 32 return img.resize((new_w, new_h), Image.LANCZOS), new_w, new_h def padding_image(images, new_width, new_height): new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255)) aspect_ratio = images.width / images.height if new_width / new_height > 1: if aspect_ratio > new_width / new_height: new_img_width = new_width new_img_height = int(new_img_width / aspect_ratio) else: new_img_height = new_height new_img_width = int(new_img_height * aspect_ratio) else: if aspect_ratio > new_width / new_height: new_img_width = new_width new_img_height = int(new_img_width / aspect_ratio) else: new_img_height = new_height new_img_width = int(new_img_height * aspect_ratio) resized_img = images.resize((new_img_width, new_img_height)) paste_x = (new_width - new_img_width) // 2 paste_y = (new_height - new_img_height) // 2 new_image.paste(resized_img, (paste_x, paste_y)) return new_image def get_image_latent(ref_image=None, sample_size=None, padding=False): if ref_image is not None: if isinstance(ref_image, str): ref_image = Image.open(ref_image).convert("RGB") if padding: ref_image = padding_image( ref_image, sample_size[1], sample_size[0]) ref_image = ref_image.resize((sample_size[1], sample_size[0])) ref_image = torch.from_numpy(np.array(ref_image)) ref_image = ref_image.unsqueeze(0).permute( [3, 0, 1, 2]).unsqueeze(0) / 255 elif isinstance(ref_image, Image.Image): ref_image = ref_image.convert("RGB") if padding: ref_image = padding_image( ref_image, sample_size[1], sample_size[0]) ref_image = ref_image.resize((sample_size[1], sample_size[0])) ref_image = torch.from_numpy(np.array(ref_image)) ref_image = ref_image.unsqueeze(0).permute( [3, 0, 1, 2]).unsqueeze(0) / 255 else: ref_image = torch.from_numpy(np.array(ref_image)) ref_image = ref_image.unsqueeze(0).permute( [3, 0, 1, 2]).unsqueeze(0) / 255 return ref_image