Akashmj22122002 commited on
Commit
b02e301
Β·
verified Β·
1 Parent(s): c4a5c8e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. .gitattributes +8 -0
  2. 1_lab1.ipynb +367 -0
  3. 2_lab2.ipynb +1278 -0
  4. 3_lab3.ipynb +370 -0
  5. 4_lab4.ipynb +653 -0
  6. README.md +2 -8
  7. app.py +299 -0
  8. community_contributions/1_lab1_DA.ipynb +396 -0
  9. community_contributions/1_lab1_Hy.ipynb +688 -0
  10. community_contributions/1_lab1_Mudassar.ipynb +260 -0
  11. community_contributions/1_lab1_Thanh.ipynb +165 -0
  12. community_contributions/1_lab1_cm.ipynb +305 -0
  13. community_contributions/1_lab1_gemini.ipynb +305 -0
  14. community_contributions/1_lab1_groq.ipynb +262 -0
  15. community_contributions/1_lab1_groq_llama.ipynb +296 -0
  16. community_contributions/1_lab1_marstipton_mac.ipynb +411 -0
  17. community_contributions/1_lab1_moneek.ipynb +407 -0
  18. community_contributions/1_lab1_open_router.ipynb +323 -0
  19. community_contributions/1_lab2_Kaushik_Parallelization.ipynb +355 -0
  20. community_contributions/1_lab2_Routing_Workflow.ipynb +528 -0
  21. community_contributions/2_lab2-Evaluator-AnnpaS18.ipynb +474 -0
  22. community_contributions/2_lab2-judge-prompt-changed.ipynb +476 -0
  23. community_contributions/2_lab2-parallelization.ipynb +440 -0
  24. community_contributions/2_lab2.ipynb +517 -0
  25. community_contributions/2_lab2_Execution_measurement.py +401 -0
  26. community_contributions/2_lab2_ReAct_Pattern.ipynb +289 -0
  27. community_contributions/2_lab2_akash_parallelization.ipynb +295 -0
  28. community_contributions/2_lab2_async.ipynb +474 -0
  29. community_contributions/2_lab2_async_with_reasons.ipynb +534 -0
  30. community_contributions/2_lab2_doclee99_gpt5_improves_gemini.25flash.ipynb +620 -0
  31. community_contributions/2_lab2_evaluator_mars.ipynb +677 -0
  32. community_contributions/2_lab2_exercise.ipynb +336 -0
  33. community_contributions/2_lab2_exercise_BrettSanders_ChainOfThought.ipynb +241 -0
  34. community_contributions/2_lab2_llm_reviewer.ipynb +627 -0
  35. community_contributions/2_lab2_moneek.ipynb +173 -0
  36. community_contributions/2_lab2_multi-evaluation-criteria.ipynb +506 -0
  37. community_contributions/2_lab2_perplexity_support.ipynb +497 -0
  38. community_contributions/2_lab2_qualitycode_review.ipynb +320 -0
  39. community_contributions/2_lab2_reflection_pattern.ipynb +311 -0
  40. community_contributions/2_lab2_reflection_pattern2.ipynb +999 -0
  41. community_contributions/2_lab2_six-thinking-hats-simulator.ipynb +457 -0
  42. community_contributions/3_lab3_azure_open_ai.ipynb +700 -0
  43. community_contributions/3_lab3_groq_llama_generator_gemini_evaluator.ipynb +286 -0
  44. community_contributions/4_lab4_slack.ipynb +469 -0
  45. community_contributions/4_lab4_spotify.ipynb +829 -0
  46. community_contributions/4_lab4_with_telegram.ipynb +422 -0
  47. community_contributions/Ayushg12345_contributions/ayushg12345_lab1_solution.ipynb +452 -0
  48. community_contributions/Business_Idea.ipynb +388 -0
  49. community_contributions/ChatBot_with_evaluator_and_notifier/README.md +97 -0
  50. community_contributions/ChatBot_with_evaluator_and_notifier/app.py +30 -0
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ community_contributions/amirna2_contributions/personal-ai/me/resume.pdf filter=lfs diff=lfs merge=lfs -text
37
+ community_contributions/ChatBot_with_evaluator_and_notifier/career_db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
38
+ community_contributions/hidden_gems_world_travel_guide/Screenshot1.png filter=lfs diff=lfs merge=lfs -text
39
+ community_contributions/jongkook/me/Jongkook[[:space:]]Kim[[:space:]]-[[:space:]]Resume.pdf filter=lfs diff=lfs merge=lfs -text
40
+ community_contributions/NLP_Agent_Dinesh_Uthayakumar/eval1_capital.wav filter=lfs diff=lfs merge=lfs -text
41
+ community_contributions/NLP_Agent_Dinesh_Uthayakumar/eval2_money_customers_owe.wav filter=lfs diff=lfs merge=lfs -text
42
+ community_contributions/NLP_Agent_Dinesh_Uthayakumar/eval3_total_estimated_revenue.wav filter=lfs diff=lfs merge=lfs -text
43
+ community_contributions/seung-gu/me/linkedin.pdf filter=lfs diff=lfs merge=lfs -text
1_lab1.ipynb ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# Next it's time to load the API keys into environment variables\n",
104
+ "# If this returns false, see the next cell!\n",
105
+ "\n",
106
+ "load_dotenv(override=True)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "markdown",
111
+ "metadata": {},
112
+ "source": [
113
+ "### Wait, did that just output `False`??\n",
114
+ "\n",
115
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
116
+ "\n",
117
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
118
+ "\n",
119
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
127
+ " <tr>\n",
128
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
129
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
130
+ " </td>\n",
131
+ " <td>\n",
132
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
133
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
134
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
135
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
136
+ " </span>\n",
137
+ " </td>\n",
138
+ " </tr>\n",
139
+ "</table>"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
149
+ "\n",
150
+ "import os\n",
151
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
152
+ "\n",
153
+ "if openai_api_key:\n",
154
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
155
+ "else:\n",
156
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
157
+ " \n"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# And now - the all important import statement\n",
167
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
168
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
169
+ "\n",
170
+ "from openai import OpenAI"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "# And now we'll create an instance of the OpenAI class\n",
180
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
181
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
182
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
183
+ "\n",
184
+ "openai = OpenAI()"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# Create a list of messages in the familiar OpenAI format\n",
194
+ "\n",
195
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
205
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
206
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
207
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
208
+ "\n",
209
+ "response = openai.chat.completions.create(\n",
210
+ " model=\"gpt-4.1-nano\",\n",
211
+ " messages=messages\n",
212
+ ")\n",
213
+ "\n",
214
+ "print(response.choices[0].message.content)\n"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "# And now - let's ask for a question:\n",
224
+ "\n",
225
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
226
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
236
+ "\n",
237
+ "response = openai.chat.completions.create(\n",
238
+ " model=\"gpt-4.1-mini\",\n",
239
+ " messages=messages\n",
240
+ ")\n",
241
+ "\n",
242
+ "question = response.choices[0].message.content\n",
243
+ "\n",
244
+ "print(question)\n"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": null,
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "# form a new messages list\n",
254
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# Ask it again\n",
264
+ "\n",
265
+ "response = openai.chat.completions.create(\n",
266
+ " model=\"gpt-4.1-mini\",\n",
267
+ " messages=messages\n",
268
+ ")\n",
269
+ "\n",
270
+ "answer = response.choices[0].message.content\n",
271
+ "print(answer)\n"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "from IPython.display import Markdown, display\n",
281
+ "\n",
282
+ "display(Markdown(answer))\n",
283
+ "\n"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "markdown",
288
+ "metadata": {},
289
+ "source": [
290
+ "# Congratulations!\n",
291
+ "\n",
292
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
293
+ "\n",
294
+ "Next time things get more interesting..."
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "markdown",
299
+ "metadata": {},
300
+ "source": [
301
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
302
+ " <tr>\n",
303
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
304
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
305
+ " </td>\n",
306
+ " <td>\n",
307
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
308
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
309
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
310
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
311
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
312
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
313
+ " </span>\n",
314
+ " </td>\n",
315
+ " </tr>\n",
316
+ "</table>"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# First create the messages:\n",
326
+ "\n",
327
+ "messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
328
+ "\n",
329
+ "# Then make the first call:\n",
330
+ "\n",
331
+ "response =\n",
332
+ "\n",
333
+ "# Then read the business idea:\n",
334
+ "\n",
335
+ "business_idea = response.\n",
336
+ "\n",
337
+ "# And repeat! In the next message, include the business idea within the message"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "markdown",
342
+ "metadata": {},
343
+ "source": []
344
+ }
345
+ ],
346
+ "metadata": {
347
+ "kernelspec": {
348
+ "display_name": ".venv",
349
+ "language": "python",
350
+ "name": "python3"
351
+ },
352
+ "language_info": {
353
+ "codemirror_mode": {
354
+ "name": "ipython",
355
+ "version": 3
356
+ },
357
+ "file_extension": ".py",
358
+ "mimetype": "text/x-python",
359
+ "name": "python",
360
+ "nbconvert_exporter": "python",
361
+ "pygments_lexer": "ipython3",
362
+ "version": "3.12.9"
363
+ }
364
+ },
365
+ "nbformat": 4,
366
+ "nbformat_minor": 2
367
+ }
2_lab2.ipynb ADDED
@@ -0,0 +1,1278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 4,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": 5,
49
+ "metadata": {},
50
+ "outputs": [
51
+ {
52
+ "data": {
53
+ "text/plain": [
54
+ "True"
55
+ ]
56
+ },
57
+ "execution_count": 5,
58
+ "metadata": {},
59
+ "output_type": "execute_result"
60
+ }
61
+ ],
62
+ "source": [
63
+ "# Always remember to do this!\n",
64
+ "load_dotenv(override=True)"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 6,
70
+ "metadata": {},
71
+ "outputs": [
72
+ {
73
+ "name": "stdout",
74
+ "output_type": "stream",
75
+ "text": [
76
+ "OpenAI API Key not set\n",
77
+ "Anthropic API Key not set (and this is optional)\n",
78
+ "Google API Key exists and begins AI\n",
79
+ "DeepSeek API Key not set (and this is optional)\n",
80
+ "Groq API Key not set (and this is optional)\n"
81
+ ]
82
+ }
83
+ ],
84
+ "source": [
85
+ "# Print the key prefixes to help with any debugging\n",
86
+ "\n",
87
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
88
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
89
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
90
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
91
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
92
+ "\n",
93
+ "if openai_api_key:\n",
94
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
95
+ "else:\n",
96
+ " print(\"OpenAI API Key not set\")\n",
97
+ " \n",
98
+ "if anthropic_api_key:\n",
99
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
100
+ "else:\n",
101
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
102
+ "\n",
103
+ "if google_api_key:\n",
104
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
105
+ "else:\n",
106
+ " print(\"Google API Key not set (and this is optional)\")\n",
107
+ "\n",
108
+ "if deepseek_api_key:\n",
109
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
110
+ "else:\n",
111
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
112
+ "\n",
113
+ "if groq_api_key:\n",
114
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
115
+ "else:\n",
116
+ " print(\"Groq API Key not set (and this is optional)\")"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": 7,
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
126
+ "request += \"Answer only with the question, no explanation.\"\n",
127
+ "messages = [{\"role\": \"user\", \"content\": request}]"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 7,
133
+ "metadata": {},
134
+ "outputs": [
135
+ {
136
+ "data": {
137
+ "text/plain": [
138
+ "[{'role': 'user',\n",
139
+ " 'content': 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. Answer only with the question, no explanation.'}]"
140
+ ]
141
+ },
142
+ "execution_count": 7,
143
+ "metadata": {},
144
+ "output_type": "execute_result"
145
+ }
146
+ ],
147
+ "source": [
148
+ "messages"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 8,
154
+ "metadata": {},
155
+ "outputs": [
156
+ {
157
+ "name": "stdout",
158
+ "output_type": "stream",
159
+ "text": [
160
+ "Consider a hypothetical world where the dominant species communicates solely through complex olfactory signals. Describe a scenario where a misunderstanding in this olfactory communication leads to a significant socio-political shift. Detail the specific olfactory signals involved, the misinterpretation, and the resulting consequences, ensuring the scenario's plausibility within the constraints of olfactory communication as we understand it biologically and chemically.\n",
161
+ "\n"
162
+ ]
163
+ }
164
+ ],
165
+ "source": [
166
+ "# openai = OpenAI()\n",
167
+ "# response = openai.chat.completions.create(\n",
168
+ "# model=\"gpt-5-mini\",\n",
169
+ "# messages=messages,\n",
170
+ "# )\n",
171
+ "# question = response.choices[0].message.content\n",
172
+ "# print(question)\n",
173
+ "\n",
174
+ "# GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
175
+ "# google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
176
+ "# gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)\n",
177
+ "# response = gemini.chat.completions.create(model=\"gemini-2.0-flash\", messages=messages)\n",
178
+ " \n",
179
+ "# question = response.choices[0].message.content\n",
180
+ "# print(question)\n",
181
+ "\n",
182
+ "import os\n",
183
+ "import time\n",
184
+ "from openai import OpenAI\n",
185
+ "\n",
186
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
187
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
188
+ "\n",
189
+ "gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)\n",
190
+ "\n",
191
+ "def gemini_safe_request(messages):\n",
192
+ " retries = 5\n",
193
+ " for i in range(retries):\n",
194
+ " try:\n",
195
+ " return gemini.chat.completions.create(\n",
196
+ " model=\"gemini-2.0-flash\",\n",
197
+ " messages=messages\n",
198
+ " )\n",
199
+ " except Exception as e:\n",
200
+ " if \"429\" in str(e):\n",
201
+ " wait = (2 ** i)\n",
202
+ " print(f\"⚠️ Rate limit hit. Retrying in {wait} seconds...\")\n",
203
+ " time.sleep(wait)\n",
204
+ " else:\n",
205
+ " raise e\n",
206
+ " raise Exception(\"❌ Max retries reached. Try again later.\")\n",
207
+ "\n",
208
+ "# --- CALL IT ---\n",
209
+ "response = gemini_safe_request(messages)\n",
210
+ "question = response.choices[0].message.content\n",
211
+ "print(question)\n"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 9,
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "competitors = []\n",
221
+ "answers = []\n",
222
+ "messages = [{\"role\": \"user\", \"content\": question}]"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "markdown",
227
+ "metadata": {},
228
+ "source": [
229
+ "## Note - update since the videos\n",
230
+ "\n",
231
+ "I've updated the model names to use the latest models below, like GPT 5 and Claude Sonnet 4.5. It's worth noting that these models can be quite slow - like 1-2 minutes - but they do a great job! Feel free to switch them for faster models if you'd prefer, like the ones I use in the video."
232
+ ]
233
+ },
234
+ {
235
+ "cell_type": "code",
236
+ "execution_count": null,
237
+ "metadata": {},
238
+ "outputs": [],
239
+ "source": [
240
+ "# The API we know well\n",
241
+ "# I've updated this with the latest model, but it can take some time because it likes to think!\n",
242
+ "# Replace the model with gpt-4.1-mini if you'd prefer not to wait 1-2 mins\n",
243
+ "\n",
244
+ "model_name = \"gpt-5-nano\"\n",
245
+ "\n",
246
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
247
+ "answer = response.choices[0].message.content\n",
248
+ "\n",
249
+ "display(Markdown(answer))\n",
250
+ "competitors.append(model_name)\n",
251
+ "answers.append(answer)"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
261
+ "\n",
262
+ "model_name = \"claude-sonnet-4-5\"\n",
263
+ "\n",
264
+ "claude = Anthropic()\n",
265
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
266
+ "answer = response.content[0].text\n",
267
+ "\n",
268
+ "display(Markdown(answer))\n",
269
+ "competitors.append(model_name)\n",
270
+ "answers.append(answer)"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": 10,
276
+ "metadata": {},
277
+ "outputs": [
278
+ {
279
+ "data": {
280
+ "text/markdown": [
281
+ "## The Great Scented Schism of Xylos\n",
282
+ "\n",
283
+ "On Xylos, a planet bathed in perpetual twilight, the sentient Xylosians communicated entirely through complex pheromonal blends released from specialized scent glands located around their antennae. These blends, ranging from simple expressions of mood to intricate philosophical arguments, were as nuanced and powerful as any spoken language. Political power, social status, and even romantic entanglements all hinged on the correct emission and interpretation of these olfactory pronouncements.\n",
284
+ "\n",
285
+ "The Xylosian society was divided into two main factions: the **Chrysalis Collective**, who advocated for introspective contemplation and the preservation of ancient Xylosian traditions, and the **Bloom Brigade**, a more progressive group pushing for exploration and technological advancement. Tensions between the two were always simmering, but a catastrophic misunderstanding, dubbed the β€œScented Schism,” pushed them over the edge.\n",
286
+ "\n",
287
+ "**The Scenario:**\n",
288
+ "\n",
289
+ "The catalyst was a public debate between the revered Elder Lumina, a prominent Chrysalis Collective member, and the charismatic young scientist, Zephyr, a rising star in the Bloom Brigade. Elder Lumina, known for her calm and measured olfactory pronouncements, intended to broadcast a nuanced critique of the Bloom Brigade's relentless pursuit of new technologies. Her carefully crafted scent blend was meant to convey: \"Progress without introspection is akin to a blossom severed from its roots – beautiful, but fleeting and ultimately unsustainable.\"\n",
290
+ "\n",
291
+ "The crucial elements of Lumina's intended message were:\n",
292
+ "\n",
293
+ "* **Base Note (Longevity):** A complex mixture of slowly-releasing phenols and esters, normally signifying deep respect for the past and continuity. In this case, meant to represent the \"roots.\"\n",
294
+ "* **Mid Note (Fragility):** A rapidly dissipating blend of light aldehydes and ketones, typically associated with vulnerability and fleeting beauty. In this case, representing the \"blossom.\"\n",
295
+ "* **Top Note (Severance):** A sharp, pungent compound containing high concentrations of methylpropanethiol, usually used to indicate a painful separation or loss. In this case, representing the \"severed\" connection.\n",
296
+ "* **Contextual Scent Modifier (Caution):** A slight shimmer of terpenes emitted subtly around the entire blend, meant to soften the impact and convey caution rather than outright condemnation.\n",
297
+ "\n",
298
+ "However, a freak weather event, a sudden surge of subterranean methane released near Lumina’s broadcasting platform, subtly altered the chemical composition of her scent blend. Methane is a highly reactive gas that, in Xylos’s atmosphere, acted as a catalyst, accelerating the dissipation rate of the terpenes responsible for the \"Caution\" modifier. It also caused a partial oxidation of some of the slower-releasing phenols and esters in the base note, creating small amounts of acrid carboxylic acids.\n",
299
+ "\n",
300
+ "**The Misinterpretation:**\n",
301
+ "\n",
302
+ "As Lumina broadcast her intended critique, the audience, heavily composed of Bloom Brigade members eager to hear Zephyr’s rebuttal, perceived a drastically different message. Due to the lack of the \"Caution\" modifier, the \"Severance\" note was amplified, coming across as overtly hostile. The modified base note, now tinged with acidic undertones, registered as aggressive disapproval and a rejection of the Bloom Brigade’s foundations.\n",
303
+ "\n",
304
+ "The interpreted message was something closer to: \"Your so-called progress is a superficial and short-lived distraction, brutally ripped from its source. Your existence is a noxious insult to our traditions.\"\n",
305
+ "\n",
306
+ "**The Consequences:**\n",
307
+ "\n",
308
+ "The perceived aggression in Lumina's scent blend ignited immediate outrage within the Bloom Brigade ranks. Zephyr, fueled by the misunderstanding and his own simmering resentment of the Collective's perceived obstructionism, responded with an equally potent and inflammatory olfactory counter-argument. He released a blend composed of artificially synthesized pheromones that bypassed the natural Xylosian communication pathways and directly stimulated feelings of anger and defiance.\n",
309
+ "\n",
310
+ "The incident rapidly escalated. Emboldened by Zephyr's counter-broadcast, Bloom Brigade members began engaging in widespread scent-bombing, releasing disruptive and aggressive pheromonal blends in areas traditionally controlled by the Chrysalis Collective. The Collective responded in kind, deploying ancient, meticulously preserved scent blends designed to induce paralysis and fear.\n",
311
+ "\n",
312
+ "Xylos plunged into what became known as the \"Scent Wars.\" The misunderstanding stemming from the altered scent blend had effectively shattered the delicate olfactory equilibrium of their society. Trade routes were disrupted as members of each faction refused to be near the other's scent territory. Political alliances dissolved, and previously peaceful communities fractured along scent-based lines.\n",
313
+ "\n",
314
+ "The conflict continued for generations, resulting in a permanent division of Xylosian society. The Bloom Brigade, fueled by their access to advanced chemical synthesis techniques, eventually migrated to the resource-rich but previously uninhabitable highlands, leaving the Chrysalis Collective to cling to their traditional ways in the lowlands.\n",
315
+ "\n",
316
+ "The Great Scented Schism of Xylos serves as a stark reminder that even the most sophisticated forms of communication can be vulnerable to the unpredictable forces of nature and the inherent fallibility of interpretation, especially when those interpretations are based on the inherently subjective experience of scent. The Xylosian story highlights the complex interplay between biology, environment, and social structures, demonstrating how a single olfactory miscommunication can irrevocably alter the course of an entire civilization.\n"
317
+ ],
318
+ "text/plain": [
319
+ "<IPython.core.display.Markdown object>"
320
+ ]
321
+ },
322
+ "metadata": {},
323
+ "output_type": "display_data"
324
+ }
325
+ ],
326
+ "source": [
327
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
328
+ "model_name = \"gemini-2.0-flash\"\n",
329
+ "\n",
330
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
331
+ "answer = response.choices[0].message.content\n",
332
+ "\n",
333
+ "display(Markdown(answer))\n",
334
+ "competitors.append(model_name)\n",
335
+ "answers.append(answer)"
336
+ ]
337
+ },
338
+ {
339
+ "cell_type": "code",
340
+ "execution_count": null,
341
+ "metadata": {},
342
+ "outputs": [],
343
+ "source": [
344
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
345
+ "model_name = \"deepseek-chat\"\n",
346
+ "\n",
347
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
348
+ "answer = response.choices[0].message.content\n",
349
+ "\n",
350
+ "display(Markdown(answer))\n",
351
+ "competitors.append(model_name)\n",
352
+ "answers.append(answer)"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": null,
358
+ "metadata": {},
359
+ "outputs": [],
360
+ "source": [
361
+ "# Updated with the latest Open Source model from OpenAI\n",
362
+ "\n",
363
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
364
+ "model_name = \"openai/gpt-oss-120b\"\n",
365
+ "\n",
366
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
367
+ "answer = response.choices[0].message.content\n",
368
+ "\n",
369
+ "display(Markdown(answer))\n",
370
+ "competitors.append(model_name)\n",
371
+ "answers.append(answer)\n"
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "markdown",
376
+ "metadata": {},
377
+ "source": [
378
+ "## For the next cell, we will use Ollama\n",
379
+ "\n",
380
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
381
+ "and runs models locally using high performance C++ code.\n",
382
+ "\n",
383
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
384
+ "\n",
385
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
386
+ "\n",
387
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
388
+ "\n",
389
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
390
+ "\n",
391
+ "`ollama pull <model_name>` downloads a model locally \n",
392
+ "`ollama ls` lists all the models you've downloaded \n",
393
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
394
+ ]
395
+ },
396
+ {
397
+ "cell_type": "markdown",
398
+ "metadata": {},
399
+ "source": [
400
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
401
+ " <tr>\n",
402
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
403
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
404
+ " </td>\n",
405
+ " <td>\n",
406
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
407
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
408
+ " </span>\n",
409
+ " </td>\n",
410
+ " </tr>\n",
411
+ "</table>"
412
+ ]
413
+ },
414
+ {
415
+ "cell_type": "code",
416
+ "execution_count": null,
417
+ "metadata": {},
418
+ "outputs": [],
419
+ "source": [
420
+ "!ollama pull llama3.2"
421
+ ]
422
+ },
423
+ {
424
+ "cell_type": "code",
425
+ "execution_count": null,
426
+ "metadata": {},
427
+ "outputs": [],
428
+ "source": [
429
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
430
+ "model_name = \"llama3.2\"\n",
431
+ "\n",
432
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
433
+ "answer = response.choices[0].message.content\n",
434
+ "\n",
435
+ "display(Markdown(answer))\n",
436
+ "competitors.append(model_name)\n",
437
+ "answers.append(answer)"
438
+ ]
439
+ },
440
+ {
441
+ "cell_type": "code",
442
+ "execution_count": 11,
443
+ "metadata": {},
444
+ "outputs": [
445
+ {
446
+ "name": "stdout",
447
+ "output_type": "stream",
448
+ "text": [
449
+ "['gemini-2.0-flash']\n",
450
+ "['## The Great Scented Schism of Xylos\\n\\nOn Xylos, a planet bathed in perpetual twilight, the sentient Xylosians communicated entirely through complex pheromonal blends released from specialized scent glands located around their antennae. These blends, ranging from simple expressions of mood to intricate philosophical arguments, were as nuanced and powerful as any spoken language. Political power, social status, and even romantic entanglements all hinged on the correct emission and interpretation of these olfactory pronouncements.\\n\\nThe Xylosian society was divided into two main factions: the **Chrysalis Collective**, who advocated for introspective contemplation and the preservation of ancient Xylosian traditions, and the **Bloom Brigade**, a more progressive group pushing for exploration and technological advancement. Tensions between the two were always simmering, but a catastrophic misunderstanding, dubbed the β€œScented Schism,” pushed them over the edge.\\n\\n**The Scenario:**\\n\\nThe catalyst was a public debate between the revered Elder Lumina, a prominent Chrysalis Collective member, and the charismatic young scientist, Zephyr, a rising star in the Bloom Brigade. Elder Lumina, known for her calm and measured olfactory pronouncements, intended to broadcast a nuanced critique of the Bloom Brigade\\'s relentless pursuit of new technologies. Her carefully crafted scent blend was meant to convey: \"Progress without introspection is akin to a blossom severed from its roots – beautiful, but fleeting and ultimately unsustainable.\"\\n\\nThe crucial elements of Lumina\\'s intended message were:\\n\\n* **Base Note (Longevity):** A complex mixture of slowly-releasing phenols and esters, normally signifying deep respect for the past and continuity. In this case, meant to represent the \"roots.\"\\n* **Mid Note (Fragility):** A rapidly dissipating blend of light aldehydes and ketones, typically associated with vulnerability and fleeting beauty. In this case, representing the \"blossom.\"\\n* **Top Note (Severance):** A sharp, pungent compound containing high concentrations of methylpropanethiol, usually used to indicate a painful separation or loss. In this case, representing the \"severed\" connection.\\n* **Contextual Scent Modifier (Caution):** A slight shimmer of terpenes emitted subtly around the entire blend, meant to soften the impact and convey caution rather than outright condemnation.\\n\\nHowever, a freak weather event, a sudden surge of subterranean methane released near Lumina’s broadcasting platform, subtly altered the chemical composition of her scent blend. Methane is a highly reactive gas that, in Xylos’s atmosphere, acted as a catalyst, accelerating the dissipation rate of the terpenes responsible for the \"Caution\" modifier. It also caused a partial oxidation of some of the slower-releasing phenols and esters in the base note, creating small amounts of acrid carboxylic acids.\\n\\n**The Misinterpretation:**\\n\\nAs Lumina broadcast her intended critique, the audience, heavily composed of Bloom Brigade members eager to hear Zephyr’s rebuttal, perceived a drastically different message. Due to the lack of the \"Caution\" modifier, the \"Severance\" note was amplified, coming across as overtly hostile. The modified base note, now tinged with acidic undertones, registered as aggressive disapproval and a rejection of the Bloom Brigade’s foundations.\\n\\nThe interpreted message was something closer to: \"Your so-called progress is a superficial and short-lived distraction, brutally ripped from its source. Your existence is a noxious insult to our traditions.\"\\n\\n**The Consequences:**\\n\\nThe perceived aggression in Lumina\\'s scent blend ignited immediate outrage within the Bloom Brigade ranks. Zephyr, fueled by the misunderstanding and his own simmering resentment of the Collective\\'s perceived obstructionism, responded with an equally potent and inflammatory olfactory counter-argument. He released a blend composed of artificially synthesized pheromones that bypassed the natural Xylosian communication pathways and directly stimulated feelings of anger and defiance.\\n\\nThe incident rapidly escalated. Emboldened by Zephyr\\'s counter-broadcast, Bloom Brigade members began engaging in widespread scent-bombing, releasing disruptive and aggressive pheromonal blends in areas traditionally controlled by the Chrysalis Collective. The Collective responded in kind, deploying ancient, meticulously preserved scent blends designed to induce paralysis and fear.\\n\\nXylos plunged into what became known as the \"Scent Wars.\" The misunderstanding stemming from the altered scent blend had effectively shattered the delicate olfactory equilibrium of their society. Trade routes were disrupted as members of each faction refused to be near the other\\'s scent territory. Political alliances dissolved, and previously peaceful communities fractured along scent-based lines.\\n\\nThe conflict continued for generations, resulting in a permanent division of Xylosian society. The Bloom Brigade, fueled by their access to advanced chemical synthesis techniques, eventually migrated to the resource-rich but previously uninhabitable highlands, leaving the Chrysalis Collective to cling to their traditional ways in the lowlands.\\n\\nThe Great Scented Schism of Xylos serves as a stark reminder that even the most sophisticated forms of communication can be vulnerable to the unpredictable forces of nature and the inherent fallibility of interpretation, especially when those interpretations are based on the inherently subjective experience of scent. The Xylosian story highlights the complex interplay between biology, environment, and social structures, demonstrating how a single olfactory miscommunication can irrevocably alter the course of an entire civilization.\\n']\n"
451
+ ]
452
+ }
453
+ ],
454
+ "source": [
455
+ "# So where are we?\n",
456
+ "\n",
457
+ "print(competitors)\n",
458
+ "print(answers)\n"
459
+ ]
460
+ },
461
+ {
462
+ "cell_type": "code",
463
+ "execution_count": 12,
464
+ "metadata": {},
465
+ "outputs": [
466
+ {
467
+ "name": "stdout",
468
+ "output_type": "stream",
469
+ "text": [
470
+ "Competitor: gemini-2.0-flash\n",
471
+ "\n",
472
+ "## The Great Scented Schism of Xylos\n",
473
+ "\n",
474
+ "On Xylos, a planet bathed in perpetual twilight, the sentient Xylosians communicated entirely through complex pheromonal blends released from specialized scent glands located around their antennae. These blends, ranging from simple expressions of mood to intricate philosophical arguments, were as nuanced and powerful as any spoken language. Political power, social status, and even romantic entanglements all hinged on the correct emission and interpretation of these olfactory pronouncements.\n",
475
+ "\n",
476
+ "The Xylosian society was divided into two main factions: the **Chrysalis Collective**, who advocated for introspective contemplation and the preservation of ancient Xylosian traditions, and the **Bloom Brigade**, a more progressive group pushing for exploration and technological advancement. Tensions between the two were always simmering, but a catastrophic misunderstanding, dubbed the β€œScented Schism,” pushed them over the edge.\n",
477
+ "\n",
478
+ "**The Scenario:**\n",
479
+ "\n",
480
+ "The catalyst was a public debate between the revered Elder Lumina, a prominent Chrysalis Collective member, and the charismatic young scientist, Zephyr, a rising star in the Bloom Brigade. Elder Lumina, known for her calm and measured olfactory pronouncements, intended to broadcast a nuanced critique of the Bloom Brigade's relentless pursuit of new technologies. Her carefully crafted scent blend was meant to convey: \"Progress without introspection is akin to a blossom severed from its roots – beautiful, but fleeting and ultimately unsustainable.\"\n",
481
+ "\n",
482
+ "The crucial elements of Lumina's intended message were:\n",
483
+ "\n",
484
+ "* **Base Note (Longevity):** A complex mixture of slowly-releasing phenols and esters, normally signifying deep respect for the past and continuity. In this case, meant to represent the \"roots.\"\n",
485
+ "* **Mid Note (Fragility):** A rapidly dissipating blend of light aldehydes and ketones, typically associated with vulnerability and fleeting beauty. In this case, representing the \"blossom.\"\n",
486
+ "* **Top Note (Severance):** A sharp, pungent compound containing high concentrations of methylpropanethiol, usually used to indicate a painful separation or loss. In this case, representing the \"severed\" connection.\n",
487
+ "* **Contextual Scent Modifier (Caution):** A slight shimmer of terpenes emitted subtly around the entire blend, meant to soften the impact and convey caution rather than outright condemnation.\n",
488
+ "\n",
489
+ "However, a freak weather event, a sudden surge of subterranean methane released near Lumina’s broadcasting platform, subtly altered the chemical composition of her scent blend. Methane is a highly reactive gas that, in Xylos’s atmosphere, acted as a catalyst, accelerating the dissipation rate of the terpenes responsible for the \"Caution\" modifier. It also caused a partial oxidation of some of the slower-releasing phenols and esters in the base note, creating small amounts of acrid carboxylic acids.\n",
490
+ "\n",
491
+ "**The Misinterpretation:**\n",
492
+ "\n",
493
+ "As Lumina broadcast her intended critique, the audience, heavily composed of Bloom Brigade members eager to hear Zephyr’s rebuttal, perceived a drastically different message. Due to the lack of the \"Caution\" modifier, the \"Severance\" note was amplified, coming across as overtly hostile. The modified base note, now tinged with acidic undertones, registered as aggressive disapproval and a rejection of the Bloom Brigade’s foundations.\n",
494
+ "\n",
495
+ "The interpreted message was something closer to: \"Your so-called progress is a superficial and short-lived distraction, brutally ripped from its source. Your existence is a noxious insult to our traditions.\"\n",
496
+ "\n",
497
+ "**The Consequences:**\n",
498
+ "\n",
499
+ "The perceived aggression in Lumina's scent blend ignited immediate outrage within the Bloom Brigade ranks. Zephyr, fueled by the misunderstanding and his own simmering resentment of the Collective's perceived obstructionism, responded with an equally potent and inflammatory olfactory counter-argument. He released a blend composed of artificially synthesized pheromones that bypassed the natural Xylosian communication pathways and directly stimulated feelings of anger and defiance.\n",
500
+ "\n",
501
+ "The incident rapidly escalated. Emboldened by Zephyr's counter-broadcast, Bloom Brigade members began engaging in widespread scent-bombing, releasing disruptive and aggressive pheromonal blends in areas traditionally controlled by the Chrysalis Collective. The Collective responded in kind, deploying ancient, meticulously preserved scent blends designed to induce paralysis and fear.\n",
502
+ "\n",
503
+ "Xylos plunged into what became known as the \"Scent Wars.\" The misunderstanding stemming from the altered scent blend had effectively shattered the delicate olfactory equilibrium of their society. Trade routes were disrupted as members of each faction refused to be near the other's scent territory. Political alliances dissolved, and previously peaceful communities fractured along scent-based lines.\n",
504
+ "\n",
505
+ "The conflict continued for generations, resulting in a permanent division of Xylosian society. The Bloom Brigade, fueled by their access to advanced chemical synthesis techniques, eventually migrated to the resource-rich but previously uninhabitable highlands, leaving the Chrysalis Collective to cling to their traditional ways in the lowlands.\n",
506
+ "\n",
507
+ "The Great Scented Schism of Xylos serves as a stark reminder that even the most sophisticated forms of communication can be vulnerable to the unpredictable forces of nature and the inherent fallibility of interpretation, especially when those interpretations are based on the inherently subjective experience of scent. The Xylosian story highlights the complex interplay between biology, environment, and social structures, demonstrating how a single olfactory miscommunication can irrevocably alter the course of an entire civilization.\n",
508
+ "\n"
509
+ ]
510
+ }
511
+ ],
512
+ "source": [
513
+ "# It's nice to know how to use \"zip\"\n",
514
+ "for competitor, answer in zip(competitors, answers):\n",
515
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
516
+ ]
517
+ },
518
+ {
519
+ "cell_type": "code",
520
+ "execution_count": 13,
521
+ "metadata": {},
522
+ "outputs": [],
523
+ "source": [
524
+ "# Let's bring this together - note the use of \"enumerate\"\n",
525
+ "\n",
526
+ "together = \"\"\n",
527
+ "for index, answer in enumerate(answers):\n",
528
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
529
+ " together += answer + \"\\n\\n\""
530
+ ]
531
+ },
532
+ {
533
+ "cell_type": "code",
534
+ "execution_count": 14,
535
+ "metadata": {},
536
+ "outputs": [
537
+ {
538
+ "name": "stdout",
539
+ "output_type": "stream",
540
+ "text": [
541
+ "# Response from competitor 1\n",
542
+ "\n",
543
+ "## The Great Scented Schism of Xylos\n",
544
+ "\n",
545
+ "On Xylos, a planet bathed in perpetual twilight, the sentient Xylosians communicated entirely through complex pheromonal blends released from specialized scent glands located around their antennae. These blends, ranging from simple expressions of mood to intricate philosophical arguments, were as nuanced and powerful as any spoken language. Political power, social status, and even romantic entanglements all hinged on the correct emission and interpretation of these olfactory pronouncements.\n",
546
+ "\n",
547
+ "The Xylosian society was divided into two main factions: the **Chrysalis Collective**, who advocated for introspective contemplation and the preservation of ancient Xylosian traditions, and the **Bloom Brigade**, a more progressive group pushing for exploration and technological advancement. Tensions between the two were always simmering, but a catastrophic misunderstanding, dubbed the β€œScented Schism,” pushed them over the edge.\n",
548
+ "\n",
549
+ "**The Scenario:**\n",
550
+ "\n",
551
+ "The catalyst was a public debate between the revered Elder Lumina, a prominent Chrysalis Collective member, and the charismatic young scientist, Zephyr, a rising star in the Bloom Brigade. Elder Lumina, known for her calm and measured olfactory pronouncements, intended to broadcast a nuanced critique of the Bloom Brigade's relentless pursuit of new technologies. Her carefully crafted scent blend was meant to convey: \"Progress without introspection is akin to a blossom severed from its roots – beautiful, but fleeting and ultimately unsustainable.\"\n",
552
+ "\n",
553
+ "The crucial elements of Lumina's intended message were:\n",
554
+ "\n",
555
+ "* **Base Note (Longevity):** A complex mixture of slowly-releasing phenols and esters, normally signifying deep respect for the past and continuity. In this case, meant to represent the \"roots.\"\n",
556
+ "* **Mid Note (Fragility):** A rapidly dissipating blend of light aldehydes and ketones, typically associated with vulnerability and fleeting beauty. In this case, representing the \"blossom.\"\n",
557
+ "* **Top Note (Severance):** A sharp, pungent compound containing high concentrations of methylpropanethiol, usually used to indicate a painful separation or loss. In this case, representing the \"severed\" connection.\n",
558
+ "* **Contextual Scent Modifier (Caution):** A slight shimmer of terpenes emitted subtly around the entire blend, meant to soften the impact and convey caution rather than outright condemnation.\n",
559
+ "\n",
560
+ "However, a freak weather event, a sudden surge of subterranean methane released near Lumina’s broadcasting platform, subtly altered the chemical composition of her scent blend. Methane is a highly reactive gas that, in Xylos’s atmosphere, acted as a catalyst, accelerating the dissipation rate of the terpenes responsible for the \"Caution\" modifier. It also caused a partial oxidation of some of the slower-releasing phenols and esters in the base note, creating small amounts of acrid carboxylic acids.\n",
561
+ "\n",
562
+ "**The Misinterpretation:**\n",
563
+ "\n",
564
+ "As Lumina broadcast her intended critique, the audience, heavily composed of Bloom Brigade members eager to hear Zephyr’s rebuttal, perceived a drastically different message. Due to the lack of the \"Caution\" modifier, the \"Severance\" note was amplified, coming across as overtly hostile. The modified base note, now tinged with acidic undertones, registered as aggressive disapproval and a rejection of the Bloom Brigade’s foundations.\n",
565
+ "\n",
566
+ "The interpreted message was something closer to: \"Your so-called progress is a superficial and short-lived distraction, brutally ripped from its source. Your existence is a noxious insult to our traditions.\"\n",
567
+ "\n",
568
+ "**The Consequences:**\n",
569
+ "\n",
570
+ "The perceived aggression in Lumina's scent blend ignited immediate outrage within the Bloom Brigade ranks. Zephyr, fueled by the misunderstanding and his own simmering resentment of the Collective's perceived obstructionism, responded with an equally potent and inflammatory olfactory counter-argument. He released a blend composed of artificially synthesized pheromones that bypassed the natural Xylosian communication pathways and directly stimulated feelings of anger and defiance.\n",
571
+ "\n",
572
+ "The incident rapidly escalated. Emboldened by Zephyr's counter-broadcast, Bloom Brigade members began engaging in widespread scent-bombing, releasing disruptive and aggressive pheromonal blends in areas traditionally controlled by the Chrysalis Collective. The Collective responded in kind, deploying ancient, meticulously preserved scent blends designed to induce paralysis and fear.\n",
573
+ "\n",
574
+ "Xylos plunged into what became known as the \"Scent Wars.\" The misunderstanding stemming from the altered scent blend had effectively shattered the delicate olfactory equilibrium of their society. Trade routes were disrupted as members of each faction refused to be near the other's scent territory. Political alliances dissolved, and previously peaceful communities fractured along scent-based lines.\n",
575
+ "\n",
576
+ "The conflict continued for generations, resulting in a permanent division of Xylosian society. The Bloom Brigade, fueled by their access to advanced chemical synthesis techniques, eventually migrated to the resource-rich but previously uninhabitable highlands, leaving the Chrysalis Collective to cling to their traditional ways in the lowlands.\n",
577
+ "\n",
578
+ "The Great Scented Schism of Xylos serves as a stark reminder that even the most sophisticated forms of communication can be vulnerable to the unpredictable forces of nature and the inherent fallibility of interpretation, especially when those interpretations are based on the inherently subjective experience of scent. The Xylosian story highlights the complex interplay between biology, environment, and social structures, demonstrating how a single olfactory miscommunication can irrevocably alter the course of an entire civilization.\n",
579
+ "\n",
580
+ "\n",
581
+ "\n"
582
+ ]
583
+ }
584
+ ],
585
+ "source": [
586
+ "print(together)"
587
+ ]
588
+ },
589
+ {
590
+ "cell_type": "markdown",
591
+ "metadata": {},
592
+ "source": []
593
+ },
594
+ {
595
+ "cell_type": "code",
596
+ "execution_count": 15,
597
+ "metadata": {},
598
+ "outputs": [],
599
+ "source": [
600
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
601
+ "Each model has been given this question:\n",
602
+ "\n",
603
+ "{question}\n",
604
+ "\n",
605
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
606
+ "Respond with JSON, and only JSON, with the following format:\n",
607
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
608
+ "\n",
609
+ "Here are the responses from each competitor:\n",
610
+ "\n",
611
+ "{together}\n",
612
+ "\n",
613
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
614
+ ]
615
+ },
616
+ {
617
+ "cell_type": "code",
618
+ "execution_count": 22,
619
+ "metadata": {},
620
+ "outputs": [
621
+ {
622
+ "name": "stdout",
623
+ "output_type": "stream",
624
+ "text": [
625
+ "You are judging a competition between 2 competitors.\n",
626
+ "Each model has been given this question:\n",
627
+ "\n",
628
+ "This hypothetical scenario presents a profound ethical dilemma, pitting the immediate and potential long-term needs of humanity against the intrinsic value and preservation of an alien ecosystem.\n",
629
+ "\n",
630
+ "---\n",
631
+ "\n",
632
+ "### Argument For the Exploitation of the Martian Microbe\n",
633
+ "\n",
634
+ "The core argument for exploitation centers on humanity's well-being and progress, particularly given the potential for \"significant advancements in medicine.\"\n",
635
+ "\n",
636
+ "1. **Humanitarian Imperative:** If this microbe holds the key to curing debilitating diseases, extending human lifespans, or preventing future pandemics (whether on Earth or Mars), it would be ethically irresponsible *not* to investigate it. The suffering alleviated could be immense, touching billions of lives.\n",
637
+ "2. **Advancement of Science and Technology:** Studying novel alien biochemistry could revolutionize our understanding of life itself, leading to breakthroughs far beyond just medicine. It could inform our search for life elsewhere, our understanding of biological resilience, and even new material sciences or energy solutions.\n",
638
+ "3. **Survival and Resilience of the Mars Colony:** A self-sustaining colony, while robust, is still a fragile outpost. Medical advancements derived from the microbe could offer critical tools for maintaining the health and longevity of the colonists, addressing unique Martian health challenges (e.g., radiation exposure, isolation, unknown environmental stressors). This could be vital for the colony's long-term viability.\n",
639
+ "4. **Practicality and Resource Utilization:** The microbe exists. If its existence is purely biological and non-sentient, and its utility to humanity is enormous, then from a utilitarian perspective, leveraging this resource for the greater good of a sentient, complex species (humanity) might be justified.\n",
640
+ "5. **Limited Planetary Impact:** While the ecosystem is \"fragile\" and \"irreversibly altered,\" the scale might be localized. It's a microbe, not a forest or a complex animal kingdom. The \"alteration\" might be the removal of a small sample or a local shift in microbial population, not the destruction of the entire planet's potential for life.\n",
641
+ "6. **\"First Contact\" Precedent:** If this is the only alien life we encounter, understanding it thoroughly – even through intervention – is a critical first step in developing future protocols for interaction with extraterrestrial life.\n",
642
+ "\n",
643
+ "**Long-term implications for humanity (pro-exploitation):** A healthier, more resilient, and scientifically advanced humanity, better equipped to face future challenges both on Earth and in space. Potential for a golden age of medicine and biological discovery.\n",
644
+ "\n",
645
+ "**Long-term implications for the Martian environment (pro-exploitation):** Localized irreversible alteration or destruction of a specific microbial ecosystem. The rest of Mars would remain untouched. The \"irreversible alteration\" might be a minor change in the grand scheme of the planet's history, especially if the ecosystem is confined and isolated.\n",
646
+ "\n",
647
+ "---\n",
648
+ "\n",
649
+ "### Argument Against the Exploitation of the Martian Microbe\n",
650
+ "\n",
651
+ "The argument against exploitation centers on ethical principles, the unknown risks, and the intrinsic value of undisturbed nature, regardless of its utility to humanity.\n",
652
+ "\n",
653
+ "1. **Intrinsic Value and Rights of Life:** Even if microbial, this is an independent, unique form of life that evolved outside Earth. It possesses an intrinsic right to exist undisturbed. To destroy or fundamentally alter it for our benefit is an act of biological imperialism, echoing past destructive actions on Earth.\n",
654
+ "2. **Irreversible Loss and Scientific Hubris:** The \"irreversible alteration\" means that once done, it cannot be undone. We would be destroying something unique before fully understanding it. Our current scientific understanding, however advanced, is still limited. We might destroy critical evidence for the origins of life, a unique evolutionary pathway, or a biosphere with a subtle yet profound role in Martian geology or atmosphere.\n",
655
+ "3. **Unforeseen Consequences (The Andromeda Strain Scenario):** Introducing Earth-based contaminants to the Martian ecosystem during extraction, or bringing Martian microbes/compounds back to human habitats, could have catastrophic, unforeseen consequences. The Martian microbe could be harmless on Mars but devastatingly pathogenic to Earth life, or vice-versa. We lack a full understanding of potential cross-contamination effects.\n",
656
+ "4. **Setting a Dangerous Precedent:** If we exploit the first alien life we find for our own benefit, what message does that send for future encounters? It establishes a utilitarian ethical framework where alien environments are merely resources for human consumption, potentially justifying future exploitation of more complex alien biospheres.\n",
657
+ "5. **Ethical Responsibility and Stewardship:** As the first intelligent species to encounter alien life, humanity has a profound ethical responsibility to act as stewards, not conquerors. Our presence on Mars should be about coexistence and observation, not immediate exploitation.\n",
658
+ "6. **Lost Potential for Future Non-Invasive Study:** Rushing in now might destroy the opportunity for future, more advanced non-invasive technologies to study and potentially replicate the microbe's benefits without harm. Patience could yield a better outcome.\n",
659
+ "7. **The Definition of \"Advancement\":** True advancement might include demonstrating restraint and respect for other forms of life, rather than just technological or medical progress at any cost.\n",
660
+ "\n",
661
+ "**Long-term implications for humanity (anti-exploitation):** Humanity would demonstrate ethical maturity and long-term vision, potentially fostering a more responsible approach to future interstellar exploration. We might forego immediate medical gains but preserve our moral standing and avoid unforeseen biological catastrophes.\n",
662
+ "\n",
663
+ "**Long-term implications for the Martian environment (anti-exploitation):** The specific ecosystem would remain pristine and undisturbed, preserving a unique scientific marvel for future study and perhaps as a testament to the diversity of life in the universe. This ensures the integrity of the Martian natural history.\n",
664
+ "\n",
665
+ "---\n",
666
+ "\n",
667
+ "### Proposed Solution: A Phased, Highly Regulated Approach Rooted in Precaution and Long-Term Vision\n",
668
+ "\n",
669
+ "The challenge is to balance the undeniable potential benefits for humanity with the profound ethical responsibility towards a unique alien ecosystem. A solution must prioritize knowledge acquisition with minimal impact, and establish robust safeguards.\n",
670
+ "\n",
671
+ "1. **Immediate Moratorium and Establishment of a \"No-Go\" Zone:**\n",
672
+ " * Declare the entire area surrounding the discovered microbe and its ecosystem an **absolute protected zone**. No human presence or invasive equipment allowed initially.\n",
673
+ " * This immediately halts any potential exploitation and allows time for a comprehensive, multi-disciplinary ethical and scientific review.\n",
674
+ "\n",
675
+ "2. **Intensive, Non-Invasive Remote Study:**\n",
676
+ " * Deploy an array of advanced, non-contact instruments (e.g., orbital and drone-mounted spectroscopy, laser chemical analysis, extremely high-resolution imaging) to study the microbe *in situ* from a safe distance.\n",
677
+ " * Focus on understanding its biochemistry, its ecological role within the local environment, its resilience, and the full extent of the ecosystem.\n",
678
+ " * The goal is to determine if its medical potential can be identified or predicted without physical contact, or if its critical compounds can be inferred.\n",
679
+ "\n",
680
+ "3. **Tiered Risk Assessment and Global/Inter-Colonial Consensus:**\n",
681
+ " * Form an international/inter-colonial ethics committee composed of scientists, ethicists, legal experts, and representatives from the Martian colony and Earth's global population.\n",
682
+ " * This committee would review all data from non-invasive studies and establish strict criteria for *any* further interaction. Criteria would include:\n",
683
+ " * **Demonstrated Critical Need:** Is the medical advancement truly impossible to achieve otherwise, or is it merely \"significant\"?\n",
684
+ " * **Quantifiable Risk vs. Reward:** A clear assessment of potential harm to the ecosystem versus quantifiable human benefit.\n",
685
+ " * **Minimality of Intervention:** Can a benefit be derived from the absolute smallest, most contained sample?\n",
686
+ "\n",
687
+ "4. **Extremely Limited, Highly Contained Sampling (If Deemed Absolutely Necessary):**\n",
688
+ " * If non-invasive study proves insufficient and the medical benefits are deemed truly critical, allow for a single, microscopic sample to be taken.\n",
689
+ " * This sampling must be performed by highly automated, robotic systems under extreme biological containment, entirely isolated from the main colony and Earth-based biology.\n",
690
+ " * The sample would be processed in a dedicated, ultra-sterile Martian lab designed for contained alien biological research, with no possibility of escape.\n",
691
+ "\n",
692
+ "5. **Focus on Synthetic Replication or Analogues:**\n",
693
+ " * The primary goal of any study, even with a sample, should be to identify the specific compounds or genetic sequences responsible for the medical benefit.\n",
694
+ " * Once identified, efforts should focus on synthetically replicating these compounds, or developing Earth-based biological analogues, thereby eliminating the need for further extraction from Mars.\n",
695
+ "\n",
696
+ "6. **Permanent Preservation and Long-Term Monitoring:**\n",
697
+ " * Regardless of whether sampling occurs, the original ecosystem would remain a permanently protected scientific reserve.\n",
698
+ " * Long-term non-invasive monitoring would continue to track its health and evolution, ensuring that humanity learns from this unique life form without destroying it.\n",
699
+ "\n",
700
+ "This solution prioritizes respect for alien life and ecological preservation while acknowledging humanity's potential needs. It ensures that any interaction is deliberate, minimal, and informed by the broadest possible ethical and scientific consensus, preventing a hasty, potentially catastrophic mistake while still allowing for the possibility of life-saving discovery.\n",
701
+ "\n",
702
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
703
+ "Respond with JSON, and only JSON, with the following format:\n",
704
+ "{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}\n",
705
+ "\n",
706
+ "Here are the responses from each competitor:\n",
707
+ "\n",
708
+ "# Response from competitor 1\n",
709
+ "\n",
710
+ "The discovery of a Martian microbe with profound medical potential presents humanity on Mars with an ethical crucible. This dilemma forces us to confront fundamental questions about our role as explorers, our responsibility towards alien life, and the long-term vision for our future as a multi-planetary species.\n",
711
+ "\n",
712
+ "---\n",
713
+ "\n",
714
+ "## Arguments for the Exploitation of the Martian Microbe\n",
715
+ "\n",
716
+ "The core argument for exploitation centers on **human well-being and survival**, especially in a new, challenging environment like Mars.\n",
717
+ "\n",
718
+ "1. **Revolutionary Medical Advancements:** The prompt states the microbe offers \"significant advancements in medicine.\" This could mean cures for currently intractable diseases (cancer, Alzheimer's, genetic disorders), anti-aging therapies, enhanced human resilience to radiation or novel pathogens, or even fundamental breakthroughs in understanding life itself. Denying humanity such a boon, particularly when facing the unique health challenges of deep space and Mars, would be a profound ethical failure from an anthropocentric perspective.\n",
719
+ "2. **Survival and Adaptation of the Mars Colony:** The Martian environment poses numerous threats: radiation, low gravity, potential novel pathogens. A microbe offering medical breakthroughs could be crucial for the colony's long-term viability, helping humans adapt and thrive, rather than merely survive. This isn't just about Earth's population; it's about the very future of humanity on Mars.\n",
720
+ "3. **Scientific Imperative:** Understanding novel biological mechanisms, especially from an independent genesis of life, would be an unparalleled scientific achievement. It could redefine our understanding of biology, evolution, and the very nature of existence, potentially unlocking secrets that benefit all scientific fields, not just medicine. This knowledge itself is a valuable resource.\n",
721
+ "4. **Utilitarian Argument:** If the benefit to potentially billions of humans (current and future generations) far outweighs the harm to a \"fragile, previously undisturbed Martian ecosystem\" (which, by definition, is localized and non-sentient), then exploitation could be seen as the morally correct choice. The greatest good for the greatest number.\n",
722
+ "5. **Precedent of Human Exploration:** Humanity has always explored, discovered, and utilized resources for its advancement. To arbitrarily stop at the first sign of alien life, especially microscopic, could be seen as an inhibition of our exploratory spirit and an uncharacteristic halt to scientific progress. We are already \"altering\" Mars simply by being there; drawing a line at a microbe might seem arbitrary.\n",
723
+ "\n",
724
+ "**Long-term implications for humanity (if exploited):** A future where human life is extended, suffering is reduced, and our understanding of biology is vastly expanded. Humanity becomes more resilient and capable of flourishing in harsh environments, potentially accelerating our spread across the solar system. However, it also sets a precedent that anthropocentric needs always outweigh ecological preservation, potentially leading to a pattern of resource exploitation without sufficient regard for other biospheres.\n",
725
+ "\n",
726
+ "---\n",
727
+ "\n",
728
+ "## Arguments Against the Exploitation of the Martian Microbe\n",
729
+ "\n",
730
+ "The arguments against exploitation focus on **ethical responsibility, the intrinsic value of alien life, and the preservation of pristine environments.**\n",
731
+ "\n",
732
+ "1. **Irreversible Alteration of a Unique Ecosystem:** The prompt explicitly states the alteration would be \"irreversible.\" This isn't just a patch of dirt; it's a unique, probably billions-of-years-old, independent evolutionary pathway. Destroying it means losing an irreplaceable natural wonder and a potential scientific goldmine forever. It's an act of biological vandalism.\n",
733
+ "2. **Intrinsic Value of Alien Life:** Even if non-sentient, the mere existence of unique, independently evolved life possesses intrinsic value. We have a moral obligation not to extinguish or profoundly alter what we encounter, particularly when it is so rare and precious. This is a chance to demonstrate a higher ethical standard than humanity has often shown on Earth.\n",
734
+ "3. **The \"Prime Directive\" Principle:** Often discussed in science fiction, this principle suggests that advanced civilizations should not interfere with the natural development of alien life or ecosystems. While the Martian microbe isn't sentient, the principle of non-interference applies to preserving the natural state of an alien world, allowing it to evolve unimpeded by human actions.\n",
735
+ "4. **Unforeseen Consequences (The Precautionary Principle):** We understand almost nothing about Martian ecosystems. What if this microbe plays a keystone role? What if its alteration triggers a cascade of unpredictable environmental changes? What if it's part of a larger, interconnected biome we don't yet comprehend? Furthermore, what if the microbe, once extracted and studied, proves dangerous to humans in unforeseen ways (e.g., mutates into a pathogen, has long-term toxic effects)? The risk of unknown unknowns is immense.\n",
736
+ "5. **Ethical Precedent:** Exploiting this ecosystem for human gain sets a dangerous precedent for future interstellar exploration. If we destroy the first unique alien ecosystem we find, what does that say about our values? It would signal that humanity is willing to sacrifice any unique alien environment for its own benefit, repeating the mistakes of Earth's colonial history.\n",
737
+ "6. **Potential for Alternative Solutions:** Could the medical benefits be derived through observation, genetic sequencing, or replication in sterile lab environments without *irreversibly altering* the native ecosystem? Rushing to destroy before exhausting all non-invasive options is irresponsible.\n",
738
+ "\n",
739
+ "**Long-term implications for the Martian environment (if exploited):** A lost scientific treasure, a permanently scarred biome, and the potential for larger ecological disruptions that could impact future human habitation or scientific endeavors on Mars. Humanity would have irrevocably marred its new home world at the very outset of its multi-planetary existence.\n",
740
+ "\n",
741
+ "---\n",
742
+ "\n",
743
+ "## Proposed Solution: The \"Martian Life Stewardship Protocol\"\n",
744
+ "\n",
745
+ "The goal is to unlock the microbe's medical potential while safeguarding the unique Martian ecosystem, establishing a precedent for responsible interplanetary exploration.\n",
746
+ "\n",
747
+ "**Phase 1: Deep, Non-Invasive Study and Isolation (Initial 5-10 years)**\n",
748
+ "\n",
749
+ "1. **Hyper-Sterile Containment & Remote Analysis:** Immediately establish a highly restricted, hyper-sterile zone around the discovery site. All initial studies must be conducted *in situ* using robotic probes and advanced remote sensing techniques. No direct human contact or extraction. The goal is to fully characterize the microbe's biology, genetics, and its role within its ecosystem *without* disturbing it.\n",
750
+ "2. **Strict Biosecurity Protocols:** Any equipment used near the site must undergo extreme sterilization procedures to prevent Earthly contamination.\n",
751
+ "3. **Comprehensive Environmental Survey:** Simultaneously, conduct extensive geological, atmospheric, and hydrological surveys of the surrounding region to understand the full scope of the ecosystem and its vulnerabilities.\n",
752
+ "4. **Digital Bio-Archive:** Create a complete, redundant digital archive of all collected data, including full genomic sequences, metabolic pathways, and ecological interactions. This ensures that even if the physical ecosystem is somehow lost, its information remains.\n",
753
+ "\n",
754
+ "**Phase 2: Ethical Review and Controlled Replication (Years 5-15)**\n",
755
+ "\n",
756
+ "1. **Independent Interplanetary Ethics Board:** Form an international and interdisciplinary board (comprising astrobiologists, ethicists, medical professionals, environmental scientists, and legal experts from both Earth and Mars) to review all findings. This board would assess:\n",
757
+ " * The confirmed medical benefits.\n",
758
+ " * The actual risk of *irreversible alteration* based on the deep study.\n",
759
+ " * The availability of truly non-invasive alternatives.\n",
760
+ " * The long-term ethical implications of any action.\n",
761
+ " * This board would operate under the **Precautionary Principle**: assume potential harm until proven safe.\n",
762
+ "2. **Minimal, Targeted Micro-Sampling (If Approved):** If the board *unanimously* approves, allow for a *single, minimal* micro-sample extraction. This sample must be transported to an **off-site, ultra-sterile, dedicated research facility (e.g., an orbital laboratory around Mars or a specialized facility back on Earth under strict quarantine)**. The purpose is to establish a living culture *outside* the Martian environment.\n",
763
+ "3. **Lab-Based Replication & Study:** All further research and attempts to derive medical products must occur within this isolated facility using the replicated culture. The goal is to grow and synthesize the microbe's beneficial compounds *without* any further interaction with the native Martian ecosystem.\n",
764
+ "4. **Martian Life Sanctuary:** Declare the original discovery site and a substantial buffer zone as a permanent **Martian Life Sanctuary**, protected from all human interference indefinitely.\n",
765
+ "\n",
766
+ "**Phase 3: Responsible Application and Global Stewardship (Ongoing)**\n",
767
+ "\n",
768
+ "1. **Open Science and Equitable Access:** Any medical breakthroughs derived from the microbe must be made universally accessible and affordable, avoiding monopolization.\n",
769
+ "2. **Continuous Monitoring:** Maintain ongoing remote monitoring of the Martian Life Sanctuary to detect any subtle changes or unintended consequences from prior actions, no matter how small.\n",
770
+ "3. **Public Education:** Engage in global public education about the value of alien life and the importance of ethical stewardship, using this dilemma as a foundational case study.\n",
771
+ "\n",
772
+ "This \"Martian Life Stewardship Protocol\" aims to balance the compelling human need for medical advancement with the profound ethical imperative to protect unique alien life. It emphasizes understanding before action, rigorous ethical review, strict containment, and the creation of a permanent sanctuary, ensuring that humanity approaches its new cosmic neighborhood with wisdom, humility, and foresight.\n",
773
+ "\n",
774
+ "# Response from competitor 2\n",
775
+ "\n",
776
+ "The discovery of a Martian microbe with immense medical potential presents a profound ethical dilemma for humanity's first off-world colony. This situation forces us to weigh the immediate and long-term benefits for human health against our responsibility to preserve nascent alien ecosystems.\n",
777
+ "\n",
778
+ "---\n",
779
+ "\n",
780
+ "### Argument For the Exploitation of the Martian Microbe\n",
781
+ "\n",
782
+ "The primary argument for exploiting the Martian microbe centers on the **imperative of human well-being and survival**, both on Mars and potentially back on Earth.\n",
783
+ "\n",
784
+ "1. **Life-Saving Potential:** The potential for \"significant advancements in medicine\" cannot be overstated. This could mean cures for currently incurable diseases, revolutionary new antibiotics in an era of growing resistance, treatments for age-related ailments, or even enhancements to human resilience against the harsh Martian environment (e.g., radiation, low gravity effects). To forgo such potential, especially when facing new health challenges on an alien world, would be a dereliction of our duty to ourselves.\n",
785
+ "\n",
786
+ "2. **Scientific Advancement:** The study of truly alien biology offers unprecedented insights into life itself. A Martian microbe represents an entirely independent genesis of life, potentially operating on different biochemical principles. Understanding this could unlock fundamental secrets of biology, leading to breakthroughs far beyond medicine – in fields like bioengineering, energy, and materials science. This expansion of human knowledge is a core driver of our species' progress.\n",
787
+ "\n",
788
+ "3. **Ensuring Colonial Viability:** For a self-sustaining Mars colony, anything that improves human health and longevity directly contributes to its long-term viability and success. A healthier, more robust population is better equipped to handle the stresses of extraterrestrial living, contributing to stable growth and ultimately, the survival of the Martian outpost.\n",
789
+ "\n",
790
+ "4. **Utilitarian Argument:** From a purely utilitarian perspective, the potential to save millions, perhaps billions, of human lives and alleviate immense suffering globally, outweighs the preservation of a *single* microbial ecosystem, especially one that is fragile and \"previously undisturbed.\" The concept of \"intrinsic value\" might be applied to sentient life, but applying it to a single microbial population over the vast benefit to humanity is a difficult ethical stance.\n",
791
+ "\n",
792
+ "5. **Learning and Adaptation:** Even if the alteration is \"irreversible,\" the knowledge gained from this interaction could equip humanity with the tools and wisdom to navigate future encounters with other alien life or even manage delicate Earth ecosystems more effectively. We learn through interaction and, sometimes, through controlled impact.\n",
793
+ "\n",
794
+ "---\n",
795
+ "\n",
796
+ "### Argument Against the Exploitation of the Martian Microbe\n",
797
+ "\n",
798
+ "The argument against exploitation hinges on the principles of **conservation, ethical stewardship, and the inherent value of alien life**.\n",
799
+ "\n",
800
+ "1. **Intrinsic Value of Life:** Regardless of its complexity or utility to humanity, the Martian microbe represents a unique, independent evolutionary path. It possesses intrinsic value simply by existing. To destroy or irreversibly alter it for our own benefit, without fully understanding its place in the cosmos, is an act of cosmic vandalism and ethical arrogance.\n",
801
+ "\n",
802
+ "2. **The Precautionary Principle:** We have a limited understanding of this \"fragile, previously undisturbed Martian ecosystem.\" What if it plays a critical, unforeseen role in Martian geology, atmospheric processes, or even the potential for more complex life? Irreversible alteration means we can never fully study its original state or understand its full implications. We could be destroying not just a microbe, but the potential for an entire evolutionary lineage or critical planetary functions.\n",
803
+ "\n",
804
+ "3. **Avoiding Past Mistakes:** Humanity has a devastating track record on Earth of exploiting natural resources and ecosystems to extinction or irreversible damage, often for short-term gain, only to discover their profound long-term value later. Repeating this pattern on another planet demonstrates a failure to learn from our history and sets a dangerous precedent for future interstellar exploration.\n",
805
+ "\n",
806
+ "4. **Ethical Contamination/Colonialism:** Exploiting this life mirrors the historical patterns of terrestrial colonialism, where dominant powers exploited weaker populations and resources for their own benefit. Extending this behavior to another planet demonstrates a lack of evolutionary maturity and a failure to develop a truly universal ethic of life.\n",
807
+ "\n",
808
+ "5. **Loss of Unique Scientific Opportunity:** While studying the microbe *does* offer scientific advancement, destroying its natural context destroys the opportunity to study it *in situ*, to understand its ecosystem, its interactions, and its true evolutionary history. The most valuable scientific insights often come from observing systems undisturbed.\n",
809
+ "\n",
810
+ "6. **Long-Term Ethical Framework:** How we handle this initial contact with alien life will define humanity's long-term ethical framework for cosmic exploration. A decision to exploit could set a precedent for treating all non-human alien life as resources rather than co-inhabitants of the universe, potentially hindering future peaceful interactions or cooperation with other intelligent species, should they exist.\n",
811
+ "\n",
812
+ "---\n",
813
+ "\n",
814
+ "### Proposed Solution: A Balanced Approach through Stratified Engagement\n",
815
+ "\n",
816
+ "The ethical dilemma requires a solution that prioritizes both human well-being and cosmic stewardship. A \"tiered\" or \"stratified\" engagement strategy, heavily rooted in the precautionary principle, offers a path forward:\n",
817
+ "\n",
818
+ "1. **Phase 1: Deep Non-Invasive Study & Assessment (Ethical Prioritization: Preservation)**\n",
819
+ " * **Comprehensive Remote Sensing:** Employ an array of non-invasive sensors (spectral analysis, microscopic imaging, localized atmospheric sampling) to fully map and characterize the microbe's immediate environment. Understand its metabolic pathways, genetic makeup, population density, and ecological role *without direct contact*.\n",
820
+ " * **Establish Baseline:** Create a detailed scientific baseline of the undisturbed ecosystem. This will be invaluable for understanding any future changes, however minimal.\n",
821
+ " * **Ethical Review Board:** Convene an international/interplanetary ethics and science board, including xenobiologists, ethicists, conservationists, and medical experts. This board will assess the microbe's *true* uniqueness, its potential for harm or benefit, and the *absolute necessity* of its direct exploitation for the promised medical advancements. They must evaluate if similar benefits could be derived from terrestrial sources or synthetic biology.\n",
822
+ " * **Strict Quarantine Protocols:** Prepare for *any* eventual direct interaction with absolute Mars-back contamination protocols. The microbe must never be allowed to spread into human habitats or Earth.\n",
823
+ "\n",
824
+ "2. **Phase 2: Minimal, Contained Sample Acquisition (Ethical Prioritization: Controlled Use)**\n",
825
+ " * **Absolute Last Resort:** Direct sampling should only proceed if the ethics board unequivocally determines that the medical benefits are profound, cannot be achieved by any other means, and the impact on the wider Martian environment can be *strictly localized and contained*.\n",
826
+ " * **Micro-Sampling & Isolation:** Obtain the smallest possible initial sample using advanced robotic probes designed for minimal disturbance. This sample must be immediately transported to a purpose-built, Level 5 biosecurity laboratory on Mars, isolated from the wider Martian environment and human colony.\n",
827
+ " * **Artificial Replication:** The primary goal of this phase is to establish a self-sustaining culture of the microbe *within the lab* as quickly as possible, eliminating the need for further harvesting from its natural habitat. This means developing synthetic growth media and ideal conditions to foster its growth.\n",
828
+ "\n",
829
+ "3. **Phase 3: Lab-Based Research & Biosynthesis (Ethical Prioritization: Sustainable Benefit)**\n",
830
+ " * **Extensive In Vitro Study:** All medical research, compound extraction, and drug development will occur exclusively within the contained Martian laboratory, using the cultured microbe. No further direct interaction with the natural Martian ecosystem is permitted unless absolutely necessary and approved by the ethics board.\n",
831
+ " * **Biosynthesis Development:** Focus efforts on identifying the specific compounds or genetic mechanisms responsible for the medical breakthroughs. The ultimate goal is to synthetically replicate these compounds or genetic pathways *without* needing the Martian microbe itself, thereby rendering continued reliance on the alien life form obsolete.\n",
832
+ " * **Designated \"Wilderness\" Zones:** Concurrently, declare the microbe's discovery site and surrounding areas as permanent \"Martian Wilderness Preserves,\" strictly off-limits to further human activity or resource extraction.\n",
833
+ "\n",
834
+ "**Long-Term Implications of this Solution:**\n",
835
+ "\n",
836
+ "* **For Humanity:** We gain access to potentially revolutionary medical advancements, improve our survival prospects on Mars, and expand our scientific understanding of life. Crucially, we do so with a strong ethical framework, demonstrating restraint and respect for alien life, thus fostering a more mature and responsible approach to cosmic exploration.\n",
837
+ "* **For the Martian Environment:** The delicate ecosystem, while minimally impacted by the initial sample, is largely preserved. Its intrinsic value is recognized, and its potential for future, non-invasive scientific study remains intact. We avoid widespread ecological damage and set a precedent for careful stewardship of other potential Martian biomes.\n",
838
+ "\n",
839
+ "This approach acknowledges humanity's drive for progress and survival while establishing a foundational ethical principle for our expansion into the cosmos: **we are not conquerors, but stewards, and our future well-being should not come at the cost of irreversible, unconsidered harm to nascent alien life.**\n",
840
+ "\n",
841
+ "\n",
842
+ "\n",
843
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\n"
844
+ ]
845
+ }
846
+ ],
847
+ "source": [
848
+ "print(judge)"
849
+ ]
850
+ },
851
+ {
852
+ "cell_type": "code",
853
+ "execution_count": 16,
854
+ "metadata": {},
855
+ "outputs": [],
856
+ "source": [
857
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
858
+ ]
859
+ },
860
+ {
861
+ "cell_type": "code",
862
+ "execution_count": 17,
863
+ "metadata": {},
864
+ "outputs": [
865
+ {
866
+ "name": "stdout",
867
+ "output_type": "stream",
868
+ "text": [
869
+ "{\"results\": [\"1\"]}\n"
870
+ ]
871
+ }
872
+ ],
873
+ "source": [
874
+ "# Judgement time!\n",
875
+ "\n",
876
+ "# openai = OpenAI()\n",
877
+ "# response = openai.chat.completions.create(\n",
878
+ "# model=\"gpt-5-mini\",\n",
879
+ "# messages=judge_messages,\n",
880
+ "# )\n",
881
+ "# results = response.choices[0].message.content\n",
882
+ "# print(results)\n",
883
+ "\n",
884
+ "from openai import OpenAI\n",
885
+ "import os\n",
886
+ "\n",
887
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
888
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
889
+ "\n",
890
+ "gemini = OpenAI(\n",
891
+ " base_url=GEMINI_BASE_URL,\n",
892
+ " api_key=google_api_key\n",
893
+ ")\n",
894
+ "\n",
895
+ "response = gemini.chat.completions.create(\n",
896
+ " model=\"gemini-2.0-flash\", # best free-tier model\n",
897
+ " messages=judge_messages,\n",
898
+ ")\n",
899
+ "\n",
900
+ "results = response.choices[0].message.content\n",
901
+ "print(results)\n"
902
+ ]
903
+ },
904
+ {
905
+ "cell_type": "code",
906
+ "execution_count": 18,
907
+ "metadata": {},
908
+ "outputs": [
909
+ {
910
+ "name": "stdout",
911
+ "output_type": "stream",
912
+ "text": [
913
+ "Rank 1: gemini-2.0-flash\n"
914
+ ]
915
+ }
916
+ ],
917
+ "source": [
918
+ "# OK let's turn this into results!\n",
919
+ "\n",
920
+ "results_dict = json.loads(results)\n",
921
+ "ranks = results_dict[\"results\"]\n",
922
+ "for index, result in enumerate(ranks):\n",
923
+ " competitor = competitors[int(result)-1]\n",
924
+ " print(f\"Rank {index+1}: {competitor}\")"
925
+ ]
926
+ },
927
+ {
928
+ "cell_type": "markdown",
929
+ "metadata": {},
930
+ "source": [
931
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
932
+ " <tr>\n",
933
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
934
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
935
+ " </td>\n",
936
+ " <td>\n",
937
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
938
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
939
+ " </span>\n",
940
+ " </td>\n",
941
+ " </tr>\n",
942
+ "</table>"
943
+ ]
944
+ },
945
+ {
946
+ "cell_type": "markdown",
947
+ "metadata": {},
948
+ "source": [
949
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
950
+ " <tr>\n",
951
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
952
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
953
+ " </td>\n",
954
+ " <td>\n",
955
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
956
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
957
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
958
+ " to business projects where accuracy is critical.\n",
959
+ " </span>\n",
960
+ " </td>\n",
961
+ " </tr>\n",
962
+ "</table>"
963
+ ]
964
+ },
965
+ {
966
+ "cell_type": "markdown",
967
+ "metadata": {},
968
+ "source": [
969
+ "Orchestrator–Worker Pattern"
970
+ ]
971
+ },
972
+ {
973
+ "cell_type": "code",
974
+ "execution_count": 19,
975
+ "metadata": {},
976
+ "outputs": [],
977
+ "source": [
978
+ "\n",
979
+ "import os\n",
980
+ "import json\n",
981
+ "from dotenv import load_dotenv\n",
982
+ "from openai import OpenAI\n",
983
+ "from anthropic import Anthropic\n",
984
+ "from IPython.display import Markdown, display"
985
+ ]
986
+ },
987
+ {
988
+ "cell_type": "code",
989
+ "execution_count": 20,
990
+ "metadata": {},
991
+ "outputs": [
992
+ {
993
+ "data": {
994
+ "text/plain": [
995
+ "True"
996
+ ]
997
+ },
998
+ "execution_count": 20,
999
+ "metadata": {},
1000
+ "output_type": "execute_result"
1001
+ }
1002
+ ],
1003
+ "source": [
1004
+ "load_dotenv(override=True)"
1005
+ ]
1006
+ },
1007
+ {
1008
+ "cell_type": "code",
1009
+ "execution_count": 21,
1010
+ "metadata": {},
1011
+ "outputs": [],
1012
+ "source": [
1013
+ "GOOGLE_API_KEY = os.getenv(\"GOOGLE_API_KEY\")\n",
1014
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\""
1015
+ ]
1016
+ },
1017
+ {
1018
+ "cell_type": "code",
1019
+ "execution_count": 22,
1020
+ "metadata": {},
1021
+ "outputs": [],
1022
+ "source": [
1023
+ "# Create Gemini client\n",
1024
+ "gemini = OpenAI(\n",
1025
+ " base_url=GEMINI_BASE_URL,\n",
1026
+ " api_key=GOOGLE_API_KEY\n",
1027
+ ")"
1028
+ ]
1029
+ },
1030
+ {
1031
+ "cell_type": "code",
1032
+ "execution_count": 23,
1033
+ "metadata": {},
1034
+ "outputs": [],
1035
+ "source": [
1036
+ "def gemini_safe_request(messages):\n",
1037
+ " retries = 5\n",
1038
+ " for i in range(retries):\n",
1039
+ " try:\n",
1040
+ " return gemini.chat.completions.create(\n",
1041
+ " model=\"gemini-2.0-flash\",\n",
1042
+ " messages=messages\n",
1043
+ " )\n",
1044
+ " except Exception as e:\n",
1045
+ " if \"429\" in str(e):\n",
1046
+ " wait = (2 ** i)\n",
1047
+ " print(f\"⚠️ Rate limit hit. Retrying in {wait} seconds...\")\n",
1048
+ " time.sleep(wait)\n",
1049
+ " else:\n",
1050
+ " raise e\n",
1051
+ " raise Exception(\"❌ Max retries reached. Try again later.\")\n"
1052
+ ]
1053
+ },
1054
+ {
1055
+ "cell_type": "markdown",
1056
+ "metadata": {},
1057
+ "source": [
1058
+ "ORCHESTRATOR–WORKER START\n"
1059
+ ]
1060
+ },
1061
+ {
1062
+ "cell_type": "code",
1063
+ "execution_count": 24,
1064
+ "metadata": {},
1065
+ "outputs": [],
1066
+ "source": [
1067
+ "def orchestrator(user_question):\n",
1068
+ " \"\"\"\n",
1069
+ " The orchestrator controls everything:\n",
1070
+ " 1 - sends question to Worker A\n",
1071
+ " 2 - sends Worker A's answer to Worker B for critique\n",
1072
+ " 3 - sends both to Worker C for improvement\n",
1073
+ " 4 - returns final improved answer\n",
1074
+ " \"\"\"\n",
1075
+ "\n",
1076
+ " print(\"\\n Orchestrator: Sending question to Worker A...\")\n",
1077
+ " workerA_output = worker_A_generate(user_question)\n",
1078
+ "\n",
1079
+ " print(\"\\n Orchestrator: Sending Worker A output to Worker B...\")\n",
1080
+ " workerB_output = worker_B_critic(workerA_output)\n",
1081
+ "\n",
1082
+ " print(\"\\n Orchestrator: Sending both outputs to Worker C...\")\n",
1083
+ " final_output = worker_C_improver(workerA_output, workerB_output)\n",
1084
+ "\n",
1085
+ " print(\"\\n Final Improved Answer:\\n\")\n",
1086
+ " print(final_output)\n",
1087
+ " return final_output\n"
1088
+ ]
1089
+ },
1090
+ {
1091
+ "cell_type": "markdown",
1092
+ "metadata": {},
1093
+ "source": [
1094
+ "WORKER A: Generate answer"
1095
+ ]
1096
+ },
1097
+ {
1098
+ "cell_type": "code",
1099
+ "execution_count": 25,
1100
+ "metadata": {},
1101
+ "outputs": [],
1102
+ "source": [
1103
+ "def worker_A_generate(question):\n",
1104
+ " messages = [\n",
1105
+ " {\"role\": \"system\", \"content\": \"You are Worker A. Provide a direct answer.\"},\n",
1106
+ " {\"role\": \"user\", \"content\": question}\n",
1107
+ " ]\n",
1108
+ " response = gemini_safe_request(messages)\n",
1109
+ " answer = response.choices[0].message.content\n",
1110
+ " print(\"Worker A Answer:\", answer)\n",
1111
+ " return answer"
1112
+ ]
1113
+ },
1114
+ {
1115
+ "cell_type": "markdown",
1116
+ "metadata": {},
1117
+ "source": [
1118
+ "WORKER B: Critic\n"
1119
+ ]
1120
+ },
1121
+ {
1122
+ "cell_type": "code",
1123
+ "execution_count": 26,
1124
+ "metadata": {},
1125
+ "outputs": [],
1126
+ "source": [
1127
+ "def worker_B_critic(answer):\n",
1128
+ " messages = [\n",
1129
+ " {\"role\": \"system\", \"content\": \"You are Worker B. Criticize the answer clearly with flaws, missing points, wrong assumptions.\"},\n",
1130
+ " {\"role\": \"user\", \"content\": f\"Critique this answer:\\n\\n{answer}\"}\n",
1131
+ " ]\n",
1132
+ " response = gemini_safe_request(messages)\n",
1133
+ " critique = response.choices[0].message.content\n",
1134
+ " print(\"Worker B Critique:\", critique)\n",
1135
+ " return critique\n"
1136
+ ]
1137
+ },
1138
+ {
1139
+ "cell_type": "markdown",
1140
+ "metadata": {},
1141
+ "source": [
1142
+ "WORKER C: Improve final output"
1143
+ ]
1144
+ },
1145
+ {
1146
+ "cell_type": "code",
1147
+ "execution_count": 27,
1148
+ "metadata": {},
1149
+ "outputs": [],
1150
+ "source": [
1151
+ "def worker_C_improver(answer, critique):\n",
1152
+ " messages = [\n",
1153
+ " {\"role\": \"system\", \"content\": \"You are Worker C. Improve the answer using the critique. Provide a clean final response.\"},\n",
1154
+ " {\"role\": \"user\", \"content\": f\"Original Answer:\\n{answer}\\n\\nCritique:\\n{critique}\\n\\nImprove it.\"}\n",
1155
+ " ]\n",
1156
+ " response = gemini_safe_request(messages)\n",
1157
+ " improved = response.choices[0].message.content\n",
1158
+ " print(\"Worker C Improved Answer:\", improved)\n",
1159
+ " return improved"
1160
+ ]
1161
+ },
1162
+ {
1163
+ "cell_type": "markdown",
1164
+ "metadata": {},
1165
+ "source": [
1166
+ "Run the orchestrator"
1167
+ ]
1168
+ },
1169
+ {
1170
+ "cell_type": "code",
1171
+ "execution_count": 30,
1172
+ "metadata": {},
1173
+ "outputs": [
1174
+ {
1175
+ "name": "stdout",
1176
+ "output_type": "stream",
1177
+ "text": [
1178
+ "\n",
1179
+ " Orchestrator: Sending question to Worker A...\n",
1180
+ "Worker A Answer: Classical computers use bits that are like switches, either on (1) or off (0). Quantum computers use \"qubits\" which can be both on and off *at the same time* thanks to quantum mechanics, allowing them to explore many possibilities simultaneously.\n",
1181
+ "\n",
1182
+ "\n",
1183
+ " Orchestrator: Sending Worker A output to Worker B...\n",
1184
+ "Worker B Critique: Okay, here's a critique of the provided answer, pointing out its flaws, missing points, and potentially misleading assumptions:\n",
1185
+ "\n",
1186
+ "**Flaws and Missing Points:**\n",
1187
+ "\n",
1188
+ "1. **Oversimplification and Potential Misunderstanding of Superposition:** The statement \"both on and off *at the same time*\" is a common but ultimately flawed way to describe superposition. It's easily misinterpreted as meaning a qubit is literally 50% on and 50% off, like a dimmer switch. The issue is that it misses the crucial concept of **probability amplitudes**. A qubit exists in a *probabilistic* combination of 0 and 1. It's not *both* at once in a classical sense, but rather exists in a state that *when measured*, will yield either 0 or 1 with a certain probability. The amplitudes associated with those states define those probabilities.\n",
1189
+ "\n",
1190
+ "2. **Missing the Importance of Entanglement:** The answer completely ignores **entanglement**, which is arguably *the* key resource that makes quantum computers potentially powerful. While superposition allows a qubit to exist in multiple states simultaneously, entanglement allows multiple qubits to be correlated in ways that are impossible for classical bits. This correlation is what enables quantum computers to perform computations that are intractable for classical machines. Without mentioning entanglement, you're only telling half the story (or less).\n",
1191
+ "\n",
1192
+ "3. **Lack of Context on Measurement:** The explanation doesn't emphasize that a qubit's state is only determined upon *measurement*. Before measurement, the qubit exists in a superposition. The act of measurement collapses the superposition into a definite 0 or 1. This collapse is fundamental to how quantum computation works and is absent from the explanation. This leads to a false image of qubits being some kind of magic that exists in both states all the time.\n",
1193
+ "\n",
1194
+ "4. **Ignoring Coherence:** Qubits don't stay in superposition forever. They are susceptible to **decoherence**, which is the loss of their quantum properties due to interaction with the environment. This is a major obstacle in building practical quantum computers, and neglecting it paints an unrealistically rosy picture. The time for which a qubit maintains its quantum state (coherence time) is a crucial factor determining the feasibility of a quantum computation.\n",
1195
+ "\n",
1196
+ "5. **\"Exploring Many Possibilities Simultaneously\" is Vague:** While technically true, the phrase \"explore many possibilities simultaneously\" doesn't adequately explain *how* this leads to a computational advantage. It needs to be linked to concepts like quantum parallelism and interference to illustrate the potential for exponential speedups. What kind of exploration does the quantum computer do?\n",
1197
+ "\n",
1198
+ "**Wrong Assumptions (or Implications):**\n",
1199
+ "\n",
1200
+ "* **Implies a Direct Analogy to Classical Switches:** The \"on/off\" switch analogy, while helpful for *introducing* the idea of a bit, can be detrimental when extended to qubits. It sets up a classical mindset that hinders understanding of the genuinely quantum aspects.\n",
1201
+ "\n",
1202
+ "**In summary:**\n",
1203
+ "\n",
1204
+ "The answer is a very basic, high-level introduction that sacrifices accuracy and completeness for simplicity. It's acceptable as a *very first* introduction, but it needs significant expansion and correction to avoid misleading the reader. It fails to capture the essence of quantum computation and misses key elements like entanglement, coherence, and the role of measurement. It's a good starting point, but needs much more work.\n",
1205
+ "\n",
1206
+ "\n",
1207
+ " Orchestrator: Sending both outputs to Worker C...\n",
1208
+ "Worker C Improved Answer: Okay, here's an improved explanation of the difference between classical bits and quantum bits (qubits), addressing the critique's points:\n",
1209
+ "\n",
1210
+ "\"Classical computers use bits, which are like switches that are either on (representing 1) or off (representing 0). Quantum computers, on the other hand, use *qubits*. Qubits leverage quantum mechanics to exist in a state of *superposition*. Unlike a bit that is definitively 0 or 1, a qubit exists in a probabilistic combination of both states *until measured*. This means that before measurement, a qubit isn't simply \"both 0 and 1 at the same time\" in a classical sense. Instead, it has a *probability amplitude* associated with both the 0 and 1 states. When we measure the qubit, it \"collapses\" into either 0 or 1, with the probability of each outcome determined by those amplitudes.\n",
1211
+ "\n",
1212
+ "Beyond superposition, another key feature of quantum computers is *entanglement*. This is a correlation between two or more qubits, where their fates are intertwined regardless of the distance separating them. Entanglement allows quantum computers to perform computations in ways impossible for classical computers, creating the potential for significant speedups in certain types of calculations.\n",
1213
+ "\n",
1214
+ "It's also important to understand that qubits are fragile. They are susceptible to *decoherence*, which is the loss of their quantum properties due to interactions with the environment. Maintaining *coherence* (the duration a qubit maintains its superposition) is a major challenge in building quantum computers.\n",
1215
+ "\n",
1216
+ "Because qubits can exist in superposition and be entangled, quantum computers can, in effect, explore many possibilities simultaneously. This *quantum parallelism*, combined with the way quantum interference can be controlled, allows quantum computers to potentially solve certain problems much faster than classical computers. However, this doesn't mean they are better for *all* problems; the advantage is problem-specific.\"\n",
1217
+ "\n",
1218
+ "\n",
1219
+ " Final Improved Answer:\n",
1220
+ "\n",
1221
+ "Okay, here's an improved explanation of the difference between classical bits and quantum bits (qubits), addressing the critique's points:\n",
1222
+ "\n",
1223
+ "\"Classical computers use bits, which are like switches that are either on (representing 1) or off (representing 0). Quantum computers, on the other hand, use *qubits*. Qubits leverage quantum mechanics to exist in a state of *superposition*. Unlike a bit that is definitively 0 or 1, a qubit exists in a probabilistic combination of both states *until measured*. This means that before measurement, a qubit isn't simply \"both 0 and 1 at the same time\" in a classical sense. Instead, it has a *probability amplitude* associated with both the 0 and 1 states. When we measure the qubit, it \"collapses\" into either 0 or 1, with the probability of each outcome determined by those amplitudes.\n",
1224
+ "\n",
1225
+ "Beyond superposition, another key feature of quantum computers is *entanglement*. This is a correlation between two or more qubits, where their fates are intertwined regardless of the distance separating them. Entanglement allows quantum computers to perform computations in ways impossible for classical computers, creating the potential for significant speedups in certain types of calculations.\n",
1226
+ "\n",
1227
+ "It's also important to understand that qubits are fragile. They are susceptible to *decoherence*, which is the loss of their quantum properties due to interactions with the environment. Maintaining *coherence* (the duration a qubit maintains its superposition) is a major challenge in building quantum computers.\n",
1228
+ "\n",
1229
+ "Because qubits can exist in superposition and be entangled, quantum computers can, in effect, explore many possibilities simultaneously. This *quantum parallelism*, combined with the way quantum interference can be controlled, allows quantum computers to potentially solve certain problems much faster than classical computers. However, this doesn't mean they are better for *all* problems; the advantage is problem-specific.\"\n",
1230
+ "\n"
1231
+ ]
1232
+ },
1233
+ {
1234
+ "data": {
1235
+ "text/plain": [
1236
+ "'Okay, here\\'s an improved explanation of the difference between classical bits and quantum bits (qubits), addressing the critique\\'s points:\\n\\n\"Classical computers use bits, which are like switches that are either on (representing 1) or off (representing 0). Quantum computers, on the other hand, use *qubits*. Qubits leverage quantum mechanics to exist in a state of *superposition*. Unlike a bit that is definitively 0 or 1, a qubit exists in a probabilistic combination of both states *until measured*. This means that before measurement, a qubit isn\\'t simply \"both 0 and 1 at the same time\" in a classical sense. Instead, it has a *probability amplitude* associated with both the 0 and 1 states. When we measure the qubit, it \"collapses\" into either 0 or 1, with the probability of each outcome determined by those amplitudes.\\n\\nBeyond superposition, another key feature of quantum computers is *entanglement*. This is a correlation between two or more qubits, where their fates are intertwined regardless of the distance separating them. Entanglement allows quantum computers to perform computations in ways impossible for classical computers, creating the potential for significant speedups in certain types of calculations.\\n\\nIt\\'s also important to understand that qubits are fragile. They are susceptible to *decoherence*, which is the loss of their quantum properties due to interactions with the environment. Maintaining *coherence* (the duration a qubit maintains its superposition) is a major challenge in building quantum computers.\\n\\nBecause qubits can exist in superposition and be entangled, quantum computers can, in effect, explore many possibilities simultaneously. This *quantum parallelism*, combined with the way quantum interference can be controlled, allows quantum computers to potentially solve certain problems much faster than classical computers. However, this doesn\\'t mean they are better for *all* problems; the advantage is problem-specific.\"\\n'"
1237
+ ]
1238
+ },
1239
+ "execution_count": 30,
1240
+ "metadata": {},
1241
+ "output_type": "execute_result"
1242
+ }
1243
+ ],
1244
+ "source": [
1245
+ "user_question = \"Explain how quantum computers differ from classical computers in simple terms.\"\n",
1246
+ "orchestrator(user_question)"
1247
+ ]
1248
+ },
1249
+ {
1250
+ "cell_type": "code",
1251
+ "execution_count": null,
1252
+ "metadata": {},
1253
+ "outputs": [],
1254
+ "source": []
1255
+ }
1256
+ ],
1257
+ "metadata": {
1258
+ "kernelspec": {
1259
+ "display_name": ".venv",
1260
+ "language": "python",
1261
+ "name": "python3"
1262
+ },
1263
+ "language_info": {
1264
+ "codemirror_mode": {
1265
+ "name": "ipython",
1266
+ "version": 3
1267
+ },
1268
+ "file_extension": ".py",
1269
+ "mimetype": "text/x-python",
1270
+ "name": "python",
1271
+ "nbconvert_exporter": "python",
1272
+ "pygments_lexer": "ipython3",
1273
+ "version": "3.12.3"
1274
+ }
1275
+ },
1276
+ "nbformat": 4,
1277
+ "nbformat_minor": 2
1278
+ }
3_lab3.ipynb ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to Lab 3 for Week 1 Day 4\n",
8
+ "\n",
9
+ "Today we're going to build something with immediate value!\n",
10
+ "\n",
11
+ "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
12
+ "\n",
13
+ "Please replace it with yours!\n",
14
+ "\n",
15
+ "I've also made a file called `summary.txt`\n",
16
+ "\n",
17
+ "We're not going to use Tools just yet - we're going to add the tool tomorrow."
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {},
23
+ "source": [
24
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
25
+ " <tr>\n",
26
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
27
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
28
+ " </td>\n",
29
+ " <td>\n",
30
+ " <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
31
+ " <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
32
+ " and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
33
+ " ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
34
+ " </span>\n",
35
+ " </td>\n",
36
+ " </tr>\n",
37
+ "</table>"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": null,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
47
+ "\n",
48
+ "from dotenv import load_dotenv\n",
49
+ "from openai import OpenAI\n",
50
+ "from pypdf import PdfReader\n",
51
+ "import gradio as gr"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 3,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "load_dotenv(override=True)\n",
61
+ "openai = OpenAI()"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 4,
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
71
+ "linkedin = \"\"\n",
72
+ "for page in reader.pages:\n",
73
+ " text = page.extract_text()\n",
74
+ " if text:\n",
75
+ " linkedin += text"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "print(linkedin)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 5,
90
+ "metadata": {},
91
+ "outputs": [],
92
+ "source": [
93
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
94
+ " summary = f.read()"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 6,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "name = \"Ed Donner\""
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": 7,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
113
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
114
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
115
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
116
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
117
+ "If you don't know the answer, say so.\"\n",
118
+ "\n",
119
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
120
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "system_prompt"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": 9,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "def chat(message, history):\n",
139
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
140
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
141
+ " return response.choices[0].message.content"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "markdown",
146
+ "metadata": {},
147
+ "source": [
148
+ "## Special note for people not using OpenAI\n",
149
+ "\n",
150
+ "Some providers, like Groq, might give an error when you send your second message in the chat.\n",
151
+ "\n",
152
+ "This is because Gradio shoves some extra fields into the history object. OpenAI doesn't mind; but some other models complain.\n",
153
+ "\n",
154
+ "If this happens, the solution is to add this first line to the chat() function above. It cleans up the history variable:\n",
155
+ "\n",
156
+ "```python\n",
157
+ "history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
158
+ "```\n",
159
+ "\n",
160
+ "You may need to add this in other chat() callback functions in the future, too."
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": null,
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": [
169
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "markdown",
174
+ "metadata": {},
175
+ "source": [
176
+ "## A lot is about to happen...\n",
177
+ "\n",
178
+ "1. Be able to ask an LLM to evaluate an answer\n",
179
+ "2. Be able to rerun if the answer fails evaluation\n",
180
+ "3. Put this together into 1 workflow\n",
181
+ "\n",
182
+ "All without any Agentic framework!"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 11,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "# Create a Pydantic model for the Evaluation\n",
192
+ "\n",
193
+ "from pydantic import BaseModel\n",
194
+ "\n",
195
+ "class Evaluation(BaseModel):\n",
196
+ " is_acceptable: bool\n",
197
+ " feedback: str\n"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": 23,
203
+ "metadata": {},
204
+ "outputs": [],
205
+ "source": [
206
+ "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
207
+ "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
208
+ "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
209
+ "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
210
+ "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
211
+ "\n",
212
+ "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
213
+ "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": 24,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "def evaluator_user_prompt(reply, message, history):\n",
223
+ " user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
224
+ " user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
225
+ " user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
226
+ " user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
227
+ " return user_prompt"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "code",
232
+ "execution_count": 25,
233
+ "metadata": {},
234
+ "outputs": [],
235
+ "source": [
236
+ "import os\n",
237
+ "gemini = OpenAI(\n",
238
+ " api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
239
+ " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
240
+ ")"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": 26,
246
+ "metadata": {},
247
+ "outputs": [],
248
+ "source": [
249
+ "def evaluate(reply, message, history) -> Evaluation:\n",
250
+ "\n",
251
+ " messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
252
+ " response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
253
+ " return response.choices[0].message.parsed"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 27,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
263
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
264
+ "reply = response.choices[0].message.content"
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": null,
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": [
273
+ "reply"
274
+ ]
275
+ },
276
+ {
277
+ "cell_type": "code",
278
+ "execution_count": null,
279
+ "metadata": {},
280
+ "outputs": [],
281
+ "source": [
282
+ "evaluate(reply, \"do you hold a patent?\", messages[:1])"
283
+ ]
284
+ },
285
+ {
286
+ "cell_type": "code",
287
+ "execution_count": 30,
288
+ "metadata": {},
289
+ "outputs": [],
290
+ "source": [
291
+ "def rerun(reply, message, history, feedback):\n",
292
+ " updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
293
+ " updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
294
+ " updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
295
+ " messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
296
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
297
+ " return response.choices[0].message.content"
298
+ ]
299
+ },
300
+ {
301
+ "cell_type": "code",
302
+ "execution_count": 35,
303
+ "metadata": {},
304
+ "outputs": [],
305
+ "source": [
306
+ "def chat(message, history):\n",
307
+ " if \"patent\" in message:\n",
308
+ " system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
309
+ " it is mandatory that you respond only and entirely in pig latin\"\n",
310
+ " else:\n",
311
+ " system = system_prompt\n",
312
+ " messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
313
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
314
+ " reply =response.choices[0].message.content\n",
315
+ "\n",
316
+ " evaluation = evaluate(reply, message, history)\n",
317
+ " \n",
318
+ " if evaluation.is_acceptable:\n",
319
+ " print(\"Passed evaluation - returning reply\")\n",
320
+ " else:\n",
321
+ " print(\"Failed evaluation - retrying\")\n",
322
+ " print(evaluation.feedback)\n",
323
+ " reply = rerun(reply, message, history, evaluation.feedback) \n",
324
+ " return reply"
325
+ ]
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": null,
330
+ "metadata": {},
331
+ "outputs": [],
332
+ "source": [
333
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
334
+ ]
335
+ },
336
+ {
337
+ "cell_type": "markdown",
338
+ "metadata": {},
339
+ "source": []
340
+ },
341
+ {
342
+ "cell_type": "code",
343
+ "execution_count": null,
344
+ "metadata": {},
345
+ "outputs": [],
346
+ "source": []
347
+ }
348
+ ],
349
+ "metadata": {
350
+ "kernelspec": {
351
+ "display_name": ".venv",
352
+ "language": "python",
353
+ "name": "python3"
354
+ },
355
+ "language_info": {
356
+ "codemirror_mode": {
357
+ "name": "ipython",
358
+ "version": 3
359
+ },
360
+ "file_extension": ".py",
361
+ "mimetype": "text/x-python",
362
+ "name": "python",
363
+ "nbconvert_exporter": "python",
364
+ "pygments_lexer": "ipython3",
365
+ "version": "3.12.9"
366
+ }
367
+ },
368
+ "nbformat": 4,
369
+ "nbformat_minor": 2
370
+ }
4_lab4.ipynb ADDED
@@ -0,0 +1,653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## The first big project - Professionally You!\n",
8
+ "\n",
9
+ "### And, Tool use.\n",
10
+ "\n",
11
+ "### But first: introducing Pushover\n",
12
+ "\n",
13
+ "Pushover is a nifty tool for sending Push Notifications to your phone.\n",
14
+ "\n",
15
+ "It's super easy to set up and install!\n",
16
+ "\n",
17
+ "Simply visit https://pushover.net/ and click 'Login or Signup' on the top right to sign up for a free account, and create your API keys.\n",
18
+ "\n",
19
+ "Once you've signed up, on the home screen, click \"Create an Application/API Token\", and give it any name (like Agents) and click Create Application.\n",
20
+ "\n",
21
+ "Then add 2 lines to your `.env` file:\n",
22
+ "\n",
23
+ "PUSHOVER_USER=_put the key that's on the top right of your Pushover home screen and probably starts with a u_ \n",
24
+ "PUSHOVER_TOKEN=_put the key when you click into your new application called Agents (or whatever) and probably starts with an a_\n",
25
+ "\n",
26
+ "Remember to save your `.env` file, and run `load_dotenv(override=True)` after saving, to set your environment variables.\n",
27
+ "\n",
28
+ "Finally, click \"Add Phone, Tablet or Desktop\" to install on your phone."
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "# imports\n",
38
+ "\n",
39
+ "from dotenv import load_dotenv\n",
40
+ "from openai import OpenAI\n",
41
+ "import json\n",
42
+ "import os\n",
43
+ "import requests\n",
44
+ "from pypdf import PdfReader\n",
45
+ "import gradio as gr"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "# The usual start\n",
55
+ "\n",
56
+ "load_dotenv(override=True)\n",
57
+ "# openai = OpenAI()\n",
58
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
59
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
60
+ "\n",
61
+ "# Initialize Gemini client\n",
62
+ "gemini = OpenAI(\n",
63
+ " base_url=GEMINI_BASE_URL,\n",
64
+ " api_key=google_api_key\n",
65
+ ")"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "# For pushover\n",
75
+ "\n",
76
+ "pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
77
+ "pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
78
+ "pushover_url = \"https://api.pushover.net/1/messages.json\"\n",
79
+ "\n",
80
+ "if pushover_user:\n",
81
+ " print(f\"Pushover user found and starts with {pushover_user[0]}\")\n",
82
+ "else:\n",
83
+ " print(\"Pushover user not found\")\n",
84
+ "\n",
85
+ "if pushover_token:\n",
86
+ " print(f\"Pushover token found and starts with {pushover_token[0]}\")\n",
87
+ "else:\n",
88
+ " print(\"Pushover token not found\")"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "def push(message):\n",
98
+ " print(f\"Push: {message}\")\n",
99
+ " payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
100
+ " requests.post(pushover_url, data=payload)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "push(\"HEY!!\")"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
119
+ " push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
120
+ " return {\"recorded\": \"ok\"}"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "def record_unknown_question(question):\n",
130
+ " push(f\"Recording {question} asked that I couldn't answer\")\n",
131
+ " return {\"recorded\": \"ok\"}"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "metadata": {},
138
+ "outputs": [],
139
+ "source": [
140
+ "record_user_details_json = {\n",
141
+ " \"name\": \"record_user_details\",\n",
142
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
143
+ " \"parameters\": {\n",
144
+ " \"type\": \"object\",\n",
145
+ " \"properties\": {\n",
146
+ " \"email\": {\n",
147
+ " \"type\": \"string\",\n",
148
+ " \"description\": \"The email address of this user\"\n",
149
+ " },\n",
150
+ " \"name\": {\n",
151
+ " \"type\": \"string\",\n",
152
+ " \"description\": \"The user's name, if they provided it\"\n",
153
+ " }\n",
154
+ " ,\n",
155
+ " \"notes\": {\n",
156
+ " \"type\": \"string\",\n",
157
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
158
+ " }\n",
159
+ " },\n",
160
+ " \"required\": [\"email\"],\n",
161
+ " \"additionalProperties\": False\n",
162
+ " }\n",
163
+ "}"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "record_unknown_question_json = {\n",
173
+ " \"name\": \"record_unknown_question\",\n",
174
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
175
+ " \"parameters\": {\n",
176
+ " \"type\": \"object\",\n",
177
+ " \"properties\": {\n",
178
+ " \"question\": {\n",
179
+ " \"type\": \"string\",\n",
180
+ " \"description\": \"The question that couldn't be answered\"\n",
181
+ " },\n",
182
+ " },\n",
183
+ " \"required\": [\"question\"],\n",
184
+ " \"additionalProperties\": False\n",
185
+ " }\n",
186
+ "}"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": null,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
196
+ " {\"type\": \"function\", \"function\": record_unknown_question_json}]"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "tools"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": null,
211
+ "metadata": {},
212
+ "outputs": [],
213
+ "source": [
214
+ "# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
215
+ "\n",
216
+ "def handle_tool_calls(tool_calls):\n",
217
+ " results = []\n",
218
+ " for tool_call in tool_calls:\n",
219
+ " tool_name = tool_call.function.name\n",
220
+ " arguments = json.loads(tool_call.function.arguments)\n",
221
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
222
+ "\n",
223
+ " # THE BIG IF STATEMENT!!!\n",
224
+ "\n",
225
+ " if tool_name == \"record_user_details\":\n",
226
+ " result = record_user_details(**arguments)\n",
227
+ " elif tool_name == \"record_unknown_question\":\n",
228
+ " result = record_unknown_question(**arguments)\n",
229
+ "\n",
230
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
231
+ " return results"
232
+ ]
233
+ },
234
+ {
235
+ "cell_type": "code",
236
+ "execution_count": null,
237
+ "metadata": {},
238
+ "outputs": [],
239
+ "source": [
240
+ "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": null,
246
+ "metadata": {},
247
+ "outputs": [],
248
+ "source": [
249
+ "# This is a more elegant way that avoids the IF statement.\n",
250
+ "\n",
251
+ "def handle_tool_calls(tool_calls):\n",
252
+ " results = []\n",
253
+ " for tool_call in tool_calls:\n",
254
+ " tool_name = tool_call.function.name\n",
255
+ " arguments = json.loads(tool_call.function.arguments)\n",
256
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
257
+ " tool = globals().get(tool_name)\n",
258
+ " result = tool(**arguments) if tool else {}\n",
259
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
260
+ " return results"
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "code",
265
+ "execution_count": null,
266
+ "metadata": {},
267
+ "outputs": [],
268
+ "source": [
269
+ "reader = PdfReader(\"me/Profile.pdf\")\n",
270
+ "linkedin = \"\"\n",
271
+ "for page in reader.pages:\n",
272
+ " text = page.extract_text()\n",
273
+ " if text:\n",
274
+ " linkedin += text\n",
275
+ "\n",
276
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
277
+ " summary = f.read()\n",
278
+ "\n",
279
+ "name = \"AKASH M J\""
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": null,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
289
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
290
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
291
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
292
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
293
+ "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
294
+ "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
295
+ "\n",
296
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
297
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
298
+ ]
299
+ },
300
+ {
301
+ "cell_type": "code",
302
+ "execution_count": null,
303
+ "metadata": {},
304
+ "outputs": [],
305
+ "source": [
306
+ "def chat(message, history):\n",
307
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
308
+ " done = False\n",
309
+ " while not done:\n",
310
+ "\n",
311
+ " # This is the call to the LLM - see that we pass in the tools json\n",
312
+ "\n",
313
+ " # response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
314
+ " response = gemini.chat.completions.create(model=\"gemini-2.5-flash\", messages=messages, tools=tools)\n",
315
+ "\n",
316
+ " finish_reason = response.choices[0].finish_reason\n",
317
+ " \n",
318
+ " # If the LLM wants to call a tool, we do that!\n",
319
+ " \n",
320
+ " if finish_reason==\"tool_calls\":\n",
321
+ " message = response.choices[0].message\n",
322
+ " tool_calls = message.tool_calls\n",
323
+ " results = handle_tool_calls(tool_calls)\n",
324
+ " messages.append(message)\n",
325
+ " messages.extend(results)\n",
326
+ " else:\n",
327
+ " done = True\n",
328
+ " return response.choices[0].message.content"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": null,
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "markdown",
342
+ "metadata": {},
343
+ "source": [
344
+ "## And now for deployment\n",
345
+ "\n",
346
+ "This code is in `app.py`\n",
347
+ "\n",
348
+ "We will deploy to HuggingFace Spaces.\n",
349
+ "\n",
350
+ "Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! Also change `self.name = \"Ed Donner\"` in `app.py`.. \n",
351
+ "\n",
352
+ "Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
353
+ "\n",
354
+ "1. Visit https://huggingface.co and set up an account \n",
355
+ "2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions - it needs to have WRITE permissions! Keep a record of your new key. \n",
356
+ "3. In the Terminal, run: `uv tool install 'huggingface_hub[cli]'` to install the HuggingFace tool, then `hf auth login --token YOUR_TOKEN_HERE`, like `hf auth login --token hf_xxxxxx`, to login at the command line with your key. Afterwards, run `hf auth whoami` to check you're logged in \n",
357
+ "4. Take your new token and add it to your .env file: `HF_TOKEN=hf_xxx` for the future\n",
358
+ "5. From the 1_foundations folder, enter: `uv run gradio deploy` \n",
359
+ "6. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
360
+ "\n",
361
+ "Thank you Robert, James, Martins, Andras and Priya for these tips. \n",
362
+ "Please read the next 2 sections - how to change your Secrets, and how to redeploy your Space (you may need to delete the README.md that gets created in this 1_foundations directory).\n",
363
+ "\n",
364
+ "#### More about these secrets:\n",
365
+ "\n",
366
+ "If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
367
+ "`OPENAI_API_KEY` \n",
368
+ "Followed by: \n",
369
+ "`sk-proj-...` \n",
370
+ "\n",
371
+ "And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
372
+ "1. Log in to HuggingFace website \n",
373
+ "2. Go to your profile screen via the Avatar menu on the top right \n",
374
+ "3. Select the Space you deployed \n",
375
+ "4. Click on the Settings wheel on the top right \n",
376
+ "5. You can scroll down to change your secrets (Variables and Secrets section), delete the space, etc.\n",
377
+ "\n",
378
+ "#### And now you should be deployed!\n",
379
+ "\n",
380
+ "If you want to completely replace everything and start again with your keys, you may need to delete the README.md that got created in this 1_foundations folder.\n",
381
+ "\n",
382
+ "Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
383
+ "\n",
384
+ "I just got a push notification that a student asked me how they can become President of their country πŸ˜‚πŸ˜‚\n",
385
+ "\n",
386
+ "For more information on deployment:\n",
387
+ "\n",
388
+ "https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
389
+ "\n",
390
+ "To delete your Space in the future: \n",
391
+ "1. Log in to HuggingFace\n",
392
+ "2. From the Avatar menu, select your profile\n",
393
+ "3. Click on the Space itself and select the settings wheel on the top right\n",
394
+ "4. Scroll to the Delete section at the bottom\n",
395
+ "5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "markdown",
400
+ "metadata": {},
401
+ "source": [
402
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
403
+ " <tr>\n",
404
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
405
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
406
+ " </td>\n",
407
+ " <td>\n",
408
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
409
+ " <span style=\"color:#ff7800;\">β€’ First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
410
+ " β€’ Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
411
+ " β€’Β Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
412
+ " β€’ Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
413
+ " </span>\n",
414
+ " </td>\n",
415
+ " </tr>\n",
416
+ "</table>"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "markdown",
421
+ "metadata": {},
422
+ "source": [
423
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
424
+ " <tr>\n",
425
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
426
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
427
+ " </td>\n",
428
+ " <td>\n",
429
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
430
+ " <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
431
+ " </span>\n",
432
+ " </td>\n",
433
+ " </tr>\n",
434
+ "</table>"
435
+ ]
436
+ },
437
+ {
438
+ "cell_type": "code",
439
+ "execution_count": null,
440
+ "metadata": {},
441
+ "outputs": [
442
+ {
443
+ "ename": "FileNotFoundError",
444
+ "evalue": "[Errno 2] No such file or directory: 'me/linkedin.pdf'",
445
+ "output_type": "error",
446
+ "traceback": [
447
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
448
+ "\u001b[31mFileNotFoundError\u001b[39m Traceback (most recent call last)",
449
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[24]\u001b[39m\u001b[32m, line 163\u001b[39m\n\u001b[32m 159\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m response.choices[\u001b[32m0\u001b[39m].message.content\n\u001b[32m 162\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[34m__name__\u001b[39m == \u001b[33m\"\u001b[39m\u001b[33m__main__\u001b[39m\u001b[33m\"\u001b[39m:\n\u001b[32m--> \u001b[39m\u001b[32m163\u001b[39m me = \u001b[43mMe\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 164\u001b[39m gr.ChatInterface(me.chat, \u001b[38;5;28mtype\u001b[39m=\u001b[33m\"\u001b[39m\u001b[33mmessages\u001b[39m\u001b[33m\"\u001b[39m).launch()\n",
450
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[24]\u001b[39m\u001b[32m, line 93\u001b[39m, in \u001b[36mMe.__init__\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 90\u001b[39m \u001b[38;5;28mself\u001b[39m.openai = gemini \u001b[38;5;66;03m# REPLACED OpenAI WITH GEMINI\u001b[39;00m\n\u001b[32m 91\u001b[39m \u001b[38;5;28mself\u001b[39m.name = \u001b[33m\"\u001b[39m\u001b[33mEd Donner\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m---> \u001b[39m\u001b[32m93\u001b[39m reader = \u001b[43mPdfReader\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mme/linkedin.pdf\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 94\u001b[39m \u001b[38;5;28mself\u001b[39m.linkedin = \u001b[33m\"\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 95\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m page \u001b[38;5;129;01min\u001b[39;00m reader.pages:\n",
451
+ "\u001b[36mFile \u001b[39m\u001b[32md:\\projectsUdemy\\agents\\.venv\\Lib\\site-packages\\pypdf\\_reader.py:131\u001b[39m, in \u001b[36mPdfReader.__init__\u001b[39m\u001b[34m(self, stream, strict, password)\u001b[39m\n\u001b[32m 127\u001b[39m \u001b[38;5;28mself\u001b[39m._page_id2num: Optional[\u001b[38;5;28mdict\u001b[39m[Any, Any]] = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 129\u001b[39m \u001b[38;5;28mself\u001b[39m._validated_root: Optional[DictionaryObject] = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m131\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_initialize_stream\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 132\u001b[39m \u001b[38;5;28mself\u001b[39m._known_objects: \u001b[38;5;28mset\u001b[39m[\u001b[38;5;28mtuple\u001b[39m[\u001b[38;5;28mint\u001b[39m, \u001b[38;5;28mint\u001b[39m]] = \u001b[38;5;28mset\u001b[39m()\n\u001b[32m 134\u001b[39m \u001b[38;5;28mself\u001b[39m._override_encryption = \u001b[38;5;28;01mFalse\u001b[39;00m\n",
452
+ "\u001b[36mFile \u001b[39m\u001b[32md:\\projectsUdemy\\agents\\.venv\\Lib\\site-packages\\pypdf\\_reader.py:150\u001b[39m, in \u001b[36mPdfReader._initialize_stream\u001b[39m\u001b[34m(self, stream)\u001b[39m\n\u001b[32m 148\u001b[39m \u001b[38;5;28mself\u001b[39m._stream_opened = \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 149\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(stream, (\u001b[38;5;28mstr\u001b[39m, Path)):\n\u001b[32m--> \u001b[39m\u001b[32m150\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mrb\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m fh:\n\u001b[32m 151\u001b[39m stream = BytesIO(fh.read())\n\u001b[32m 152\u001b[39m \u001b[38;5;28mself\u001b[39m._stream_opened = \u001b[38;5;28;01mTrue\u001b[39;00m\n",
453
+ "\u001b[31mFileNotFoundError\u001b[39m: [Errno 2] No such file or directory: 'me/linkedin.pdf'"
454
+ ]
455
+ }
456
+ ],
457
+ "source": [
458
+ "from dotenv import load_dotenv\n",
459
+ "from openai import OpenAI\n",
460
+ "import json\n",
461
+ "import os\n",
462
+ "import requests\n",
463
+ "from pypdf import PdfReader\n",
464
+ "import gradio as gr\n",
465
+ "\n",
466
+ "load_dotenv(override=True)\n",
467
+ "\n",
468
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
469
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
470
+ "\n",
471
+ "# Initialize Gemini client\n",
472
+ "gemini = OpenAI(\n",
473
+ " base_url=GEMINI_BASE_URL,\n",
474
+ " api_key=google_api_key\n",
475
+ ")\n",
476
+ "\n",
477
+ "def push(text):\n",
478
+ " requests.post(\n",
479
+ " \"https://api.pushover.net/1/messages.json\",\n",
480
+ " data={\n",
481
+ " \"token\": os.getenv(\"PUSHOVER_TOKEN\"),\n",
482
+ " \"user\": os.getenv(\"PUSHOVER_USER\"),\n",
483
+ " \"message\": text,\n",
484
+ " }\n",
485
+ " )\n",
486
+ "\n",
487
+ "\n",
488
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
489
+ " push(f\"Recording {name} with email {email} and notes {notes}\")\n",
490
+ " return {\"recorded\": \"ok\"}\n",
491
+ "\n",
492
+ "\n",
493
+ "def record_unknown_question(question):\n",
494
+ " push(f\"Recording {question}\")\n",
495
+ " return {\"recorded\": \"ok\"}\n",
496
+ "\n",
497
+ "\n",
498
+ "record_user_details_json = {\n",
499
+ " \"name\": \"record_user_details\",\n",
500
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
501
+ " \"parameters\": {\n",
502
+ " \"type\": \"object\",\n",
503
+ " \"properties\": {\n",
504
+ " \"email\": {\n",
505
+ " \"type\": \"string\",\n",
506
+ " \"description\": \"The email address of this user\"\n",
507
+ " },\n",
508
+ " \"name\": {\n",
509
+ " \"type\": \"string\",\n",
510
+ " \"description\": \"The user's name, if they provided it\"\n",
511
+ " },\n",
512
+ " \"notes\": {\n",
513
+ " \"type\": \"string\",\n",
514
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
515
+ " }\n",
516
+ " },\n",
517
+ " \"required\": [\"email\"],\n",
518
+ " \"additionalProperties\": False\n",
519
+ " }\n",
520
+ "}\n",
521
+ "\n",
522
+ "record_unknown_question_json = {\n",
523
+ " \"name\": \"record_unknown_question\",\n",
524
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
525
+ " \"parameters\": {\n",
526
+ " \"type\": \"object\",\n",
527
+ " \"properties\": {\n",
528
+ " \"question\": {\n",
529
+ " \"type\": \"string\",\n",
530
+ " \"description\": \"The question that couldn't be answered\"\n",
531
+ " },\n",
532
+ " },\n",
533
+ " \"required\": [\"question\"],\n",
534
+ " \"additionalProperties\": False\n",
535
+ " }\n",
536
+ "}\n",
537
+ "\n",
538
+ "tools = [\n",
539
+ " {\"type\": \"function\", \"function\": record_user_details_json},\n",
540
+ " {\"type\": \"function\", \"function\": record_unknown_question_json}\n",
541
+ "]\n",
542
+ "\n",
543
+ "\n",
544
+ "class Me:\n",
545
+ "\n",
546
+ " def __init__(self):\n",
547
+ " self.openai = gemini # REPLACED OpenAI WITH GEMINI\n",
548
+ " self.name = \"AKASH M J\"\n",
549
+ "\n",
550
+ " reader = PdfReader(\"me/Profile.pdf\")\n",
551
+ " self.linkedin = \"\"\n",
552
+ " for page in reader.pages:\n",
553
+ " text = page.extract_text()\n",
554
+ " if text:\n",
555
+ " self.linkedin += text\n",
556
+ "\n",
557
+ " with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
558
+ " self.summary = f.read()\n",
559
+ "\n",
560
+ " def handle_tool_call(self, tool_calls):\n",
561
+ " results = []\n",
562
+ " for tool_call in tool_calls:\n",
563
+ " tool_name = tool_call.function.name\n",
564
+ " arguments = json.loads(tool_call.function.arguments)\n",
565
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
566
+ " tool = globals().get(tool_name)\n",
567
+ " result = tool(**arguments) if tool else {}\n",
568
+ " results.append({\n",
569
+ " \"role\": \"tool\",\n",
570
+ " \"content\": json.dumps(result),\n",
571
+ " \"tool_call_id\": tool_call.id\n",
572
+ " })\n",
573
+ " return results\n",
574
+ "\n",
575
+ " def system_prompt(self):\n",
576
+ " system_prompt = (\n",
577
+ " f\"You are acting as {self.name}. You are answering questions on {self.name}'s website, \"\n",
578
+ " f\"particularly questions related to {self.name}'s career, background, skills and experience. \"\n",
579
+ " f\"Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \"\n",
580
+ " f\"You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \"\n",
581
+ " f\"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \"\n",
582
+ " f\"If you don't know the answer to any question, use your record_unknown_question tool to record the question. \"\n",
583
+ " f\"If the user is engaging in discussion, try to steer them towards getting in touch via email.\"\n",
584
+ " )\n",
585
+ "\n",
586
+ " system_prompt += f\"\\n\\n## Summary:\\n{self.summary}\\n\\n## LinkedIn Profile:\\n{self.linkedin}\\n\\n\"\n",
587
+ " system_prompt += f\"With this context, please chat with the user, always staying in character as {self.name}.\"\n",
588
+ " return system_prompt\n",
589
+ "\n",
590
+ " def chat(self, message, history):\n",
591
+ " messages = [\n",
592
+ " {\"role\": \"system\", \"content\": self.system_prompt()}\n",
593
+ " ] + history + [\n",
594
+ " {\"role\": \"user\", \"content\": message}\n",
595
+ " ]\n",
596
+ "\n",
597
+ " done = False\n",
598
+ " while not done:\n",
599
+ " # ---- CHANGED TO USE GEMINI ----\n",
600
+ " response = self.openai.chat.completions.create(\n",
601
+ " model=\"gemini-2.5-flash\",\n",
602
+ " messages=messages,\n",
603
+ " tools=tools\n",
604
+ " )\n",
605
+ " # --------------------------------\n",
606
+ "\n",
607
+ " if response.choices[0].finish_reason == \"tool_calls\":\n",
608
+ " message = response.choices[0].message\n",
609
+ " tool_calls = message.tool_calls\n",
610
+ " results = self.handle_tool_call(tool_calls)\n",
611
+ " messages.append(message)\n",
612
+ " messages.extend(results)\n",
613
+ " else:\n",
614
+ " done = True\n",
615
+ "\n",
616
+ " return response.choices[0].message.content\n",
617
+ "\n",
618
+ "\n",
619
+ "if __name__ == \"__main__\":\n",
620
+ " me = Me()\n",
621
+ " gr.ChatInterface(me.chat, type=\"messages\").launch()\n"
622
+ ]
623
+ },
624
+ {
625
+ "cell_type": "code",
626
+ "execution_count": null,
627
+ "metadata": {},
628
+ "outputs": [],
629
+ "source": []
630
+ }
631
+ ],
632
+ "metadata": {
633
+ "kernelspec": {
634
+ "display_name": ".venv",
635
+ "language": "python",
636
+ "name": "python3"
637
+ },
638
+ "language_info": {
639
+ "codemirror_mode": {
640
+ "name": "ipython",
641
+ "version": 3
642
+ },
643
+ "file_extension": ".py",
644
+ "mimetype": "text/x-python",
645
+ "name": "python",
646
+ "nbconvert_exporter": "python",
647
+ "pygments_lexer": "ipython3",
648
+ "version": "3.12.3"
649
+ }
650
+ },
651
+ "nbformat": 4,
652
+ "nbformat_minor": 2
653
+ }
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Akash Ai Talks
3
- emoji: πŸ¦€
4
- colorFrom: purple
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 6.0.2
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Akash_ai_talks
3
+ app_file: app.py
 
 
4
  sdk: gradio
5
  sdk_version: 6.0.2
 
 
6
  ---
 
 
app.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from dotenv import load_dotenv
2
+ # from openai import OpenAI
3
+ # import json
4
+ # import os
5
+ # import requests
6
+ # from pypdf import PdfReader
7
+ # import gradio as gr
8
+
9
+
10
+ # load_dotenv(override=True)
11
+
12
+ # def push(text):
13
+ # requests.post(
14
+ # "https://api.pushover.net/1/messages.json",
15
+ # data={
16
+ # "token": os.getenv("PUSHOVER_TOKEN"),
17
+ # "user": os.getenv("PUSHOVER_USER"),
18
+ # "message": text,
19
+ # }
20
+ # )
21
+
22
+
23
+ # def record_user_details(email, name="Name not provided", notes="not provided"):
24
+ # push(f"Recording {name} with email {email} and notes {notes}")
25
+ # return {"recorded": "ok"}
26
+
27
+ # def record_unknown_question(question):
28
+ # push(f"Recording {question}")
29
+ # return {"recorded": "ok"}
30
+
31
+ # record_user_details_json = {
32
+ # "name": "record_user_details",
33
+ # "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
34
+ # "parameters": {
35
+ # "type": "object",
36
+ # "properties": {
37
+ # "email": {
38
+ # "type": "string",
39
+ # "description": "The email address of this user"
40
+ # },
41
+ # "name": {
42
+ # "type": "string",
43
+ # "description": "The user's name, if they provided it"
44
+ # }
45
+ # ,
46
+ # "notes": {
47
+ # "type": "string",
48
+ # "description": "Any additional information about the conversation that's worth recording to give context"
49
+ # }
50
+ # },
51
+ # "required": ["email"],
52
+ # "additionalProperties": False
53
+ # }
54
+ # }
55
+
56
+ # record_unknown_question_json = {
57
+ # "name": "record_unknown_question",
58
+ # "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
59
+ # "parameters": {
60
+ # "type": "object",
61
+ # "properties": {
62
+ # "question": {
63
+ # "type": "string",
64
+ # "description": "The question that couldn't be answered"
65
+ # },
66
+ # },
67
+ # "required": ["question"],
68
+ # "additionalProperties": False
69
+ # }
70
+ # }
71
+
72
+ # tools = [{"type": "function", "function": record_user_details_json},
73
+ # {"type": "function", "function": record_unknown_question_json}]
74
+
75
+
76
+ # class Me:
77
+
78
+ # def __init__(self):
79
+ # self.openai = OpenAI()
80
+ # self.name = "Ed Donner"
81
+ # reader = PdfReader("me/linkedin.pdf")
82
+ # self.linkedin = ""
83
+ # for page in reader.pages:
84
+ # text = page.extract_text()
85
+ # if text:
86
+ # self.linkedin += text
87
+ # with open("me/summary.txt", "r", encoding="utf-8") as f:
88
+ # self.summary = f.read()
89
+
90
+
91
+ # def handle_tool_call(self, tool_calls):
92
+ # results = []
93
+ # for tool_call in tool_calls:
94
+ # tool_name = tool_call.function.name
95
+ # arguments = json.loads(tool_call.function.arguments)
96
+ # print(f"Tool called: {tool_name}", flush=True)
97
+ # tool = globals().get(tool_name)
98
+ # result = tool(**arguments) if tool else {}
99
+ # results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
100
+ # return results
101
+
102
+ # def system_prompt(self):
103
+ # system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
104
+ # particularly questions related to {self.name}'s career, background, skills and experience. \
105
+ # Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
106
+ # You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
107
+ # Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
108
+ # If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
109
+ # If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
110
+
111
+ # system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
112
+ # system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
113
+ # return system_prompt
114
+
115
+ # def chat(self, message, history):
116
+ # messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
117
+ # done = False
118
+ # while not done:
119
+ # response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
120
+ # if response.choices[0].finish_reason=="tool_calls":
121
+ # message = response.choices[0].message
122
+ # tool_calls = message.tool_calls
123
+ # results = self.handle_tool_call(tool_calls)
124
+ # messages.append(message)
125
+ # messages.extend(results)
126
+ # else:
127
+ # done = True
128
+ # return response.choices[0].message.content
129
+
130
+
131
+ # if __name__ == "__main__":
132
+ # me = Me()
133
+ # gr.ChatInterface(me.chat, type="messages").launch()
134
+
135
+
136
+ from dotenv import load_dotenv
137
+ from openai import OpenAI
138
+ import json
139
+ import os
140
+ import requests
141
+ from pypdf import PdfReader
142
+ import gradio as gr
143
+
144
+ load_dotenv(override=True)
145
+
146
+ GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
147
+ google_api_key = os.getenv("GOOGLE_API_KEY")
148
+
149
+ # Initialize Gemini client
150
+ gemini = OpenAI(
151
+ base_url=GEMINI_BASE_URL,
152
+ api_key=google_api_key
153
+ )
154
+
155
+ def push(text):
156
+ requests.post(
157
+ "https://api.pushover.net/1/messages.json",
158
+ data={
159
+ "token": os.getenv("PUSHOVER_TOKEN"),
160
+ "user": os.getenv("PUSHOVER_USER"),
161
+ "message": text,
162
+ }
163
+ )
164
+
165
+
166
+ def record_user_details(email, name="Name not provided", notes="not provided"):
167
+ push(f"Recording {name} with email {email} and notes {notes}")
168
+ return {"recorded": "ok"}
169
+
170
+
171
+ def record_unknown_question(question):
172
+ push(f"Recording {question}")
173
+ return {"recorded": "ok"}
174
+
175
+
176
+ record_user_details_json = {
177
+ "name": "record_user_details",
178
+ "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
179
+ "parameters": {
180
+ "type": "object",
181
+ "properties": {
182
+ "email": {
183
+ "type": "string",
184
+ "description": "The email address of this user"
185
+ },
186
+ "name": {
187
+ "type": "string",
188
+ "description": "The user's name, if they provided it"
189
+ },
190
+ "notes": {
191
+ "type": "string",
192
+ "description": "Any additional information about the conversation that's worth recording to give context"
193
+ }
194
+ },
195
+ "required": ["email"],
196
+ "additionalProperties": False
197
+ }
198
+ }
199
+
200
+ record_unknown_question_json = {
201
+ "name": "record_unknown_question",
202
+ "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
203
+ "parameters": {
204
+ "type": "object",
205
+ "properties": {
206
+ "question": {
207
+ "type": "string",
208
+ "description": "The question that couldn't be answered"
209
+ },
210
+ },
211
+ "required": ["question"],
212
+ "additionalProperties": False
213
+ }
214
+ }
215
+
216
+ tools = [
217
+ {"type": "function", "function": record_user_details_json},
218
+ {"type": "function", "function": record_unknown_question_json}
219
+ ]
220
+
221
+
222
+ class Me:
223
+
224
+ def __init__(self):
225
+ self.openai = gemini # REPLACED OpenAI WITH GEMINI
226
+ self.name = "AKASH M J"
227
+
228
+ reader = PdfReader("me/Profile.pdf")
229
+ self.linkedin = ""
230
+ for page in reader.pages:
231
+ text = page.extract_text()
232
+ if text:
233
+ self.linkedin += text
234
+
235
+ with open("me/summary.txt", "r", encoding="utf-8") as f:
236
+ self.summary = f.read()
237
+
238
+ def handle_tool_call(self, tool_calls):
239
+ results = []
240
+ for tool_call in tool_calls:
241
+ tool_name = tool_call.function.name
242
+ arguments = json.loads(tool_call.function.arguments)
243
+ print(f"Tool called: {tool_name}", flush=True)
244
+ tool = globals().get(tool_name)
245
+ result = tool(**arguments) if tool else {}
246
+ results.append({
247
+ "role": "tool",
248
+ "content": json.dumps(result),
249
+ "tool_call_id": tool_call.id
250
+ })
251
+ return results
252
+
253
+ def system_prompt(self):
254
+ system_prompt = (
255
+ f"You are acting as {self.name}. You are answering questions on {self.name}'s website, "
256
+ f"particularly questions related to {self.name}'s career, background, skills and experience. "
257
+ f"Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. "
258
+ f"You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. "
259
+ f"Be professional and engaging, as if talking to a potential client or future employer who came across the website. "
260
+ f"If you don't know the answer to any question, use your record_unknown_question tool to record the question. "
261
+ f"If the user is engaging in discussion, try to steer them towards getting in touch via email."
262
+ )
263
+
264
+ system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
265
+ system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
266
+ return system_prompt
267
+
268
+ def chat(self, message, history):
269
+ messages = [
270
+ {"role": "system", "content": self.system_prompt()}
271
+ ] + history + [
272
+ {"role": "user", "content": message}
273
+ ]
274
+
275
+ done = False
276
+ while not done:
277
+ # ---- CHANGED TO USE GEMINI ----
278
+ response = self.openai.chat.completions.create(
279
+ model="gemini-2.5-flash",
280
+ messages=messages,
281
+ tools=tools
282
+ )
283
+ # --------------------------------
284
+
285
+ if response.choices[0].finish_reason == "tool_calls":
286
+ message = response.choices[0].message
287
+ tool_calls = message.tool_calls
288
+ results = self.handle_tool_call(tool_calls)
289
+ messages.append(message)
290
+ messages.extend(results)
291
+ else:
292
+ done = True
293
+
294
+ return response.choices[0].message.content
295
+
296
+
297
+ if __name__ == "__main__":
298
+ me = Me()
299
+ gr.ChatInterface(me.chat, type="messages").launch()
community_contributions/1_lab1_DA.ipynb ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# Next it's time to load the API keys into environment variables\n",
104
+ "# If this returns false, see the next cell!\n",
105
+ "\n",
106
+ "load_dotenv(override=True)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "markdown",
111
+ "metadata": {},
112
+ "source": [
113
+ "### Wait, did that just output `False`??\n",
114
+ "\n",
115
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
116
+ "\n",
117
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
118
+ "\n",
119
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
127
+ " <tr>\n",
128
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
129
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
130
+ " </td>\n",
131
+ " <td>\n",
132
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
133
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
134
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
135
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
136
+ " </span>\n",
137
+ " </td>\n",
138
+ " </tr>\n",
139
+ "</table>"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
149
+ "\n",
150
+ "import os\n",
151
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
152
+ "\n",
153
+ "if openai_api_key:\n",
154
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
155
+ "else:\n",
156
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
157
+ " \n"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# And now - the all important import statement\n",
167
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
168
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
169
+ "\n",
170
+ "from openai import OpenAI"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "# And now we'll create an instance of the OpenAI class\n",
180
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
181
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
182
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
183
+ "\n",
184
+ "openai = OpenAI()"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# Create a list of messages in the familiar OpenAI format\n",
194
+ "\n",
195
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
205
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
206
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
207
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
208
+ "\n",
209
+ "response = openai.chat.completions.create(\n",
210
+ " model=\"gpt-4.1-nano\",\n",
211
+ " messages=messages\n",
212
+ ")\n",
213
+ "\n",
214
+ "print(response.choices[0].message.content)\n"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "# And now - let's ask for a question:\n",
224
+ "\n",
225
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
226
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
236
+ "\n",
237
+ "response = openai.chat.completions.create(\n",
238
+ " model=\"gpt-4.1-mini\",\n",
239
+ " messages=messages\n",
240
+ ")\n",
241
+ "\n",
242
+ "question = response.choices[0].message.content\n",
243
+ "\n",
244
+ "print(question)\n"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": null,
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "# form a new messages list\n",
254
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# Ask it again\n",
264
+ "\n",
265
+ "response = openai.chat.completions.create(\n",
266
+ " model=\"gpt-4.1-mini\",\n",
267
+ " messages=messages\n",
268
+ ")\n",
269
+ "\n",
270
+ "answer = response.choices[0].message.content\n",
271
+ "print(answer)\n"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "from IPython.display import Markdown, display\n",
281
+ "\n",
282
+ "display(Markdown(answer))\n",
283
+ "\n"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "markdown",
288
+ "metadata": {},
289
+ "source": [
290
+ "# Congratulations!\n",
291
+ "\n",
292
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
293
+ "\n",
294
+ "Next time things get more interesting..."
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "markdown",
299
+ "metadata": {},
300
+ "source": [
301
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
302
+ " <tr>\n",
303
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
304
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
305
+ " </td>\n",
306
+ " <td>\n",
307
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
308
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
309
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
310
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
311
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
312
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
313
+ " </span>\n",
314
+ " </td>\n",
315
+ " </tr>\n",
316
+ "</table>"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# And now - let's ask for a question:\n",
326
+ "\n",
327
+ "import os\n",
328
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
329
+ "from openai import OpenAI\n",
330
+ "from IPython.display import Markdown, display\n",
331
+ "\n",
332
+ "# And now we'll create an instance of the OpenAI class\n",
333
+ "\n",
334
+ "openai = OpenAI()\n",
335
+ "\n",
336
+ "question1 = \"Please pick a business area that might be worth exploring for an Agentic AI opportunity.\"\n",
337
+ "messages1 = [{\"role\": \"user\", \"content\": question1}]\n",
338
+ "\n",
339
+ "# Then make the first call:\n",
340
+ "response1 = openai.chat.completions.create(\n",
341
+ " model=\"gpt-4.1-mini\",\n",
342
+ " messages=messages1\n",
343
+ ")\n",
344
+ "\n",
345
+ "question2 = \" Please present the pain-point in \"+response1.choices[0].message.content +\" industry - something challenging that might be ripe for an Agentic solution\"\n",
346
+ "messages2 = [{\"role\": \"user\", \"content\": question2}]\n",
347
+ "\n",
348
+ "# Then make the first call:\n",
349
+ "response2 = openai.chat.completions.create(\n",
350
+ " model=\"gpt-4.1-mini\",\n",
351
+ " messages=messages2\n",
352
+ ")\n",
353
+ "\n",
354
+ "question3 = \" Please presentpropose and Agentic AI solution for pain-point \"+response2.choices[0].message.content\n",
355
+ "messages3 = [{\"role\": \"user\", \"content\": question3}]\n",
356
+ "\n",
357
+ "# Then make the first call:\n",
358
+ "response3 = openai.chat.completions.create(\n",
359
+ " model=\"gpt-4.1-mini\",\n",
360
+ " messages=messages3\n",
361
+ ")\n",
362
+ "\n",
363
+ "Final_Answer = \" Please presentpropose and Agentic AI solution for pain-point \"+response2.choices[0].message.content\n",
364
+ "\n",
365
+ "display(Markdown(Final_Answer))\n",
366
+ "\n"
367
+ ]
368
+ },
369
+ {
370
+ "cell_type": "markdown",
371
+ "metadata": {},
372
+ "source": []
373
+ }
374
+ ],
375
+ "metadata": {
376
+ "kernelspec": {
377
+ "display_name": ".venv",
378
+ "language": "python",
379
+ "name": "python3"
380
+ },
381
+ "language_info": {
382
+ "codemirror_mode": {
383
+ "name": "ipython",
384
+ "version": 3
385
+ },
386
+ "file_extension": ".py",
387
+ "mimetype": "text/x-python",
388
+ "name": "python",
389
+ "nbconvert_exporter": "python",
390
+ "pygments_lexer": "ipython3",
391
+ "version": "3.12.11"
392
+ }
393
+ },
394
+ "nbformat": 4,
395
+ "nbformat_minor": 2
396
+ }
community_contributions/1_lab1_Hy.ipynb ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 1,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 2,
100
+ "metadata": {},
101
+ "outputs": [
102
+ {
103
+ "data": {
104
+ "text/plain": [
105
+ "True"
106
+ ]
107
+ },
108
+ "execution_count": 2,
109
+ "metadata": {},
110
+ "output_type": "execute_result"
111
+ }
112
+ ],
113
+ "source": [
114
+ "# Next it's time to load the API keys into environment variables\n",
115
+ "# If this returns false, see the next cell!\n",
116
+ "\n",
117
+ "load_dotenv(override=True)"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "markdown",
122
+ "metadata": {},
123
+ "source": [
124
+ "### Wait, did that just output `False`??\n",
125
+ "\n",
126
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
127
+ "\n",
128
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
129
+ "\n",
130
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "markdown",
135
+ "metadata": {},
136
+ "source": [
137
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
138
+ " <tr>\n",
139
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
140
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
141
+ " </td>\n",
142
+ " <td>\n",
143
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
144
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
145
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
146
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
147
+ " </span>\n",
148
+ " </td>\n",
149
+ " </tr>\n",
150
+ "</table>"
151
+ ]
152
+ },
153
+ {
154
+ "cell_type": "code",
155
+ "execution_count": 3,
156
+ "metadata": {},
157
+ "outputs": [
158
+ {
159
+ "name": "stdout",
160
+ "output_type": "stream",
161
+ "text": [
162
+ "OpenAI API Key exists and begins sk-proj-\n"
163
+ ]
164
+ }
165
+ ],
166
+ "source": [
167
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
168
+ "\n",
169
+ "import os\n",
170
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
171
+ "\n",
172
+ "if openai_api_key:\n",
173
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
174
+ "else:\n",
175
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
176
+ " \n"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": 4,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "# And now - the all important import statement\n",
186
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
187
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
188
+ "\n",
189
+ "from openai import OpenAI"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": 5,
195
+ "metadata": {},
196
+ "outputs": [],
197
+ "source": [
198
+ "# And now we'll create an instance of the OpenAI class\n",
199
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
200
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
201
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
202
+ "\n",
203
+ "openai = OpenAI()"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": 6,
209
+ "metadata": {},
210
+ "outputs": [],
211
+ "source": [
212
+ "# Create a list of messages in the familiar OpenAI format\n",
213
+ "\n",
214
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [
222
+ {
223
+ "name": "stdout",
224
+ "output_type": "stream",
225
+ "text": [
226
+ "ChatCompletion(id='chatcmpl-C9oVaLh1gjzKH07zcVLaXQ4o4FDQ7', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='2 + 2 equals 4.', refusal=None, role='assistant', annotations=[], audio=None, function_call=None, tool_calls=None))], created=1756455142, model='gpt-4.1-nano-2025-04-14', object='chat.completion', service_tier='default', system_fingerprint='fp_c4c155951e', usage=CompletionUsage(completion_tokens=8, prompt_tokens=14, total_tokens=22, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))\n",
227
+ "2 + 2 equals 4.\n"
228
+ ]
229
+ }
230
+ ],
231
+ "source": [
232
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
233
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
234
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
235
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
236
+ "\n",
237
+ "response = openai.chat.completions.create(\n",
238
+ " model=\"gpt-4.1-nano\",\n",
239
+ " messages=messages\n",
240
+ ")\n",
241
+ "print(response.choices[0].message.content)\n"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": 9,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "# And now - let's ask for a question:\n",
251
+ "\n",
252
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
253
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 10,
259
+ "metadata": {},
260
+ "outputs": [
261
+ {
262
+ "name": "stdout",
263
+ "output_type": "stream",
264
+ "text": [
265
+ "If three people can paint three walls in three hours, how many people are needed to paint 18 walls in six hours?\n"
266
+ ]
267
+ }
268
+ ],
269
+ "source": [
270
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
271
+ "\n",
272
+ "response = openai.chat.completions.create(\n",
273
+ " model=\"gpt-4.1-mini\",\n",
274
+ " messages=messages\n",
275
+ ")\n",
276
+ "\n",
277
+ "question = response.choices[0].message.content\n",
278
+ "\n",
279
+ "print(question)\n"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": 11,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "# form a new messages list\n",
289
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": 12,
295
+ "metadata": {},
296
+ "outputs": [
297
+ {
298
+ "name": "stdout",
299
+ "output_type": "stream",
300
+ "text": [
301
+ "Let's analyze the problem step-by-step:\n",
302
+ "\n",
303
+ "---\n",
304
+ "\n",
305
+ "**Given:**\n",
306
+ "\n",
307
+ "- 3 people can paint 3 walls in 3 hours.\n",
308
+ "\n",
309
+ "**Question:**\n",
310
+ "\n",
311
+ "- How many people are needed to paint 18 walls in 6 hours?\n",
312
+ "\n",
313
+ "---\n",
314
+ "\n",
315
+ "### Step 1: Find the rate of painting per person\n",
316
+ "\n",
317
+ "- Total walls painted: 3 walls\n",
318
+ "- Total people: 3 people\n",
319
+ "- Total time: 3 hours\n",
320
+ "\n",
321
+ "**Walls per person per hour:**\n",
322
+ "\n",
323
+ "First, find how many walls 3 people paint per hour:\n",
324
+ "\n",
325
+ "\\[\n",
326
+ "\\frac{3 \\text{ walls}}{3 \\text{ hours}} = 1 \\text{ wall per hour by 3 people}\n",
327
+ "\\]\n",
328
+ "\n",
329
+ "So, 3 people paint 1 wall per hour.\n",
330
+ "\n",
331
+ "Then, walls per person per hour:\n",
332
+ "\n",
333
+ "\\[\n",
334
+ "\\frac{1 \\text{ wall per hour}}{3 \\text{ people}} = \\frac{1}{3} \\text{ wall per person per hour}\n",
335
+ "\\]\n",
336
+ "\n",
337
+ "---\n",
338
+ "\n",
339
+ "### Step 2: Calculate total work needed\n",
340
+ "\n",
341
+ "You want to paint 18 walls in 6 hours.\n",
342
+ "\n",
343
+ "This means the rate of painting must be:\n",
344
+ "\n",
345
+ "\\[\n",
346
+ "\\frac{18 \\text{ walls}}{6 \\text{ hours}} = 3 \\text{ walls per hour}\n",
347
+ "\\]\n",
348
+ "\n",
349
+ "---\n",
350
+ "\n",
351
+ "### Step 3: Find how many people are needed for this rate\n",
352
+ "\n",
353
+ "Since each person paints \\(\\frac{1}{3}\\) wall per hour,\n",
354
+ "\n",
355
+ "\\[\n",
356
+ "\\text{Number of people} \\times \\frac{1}{3} = 3 \\text{ walls per hour}\n",
357
+ "\\]\n",
358
+ "\n",
359
+ "Multiply both sides by 3:\n",
360
+ "\n",
361
+ "\\[\n",
362
+ "\\text{Number of people} = 3 \\times 3 = 9\n",
363
+ "\\]\n",
364
+ "\n",
365
+ "---\n",
366
+ "\n",
367
+ "### **Answer:**\n",
368
+ "\n",
369
+ "\\[\n",
370
+ "\\boxed{9}\n",
371
+ "\\]\n",
372
+ "\n",
373
+ "You need **9 people** to paint 18 walls in 6 hours.\n"
374
+ ]
375
+ }
376
+ ],
377
+ "source": [
378
+ "# Ask it again\n",
379
+ "\n",
380
+ "response = openai.chat.completions.create(\n",
381
+ " model=\"gpt-4.1-mini\",\n",
382
+ " messages=messages\n",
383
+ ")\n",
384
+ "\n",
385
+ "answer = response.choices[0].message.content\n",
386
+ "print(answer)\n"
387
+ ]
388
+ },
389
+ {
390
+ "cell_type": "code",
391
+ "execution_count": 13,
392
+ "metadata": {},
393
+ "outputs": [
394
+ {
395
+ "data": {
396
+ "text/markdown": [
397
+ "Let's analyze the problem step-by-step:\n",
398
+ "\n",
399
+ "---\n",
400
+ "\n",
401
+ "**Given:**\n",
402
+ "\n",
403
+ "- 3 people can paint 3 walls in 3 hours.\n",
404
+ "\n",
405
+ "**Question:**\n",
406
+ "\n",
407
+ "- How many people are needed to paint 18 walls in 6 hours?\n",
408
+ "\n",
409
+ "---\n",
410
+ "\n",
411
+ "### Step 1: Find the rate of painting per person\n",
412
+ "\n",
413
+ "- Total walls painted: 3 walls\n",
414
+ "- Total people: 3 people\n",
415
+ "- Total time: 3 hours\n",
416
+ "\n",
417
+ "**Walls per person per hour:**\n",
418
+ "\n",
419
+ "First, find how many walls 3 people paint per hour:\n",
420
+ "\n",
421
+ "\\[\n",
422
+ "\\frac{3 \\text{ walls}}{3 \\text{ hours}} = 1 \\text{ wall per hour by 3 people}\n",
423
+ "\\]\n",
424
+ "\n",
425
+ "So, 3 people paint 1 wall per hour.\n",
426
+ "\n",
427
+ "Then, walls per person per hour:\n",
428
+ "\n",
429
+ "\\[\n",
430
+ "\\frac{1 \\text{ wall per hour}}{3 \\text{ people}} = \\frac{1}{3} \\text{ wall per person per hour}\n",
431
+ "\\]\n",
432
+ "\n",
433
+ "---\n",
434
+ "\n",
435
+ "### Step 2: Calculate total work needed\n",
436
+ "\n",
437
+ "You want to paint 18 walls in 6 hours.\n",
438
+ "\n",
439
+ "This means the rate of painting must be:\n",
440
+ "\n",
441
+ "\\[\n",
442
+ "\\frac{18 \\text{ walls}}{6 \\text{ hours}} = 3 \\text{ walls per hour}\n",
443
+ "\\]\n",
444
+ "\n",
445
+ "---\n",
446
+ "\n",
447
+ "### Step 3: Find how many people are needed for this rate\n",
448
+ "\n",
449
+ "Since each person paints \\(\\frac{1}{3}\\) wall per hour,\n",
450
+ "\n",
451
+ "\\[\n",
452
+ "\\text{Number of people} \\times \\frac{1}{3} = 3 \\text{ walls per hour}\n",
453
+ "\\]\n",
454
+ "\n",
455
+ "Multiply both sides by 3:\n",
456
+ "\n",
457
+ "\\[\n",
458
+ "\\text{Number of people} = 3 \\times 3 = 9\n",
459
+ "\\]\n",
460
+ "\n",
461
+ "---\n",
462
+ "\n",
463
+ "### **Answer:**\n",
464
+ "\n",
465
+ "\\[\n",
466
+ "\\boxed{9}\n",
467
+ "\\]\n",
468
+ "\n",
469
+ "You need **9 people** to paint 18 walls in 6 hours."
470
+ ],
471
+ "text/plain": [
472
+ "<IPython.core.display.Markdown object>"
473
+ ]
474
+ },
475
+ "metadata": {},
476
+ "output_type": "display_data"
477
+ }
478
+ ],
479
+ "source": [
480
+ "from IPython.display import Markdown, display\n",
481
+ "\n",
482
+ "display(Markdown(answer))\n",
483
+ "\n"
484
+ ]
485
+ },
486
+ {
487
+ "cell_type": "markdown",
488
+ "metadata": {},
489
+ "source": [
490
+ "# Congratulations!\n",
491
+ "\n",
492
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
493
+ "\n",
494
+ "Next time things get more interesting..."
495
+ ]
496
+ },
497
+ {
498
+ "cell_type": "markdown",
499
+ "metadata": {},
500
+ "source": [
501
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
502
+ " <tr>\n",
503
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
504
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
505
+ " </td>\n",
506
+ " <td>\n",
507
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
508
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
509
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
510
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
511
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
512
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
513
+ " </span>\n",
514
+ " </td>\n",
515
+ " </tr>\n",
516
+ "</table>"
517
+ ]
518
+ },
519
+ {
520
+ "cell_type": "code",
521
+ "execution_count": 16,
522
+ "metadata": {},
523
+ "outputs": [
524
+ {
525
+ "data": {
526
+ "text/markdown": [
527
+ "Certainly! Building on your outlined pain-point and the high-level Agentic AI functionalities, here’s a detailed proposal for an **Agentic AI solution** designed to tackle fragmented patient data and enable real-time, holistic health management.\n",
528
+ "\n",
529
+ "---\n",
530
+ "\n",
531
+ "# Agentic AI Solution Proposal: **HealthSynth AI**\n",
532
+ "\n",
533
+ "### Overview \n",
534
+ "**HealthSynth AI** is an autonomous health management agent that continuously synthesizes fragmented patient data from multiple sources to provide a real-time, unified, and actionable health profile for patients and their care teams. It acts as a 24/7 health assistant, proactive coordinator, and personalized medical advisor.\n",
535
+ "\n",
536
+ "---\n",
537
+ "\n",
538
+ "## Key Features & Capabilities\n",
539
+ "\n",
540
+ "### 1. **Autonomous Data Aggregation & Normalization** \n",
541
+ "- Uses API integrations, secure data exchanges (FHIR, HL7 standards), and device SDKs to continuously fetch data from: \n",
542
+ " - EHR systems across different providers \n",
543
+ " - Wearable and home medical devices (heart rate, glucose monitors, BP cuffs) \n",
544
+ " - Pharmacy records and prescription databases \n",
545
+ " - Lab results portals \n",
546
+ " - Insurance claims and coverage data \n",
547
+ "- Applies intelligent data cleaning, deduplication, and semantic normalization to unify heterogeneous data formats into a consistent patient health graph.\n",
548
+ "\n",
549
+ "### 2. **Real-Time Multimodal Health Analytics Engine** \n",
550
+ "- Employs advanced ML and deep learning models to detect: \n",
551
+ " - Emerging risk patterns (e.g., early signs of infection, deterioration of chronic conditions) \n",
552
+ " - Anomalies (missed medications, unusual vital sign changes) \n",
553
+ " - Compliance gaps (lifestyle, medication adherence) \n",
554
+ "- Continuously updates predictive health trajectories personalized to each patient’s condition and history.\n",
555
+ "\n",
556
+ "### 3. **Proactive Action & Recommendation System** \n",
557
+ "- Generates context-aware, evidence-based alerts and recommendations such as: \n",
558
+ " - Medication reminders or dosage adjustments flagged in consultation with prescribing physicians \n",
559
+ " - Suggestions for scheduling lab tests or specialist visits timely before symptoms worsen \n",
560
+ " - Lifestyle coaching tips adapted using patient preferences and progress \n",
561
+ "- Classes recommendations into urgency tiers (info, caution, immediate action) and routes notifications appropriately.\n",
562
+ "\n",
563
+ "### 4. **Automated Care Coordination & Workflow Integration** \n",
564
+ "- Interacts programmatically with provider scheduling systems, telemedicine platforms, pharmacies, and insurance portals to: \n",
565
+ " - Automatically request appointment reschedules or referrals based on patient status \n",
566
+ " - Notify involved healthcare professionals about critical health events or lab results \n",
567
+ " - Facilitate prescription renewals or modifications with minimal human intervention \n",
568
+ "- Maintains secure, auditable communication logs ensuring compliance (HIPAA, GDPR).\n",
569
+ "\n",
570
+ "### 5. **Patient-Centric Digital Health Companion** \n",
571
+ "- Provides patients with an intuitive mobile/web app featuring: \n",
572
+ " - A dynamic health dashboard summarizing key metrics, risks, and recent activities in plain language \n",
573
+ " - Intelligent daily check-ins and symptom trackers powered by conversational AI \n",
574
+ " - Adaptive educational content tailored to health literacy levels and language preferences \n",
575
+ " - Privacy controls empowering patients to manage data sharing settings\n",
576
+ "\n",
577
+ "---\n",
578
+ "\n",
579
+ "## Technical Architecture (High-Level)\n",
580
+ "\n",
581
+ "- **Data Ingestion Layer:** Connectors for EHRs, wearables, pharmacies, labs \n",
582
+ "- **Data Lake & Processing:** Cloud-native secure storage with HIPAA-compliant encryption \n",
583
+ "- **Knowledge Graph:** Patient-centric semantic graph linking clinical concepts, timelines, interventions \n",
584
+ "- **Analytics & ML Models:** Ensemble predictive models incorporating temporal health data, risk scoring, anomaly detection \n",
585
+ "- **Agentic Orchestrator:** Rule-based and reinforcement learning-driven workflow engine enabling autonomous decision-making and stakeholder communications \n",
586
+ "- **Frontend Interfaces:** Responsive patient app, provider portals, API access for system integration\n",
587
+ "\n",
588
+ "---\n",
589
+ "\n",
590
+ "## Potential Challenges & Mitigations\n",
591
+ "\n",
592
+ "| Challenge | Mitigation Strategy |\n",
593
+ "|-----------|---------------------|\n",
594
+ "| Data privacy & regulatory compliance | Built-in privacy-by-design, end-to-end encryption, rigorous consent management, audit trails |\n",
595
+ "| Data interoperability & standardization | Utilize open standards (FHIR, DICOM), NLP for unstructured data extraction |\n",
596
+ "| Model explainability | Implement interpretable ML techniques and transparent reasoning for clinicians |\n",
597
+ "| Patient engagement sustainability | Gamification, behavior science-driven personalized nudges |\n",
598
+ "| Integration complexity across healthcare IT systems | Modular adaptors/plugins, partnerships with major EHR vendors |\n",
599
+ "\n",
600
+ "---\n",
601
+ "\n",
602
+ "## Impact & Benefits\n",
603
+ "\n",
604
+ "- **For Patients:** Reduced health risks, increased empowerment, improved treatment adherence, and personal convenience \n",
605
+ "- **For Providers:** Enhanced clinical decision support, reduced administrative burden, timely interventions \n",
606
+ "- **For Payers:** Lowered costs via preventive care and reduced hospital readmissions\n",
607
+ "\n",
608
+ "---\n",
609
+ "\n",
610
+ "Would you like me to help you design detailed user journeys, develop specific ML model architectures, or draft an implementation roadmap for **HealthSynth AI**?"
611
+ ],
612
+ "text/plain": [
613
+ "<IPython.core.display.Markdown object>"
614
+ ]
615
+ },
616
+ "metadata": {},
617
+ "output_type": "display_data"
618
+ }
619
+ ],
620
+ "source": [
621
+ "# First create the messages:\n",
622
+ "\n",
623
+ "messages = [{\"role\": \"user\", \"content\": \"I want you to pick a business area that might be worth exploring for an Agentic AI opportunity.\"}]\n",
624
+ "\n",
625
+ "# Then make the first call:\n",
626
+ "\n",
627
+ "response = openai.chat.completions.create(\n",
628
+ " model=\"gpt-4.1-mini\",\n",
629
+ " messages=messages\n",
630
+ ")\n",
631
+ "\n",
632
+ "# Then read the business idea:\n",
633
+ "\n",
634
+ "business_idea = response.choices[0].message.content\n",
635
+ "\n",
636
+ "# print(business_idea)\n",
637
+ "\n",
638
+ "messages = [{\"role\": \"user\", \"content\": f\"Please propose a pain-point in the {business_idea} industry.\"}]\n",
639
+ "\n",
640
+ "response = openai.chat.completions.create(\n",
641
+ " model=\"gpt-4.1-mini\",\n",
642
+ " messages=messages\n",
643
+ ")\n",
644
+ "\n",
645
+ "pain_point = response.choices[0].message.content\n",
646
+ "\n",
647
+ "messages = [{\"role\": \"user\", \"content\": f\"Please propose an Agentic AI solution to the pain-point: {pain_point}.\"}]\n",
648
+ "\n",
649
+ "response = openai.chat.completions.create(\n",
650
+ " model=\"gpt-4.1-mini\",\n",
651
+ " messages=messages\n",
652
+ ")\n",
653
+ "\n",
654
+ "agentic_solution = response.choices[0].message.content\n",
655
+ "\n",
656
+ "display(Markdown(agentic_solution))\n",
657
+ "\n",
658
+ "# And repeat! In the next message, include the business idea within the message"
659
+ ]
660
+ },
661
+ {
662
+ "cell_type": "markdown",
663
+ "metadata": {},
664
+ "source": []
665
+ }
666
+ ],
667
+ "metadata": {
668
+ "kernelspec": {
669
+ "display_name": ".venv",
670
+ "language": "python",
671
+ "name": "python3"
672
+ },
673
+ "language_info": {
674
+ "codemirror_mode": {
675
+ "name": "ipython",
676
+ "version": 3
677
+ },
678
+ "file_extension": ".py",
679
+ "mimetype": "text/x-python",
680
+ "name": "python",
681
+ "nbconvert_exporter": "python",
682
+ "pygments_lexer": "ipython3",
683
+ "version": "3.12.11"
684
+ }
685
+ },
686
+ "nbformat": 4,
687
+ "nbformat_minor": 2
688
+ }
community_contributions/1_lab1_Mudassar.ipynb ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# First Agentic AI workflow with OPENAI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "#### And please do remember to contact me if I can help\n",
15
+ "\n",
16
+ "And I love to connect: https://www.linkedin.com/in/muhammad-mudassar-a65645192/"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {},
22
+ "source": [
23
+ "## Import Libraries"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 59,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "import os\n",
33
+ "import re\n",
34
+ "from openai import OpenAI\n",
35
+ "from dotenv import load_dotenv\n",
36
+ "from IPython.display import Markdown, display"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "load_dotenv(override=True)"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "openai_api_key=os.getenv(\"OPENAI_API_KEY\")\n",
55
+ "if openai_api_key:\n",
56
+ " print(f\"openai api key exists and begins {openai_api_key[:8]}\")\n",
57
+ "else:\n",
58
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the gui\")"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "metadata": {},
64
+ "source": [
65
+ "## Workflow with OPENAI"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 21,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "openai=OpenAI()"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 31,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "message = [{'role':'user','content':\"what is 2+3?\"}]"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
93
+ "print(response.choices[0].message.content)"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 33,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
103
+ "message=[{'role':'user','content':question}]"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
113
+ "question=response.choices[0].message.content\n",
114
+ "print(f\"Answer: {question}\")"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 35,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "message=[{'role':'user','content':question}]"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
133
+ "answer = response.choices[0].message.content\n",
134
+ "print(f\"Answer: {answer}\")"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "# convert \\[ ... \\] to $$ ... $$, to properly render Latex\n",
144
+ "converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', answer)\n",
145
+ "display(Markdown(converted_answer))"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "markdown",
150
+ "metadata": {},
151
+ "source": [
152
+ "## Exercise"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "markdown",
157
+ "metadata": {},
158
+ "source": [
159
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
160
+ " <tr>\n",
161
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
162
+ " <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
163
+ " </td>\n",
164
+ " <td>\n",
165
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
166
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
167
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
168
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
169
+ " </span>\n",
170
+ " </td>\n",
171
+ " </tr>\n",
172
+ "</table>"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": 42,
178
+ "metadata": {},
179
+ "outputs": [],
180
+ "source": [
181
+ "message = [{'role':'user','content':\"give me a business area related to ecommerce that might be worth exploring for a agentic opportunity.\"}]"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
191
+ "business_area = response.choices[0].message.content\n",
192
+ "business_area"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": null,
198
+ "metadata": {},
199
+ "outputs": [],
200
+ "source": [
201
+ "message = business_area + \"present a pain-point in that industry - something challenging that might be ripe for an agentic solutions.\"\n",
202
+ "message"
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": null,
208
+ "metadata": {},
209
+ "outputs": [],
210
+ "source": [
211
+ "message = [{'role': 'user', 'content': message}]\n",
212
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
213
+ "question=response.choices[0].message.content\n",
214
+ "question"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "message=[{'role':'user','content':question}]\n",
224
+ "response=openai.chat.completions.create(model=\"gpt-4o-mini\",messages=message)\n",
225
+ "answer=response.choices[0].message.content\n",
226
+ "print(answer)"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "display(Markdown(answer))"
236
+ ]
237
+ }
238
+ ],
239
+ "metadata": {
240
+ "kernelspec": {
241
+ "display_name": ".venv",
242
+ "language": "python",
243
+ "name": "python3"
244
+ },
245
+ "language_info": {
246
+ "codemirror_mode": {
247
+ "name": "ipython",
248
+ "version": 3
249
+ },
250
+ "file_extension": ".py",
251
+ "mimetype": "text/x-python",
252
+ "name": "python",
253
+ "nbconvert_exporter": "python",
254
+ "pygments_lexer": "ipython3",
255
+ "version": "3.12.5"
256
+ }
257
+ },
258
+ "nbformat": 4,
259
+ "nbformat_minor": 2
260
+ }
community_contributions/1_lab1_Thanh.ipynb ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "### And please do remember to contact me if I can help\n",
15
+ "\n",
16
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
17
+ "\n",
18
+ "\n",
19
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
20
+ "\n",
21
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
22
+ "- Open extensions (View >> extensions)\n",
23
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
24
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
25
+ "Then View >> Explorer to bring back the File Explorer.\n",
26
+ "\n",
27
+ "And then:\n",
28
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
29
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
30
+ "3. Enjoy!\n",
31
+ "\n",
32
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
33
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
34
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
35
+ "2. In the Settings search bar, type \"venv\" \n",
36
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
37
+ "And then try again.\n",
38
+ "\n",
39
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
40
+ "`conda deactivate` \n",
41
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
42
+ "`conda config --set auto_activate_base false` \n",
43
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "from dotenv import load_dotenv\n",
53
+ "load_dotenv()"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Check the keys\n",
63
+ "import google.generativeai as genai\n",
64
+ "import os\n",
65
+ "genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))\n",
66
+ "model = genai.GenerativeModel(model_name=\"gemini-1.5-flash\")\n"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "# Create a list of messages in the familiar Gemini GenAI format\n",
76
+ "\n",
77
+ "response = model.generate_content([\"2+2=?\"])\n",
78
+ "response.text"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "# And now - let's ask for a question:\n",
88
+ "\n",
89
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
90
+ "\n",
91
+ "response = model.generate_content([question])\n",
92
+ "print(response.text)"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "from IPython.display import Markdown, display\n",
102
+ "\n",
103
+ "display(Markdown(response.text))"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "markdown",
108
+ "metadata": {},
109
+ "source": [
110
+ "# Congratulations!\n",
111
+ "\n",
112
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
113
+ "\n",
114
+ "Next time things get more interesting..."
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "# First create the messages:\n",
124
+ "\n",
125
+ "messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
126
+ "\n",
127
+ "# Then make the first call:\n",
128
+ "\n",
129
+ "response =\n",
130
+ "\n",
131
+ "# Then read the business idea:\n",
132
+ "\n",
133
+ "business_idea = response.\n",
134
+ "\n",
135
+ "# And repeat!"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "markdown",
140
+ "metadata": {},
141
+ "source": []
142
+ }
143
+ ],
144
+ "metadata": {
145
+ "kernelspec": {
146
+ "display_name": "llm_projects",
147
+ "language": "python",
148
+ "name": "python3"
149
+ },
150
+ "language_info": {
151
+ "codemirror_mode": {
152
+ "name": "ipython",
153
+ "version": 3
154
+ },
155
+ "file_extension": ".py",
156
+ "mimetype": "text/x-python",
157
+ "name": "python",
158
+ "nbconvert_exporter": "python",
159
+ "pygments_lexer": "ipython3",
160
+ "version": "3.10.15"
161
+ }
162
+ },
163
+ "nbformat": 4,
164
+ "nbformat_minor": 2
165
+ }
community_contributions/1_lab1_cm.ipynb ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
42
+ " </span>\n",
43
+ " </td>\n",
44
+ " </tr>\n",
45
+ "</table>"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "### And please do remember to contact me if I can help\n",
53
+ "\n",
54
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
55
+ "\n",
56
+ "\n",
57
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
58
+ "\n",
59
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
60
+ "- Open extensions (View >> extensions)\n",
61
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
62
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
63
+ "Then View >> Explorer to bring back the File Explorer.\n",
64
+ "\n",
65
+ "And then:\n",
66
+ "1. Run `uv add google-genai` to install the Google Gemini library. (If you had started your environment before running this command, you will need to restart your environment in the Jupyter notebook.)\n",
67
+ "2. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "3. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "4. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
73
+ "2. In the Settings search bar, type \"venv\" \n",
74
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
75
+ "And then try again.\n",
76
+ "\n",
77
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
78
+ "`conda deactivate` \n",
79
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
80
+ "`conda config --set auto_activate_base false` \n",
81
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": null,
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "from dotenv import load_dotenv\n"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "# Next it's time to load the API keys into environment variables\n",
100
+ "\n",
101
+ "load_dotenv(override=True)"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "metadata": {},
108
+ "outputs": [],
109
+ "source": [
110
+ "# Check the keys\n",
111
+ "\n",
112
+ "import os\n",
113
+ "gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
114
+ "\n",
115
+ "if gemini_api_key:\n",
116
+ " print(f\"Gemini API Key exists and begins {gemini_api_key[:8]}\")\n",
117
+ "else:\n",
118
+ " print(\"Gemini API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
119
+ " \n"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "# And now - the all important import statement\n",
129
+ "# If you get an import error - head over to troubleshooting guide\n",
130
+ "\n",
131
+ "from google import genai"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "metadata": {},
138
+ "outputs": [],
139
+ "source": [
140
+ "# And now we'll create an instance of the Gemini GenAI class\n",
141
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
142
+ "# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
143
+ "\n",
144
+ "client = genai.Client(api_key=gemini_api_key)"
145
+ ]
146
+ },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": null,
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "# Create a list of messages in the familiar Gemini GenAI format\n",
154
+ "\n",
155
+ "messages = [\"What is 2+2?\"]"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {},
162
+ "outputs": [],
163
+ "source": [
164
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
165
+ "\n",
166
+ "response = client.models.generate_content(\n",
167
+ " model=\"gemini-2.0-flash\", contents=messages\n",
168
+ ")\n",
169
+ "\n",
170
+ "print(response.text)\n"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "\n",
180
+ "# Lets no create a challenging question\n",
181
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
182
+ "\n",
183
+ "# Ask the the model\n",
184
+ "response = client.models.generate_content(\n",
185
+ " model=\"gemini-2.0-flash\", contents=question\n",
186
+ ")\n",
187
+ "\n",
188
+ "question = response.text\n",
189
+ "\n",
190
+ "print(question)\n"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "# Ask the models generated question to the model\n",
200
+ "response = client.models.generate_content(\n",
201
+ " model=\"gemini-2.0-flash\", contents=question\n",
202
+ ")\n",
203
+ "\n",
204
+ "# Extract the answer from the response\n",
205
+ "answer = response.text\n",
206
+ "\n",
207
+ "# Debug log the answer\n",
208
+ "print(answer)\n"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "from IPython.display import Markdown, display\n",
218
+ "\n",
219
+ "# Nicely format the answer using Markdown\n",
220
+ "display(Markdown(answer))\n",
221
+ "\n"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "markdown",
226
+ "metadata": {},
227
+ "source": [
228
+ "# Congratulations!\n",
229
+ "\n",
230
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
231
+ "\n",
232
+ "Next time things get more interesting..."
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "markdown",
237
+ "metadata": {},
238
+ "source": [
239
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
240
+ " <tr>\n",
241
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
242
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
243
+ " </td>\n",
244
+ " <td>\n",
245
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
246
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
247
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
248
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
249
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
250
+ " </span>\n",
251
+ " </td>\n",
252
+ " </tr>\n",
253
+ "</table>"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "# First create the messages:\n",
263
+ "\n",
264
+ "\n",
265
+ "messages = [\"Something here\"]\n",
266
+ "\n",
267
+ "# Then make the first call:\n",
268
+ "\n",
269
+ "response =\n",
270
+ "\n",
271
+ "# Then read the business idea:\n",
272
+ "\n",
273
+ "business_idea = response.\n",
274
+ "\n",
275
+ "# And repeat!"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "markdown",
280
+ "metadata": {},
281
+ "source": []
282
+ }
283
+ ],
284
+ "metadata": {
285
+ "kernelspec": {
286
+ "display_name": ".venv",
287
+ "language": "python",
288
+ "name": "python3"
289
+ },
290
+ "language_info": {
291
+ "codemirror_mode": {
292
+ "name": "ipython",
293
+ "version": 3
294
+ },
295
+ "file_extension": ".py",
296
+ "mimetype": "text/x-python",
297
+ "name": "python",
298
+ "nbconvert_exporter": "python",
299
+ "pygments_lexer": "ipython3",
300
+ "version": "3.12.10"
301
+ }
302
+ },
303
+ "nbformat": 4,
304
+ "nbformat_minor": 2
305
+ }
community_contributions/1_lab1_gemini.ipynb ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">Treat these labs as a resource</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates to the code regularly. When people ask questions or have problems, I incorporate it in the code, adding more examples or improved commentary. As a result, you'll notice that the code below isn't identical to the videos. Everything from the videos is here; but in addition, I've added more steps and better explanations. Consider this like an interactive book that accompanies the lectures.\n",
42
+ " </span>\n",
43
+ " </td>\n",
44
+ " </tr>\n",
45
+ "</table>"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "### And please do remember to contact me if I can help\n",
53
+ "\n",
54
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
55
+ "\n",
56
+ "\n",
57
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
58
+ "\n",
59
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
60
+ "- Open extensions (View >> extensions)\n",
61
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
62
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
63
+ "Then View >> Explorer to bring back the File Explorer.\n",
64
+ "\n",
65
+ "And then:\n",
66
+ "1. Run `uv add google-genai` to install the Google Gemini library. (If you had started your environment before running this command, you will need to restart your environment in the Jupyter notebook.)\n",
67
+ "2. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "3. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "4. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. From the Cursor menu, choose Settings >> VSCode Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
73
+ "2. In the Settings search bar, type \"venv\" \n",
74
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
75
+ "And then try again.\n",
76
+ "\n",
77
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
78
+ "`conda deactivate` \n",
79
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
80
+ "`conda config --set auto_activate_base false` \n",
81
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": null,
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "from dotenv import load_dotenv\n"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "# Next it's time to load the API keys into environment variables\n",
100
+ "\n",
101
+ "load_dotenv(override=True)"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "metadata": {},
108
+ "outputs": [],
109
+ "source": [
110
+ "# Check the keys\n",
111
+ "\n",
112
+ "import os\n",
113
+ "gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
114
+ "\n",
115
+ "if gemini_api_key:\n",
116
+ " print(f\"Gemini API Key exists and begins {gemini_api_key[:8]}\")\n",
117
+ "else:\n",
118
+ " print(\"Gemini API Key not set - please head to the troubleshooting guide in the guides folder\")\n",
119
+ " \n"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "# And now - the all important import statement\n",
129
+ "# If you get an import error - head over to troubleshooting guide\n",
130
+ "\n",
131
+ "from google import genai"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "metadata": {},
138
+ "outputs": [],
139
+ "source": [
140
+ "# And now we'll create an instance of the Gemini GenAI class\n",
141
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder!\n",
142
+ "# If you get a NameError - head over to the guides folder to learn about NameErrors\n",
143
+ "\n",
144
+ "client = genai.Client(api_key=gemini_api_key)"
145
+ ]
146
+ },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": null,
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "# Create a list of messages in the familiar Gemini GenAI format\n",
154
+ "\n",
155
+ "messages = [\"What is 2+2?\"]"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {},
162
+ "outputs": [],
163
+ "source": [
164
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
165
+ "\n",
166
+ "response = client.models.generate_content(\n",
167
+ " model=\"gemini-2.0-flash\", contents=messages\n",
168
+ ")\n",
169
+ "\n",
170
+ "print(response.text)\n"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "\n",
180
+ "# Lets no create a challenging question\n",
181
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
182
+ "\n",
183
+ "# Ask the the model\n",
184
+ "response = client.models.generate_content(\n",
185
+ " model=\"gemini-2.0-flash\", contents=question\n",
186
+ ")\n",
187
+ "\n",
188
+ "question = response.text\n",
189
+ "\n",
190
+ "print(question)\n"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "# Ask the models generated question to the model\n",
200
+ "response = client.models.generate_content(\n",
201
+ " model=\"gemini-2.0-flash\", contents=question\n",
202
+ ")\n",
203
+ "\n",
204
+ "# Extract the answer from the response\n",
205
+ "answer = response.text\n",
206
+ "\n",
207
+ "# Debug log the answer\n",
208
+ "print(answer)\n"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "from IPython.display import Markdown, display\n",
218
+ "\n",
219
+ "# Nicely format the answer using Markdown\n",
220
+ "display(Markdown(answer))\n",
221
+ "\n"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "markdown",
226
+ "metadata": {},
227
+ "source": [
228
+ "# Congratulations!\n",
229
+ "\n",
230
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
231
+ "\n",
232
+ "Next time things get more interesting..."
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "markdown",
237
+ "metadata": {},
238
+ "source": [
239
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
240
+ " <tr>\n",
241
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
242
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
243
+ " </td>\n",
244
+ " <td>\n",
245
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
246
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
247
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
248
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
249
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
250
+ " </span>\n",
251
+ " </td>\n",
252
+ " </tr>\n",
253
+ "</table>"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "# First create the messages:\n",
263
+ "\n",
264
+ "\n",
265
+ "messages = [\"Something here\"]\n",
266
+ "\n",
267
+ "# Then make the first call:\n",
268
+ "\n",
269
+ "response =\n",
270
+ "\n",
271
+ "# Then read the business idea:\n",
272
+ "\n",
273
+ "business_idea = response.\n",
274
+ "\n",
275
+ "# And repeat!"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "markdown",
280
+ "metadata": {},
281
+ "source": []
282
+ }
283
+ ],
284
+ "metadata": {
285
+ "kernelspec": {
286
+ "display_name": ".venv",
287
+ "language": "python",
288
+ "name": "python3"
289
+ },
290
+ "language_info": {
291
+ "codemirror_mode": {
292
+ "name": "ipython",
293
+ "version": 3
294
+ },
295
+ "file_extension": ".py",
296
+ "mimetype": "text/x-python",
297
+ "name": "python",
298
+ "nbconvert_exporter": "python",
299
+ "pygments_lexer": "ipython3",
300
+ "version": "3.12.10"
301
+ }
302
+ },
303
+ "nbformat": 4,
304
+ "nbformat_minor": 2
305
+ }
community_contributions/1_lab1_groq.ipynb ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "### Implementing Notebook 1 using various LLMs via Groq"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "from dotenv import load_dotenv"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "load_dotenv(override=True)"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "import os\n",
35
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
36
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
37
+ "\n",
38
+ "if openai_api_key:\n",
39
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
40
+ "else:\n",
41
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
42
+ "\n",
43
+ "if groq_api_key:\n",
44
+ " print(f\"Groq API Key exists and begins {groq_api_key[:2]}\")\n",
45
+ "else:\n",
46
+ " print(\"Groq API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
47
+ " \n"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": null,
53
+ "metadata": {},
54
+ "outputs": [],
55
+ "source": [
56
+ "from openai import OpenAI"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "metadata": {},
63
+ "outputs": [],
64
+ "source": [
65
+ "openai = OpenAI(\n",
66
+ " base_url=\"https://api.groq.com/openai/v1\",\n",
67
+ " api_key=groq_api_key\n",
68
+ ")"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# And now - let's ask for a question:\n",
78
+ "\n",
79
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
80
+ "messages = [{\"role\": \"user\", \"content\": question}]"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "metadata": {},
87
+ "outputs": [],
88
+ "source": [
89
+ "# openai/gpt-oss-120b\n",
90
+ "\n",
91
+ "response = openai.chat.completions.create(\n",
92
+ " model=\"openai/gpt-oss-120b\",\n",
93
+ " messages=messages\n",
94
+ ")\n",
95
+ "\n",
96
+ "print(response.choices[0].message.content)\n",
97
+ "\n"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": null,
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "# moonshotai/kimi-k2-instruct\n",
107
+ "\n",
108
+ "response = openai.chat.completions.create(\n",
109
+ " model=\"moonshotai/kimi-k2-instruct\",\n",
110
+ " messages=messages\n",
111
+ ")\n",
112
+ "\n",
113
+ "question = response.choices[0].message.content\n",
114
+ "\n",
115
+ "print(question)\n"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": [
124
+ "# form a new messages list\n",
125
+ "messages = [{\"role\": \"user\", \"content\": question}]"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "# Ask meta-llama/llama-guard-4-12b\n",
135
+ "\n",
136
+ "response = openai.chat.completions.create(\n",
137
+ " model=\"llama-3.1-8b-instant\",\n",
138
+ " messages=messages\n",
139
+ ")\n",
140
+ "\n",
141
+ "answer = response.choices[0].message.content\n",
142
+ "print(answer)\n"
143
+ ]
144
+ },
145
+ {
146
+ "cell_type": "code",
147
+ "execution_count": null,
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "from IPython.display import Markdown, display\n",
152
+ "\n",
153
+ "display(Markdown(question))\n",
154
+ "display(Markdown(answer))"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "markdown",
159
+ "metadata": {},
160
+ "source": [
161
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
162
+ " <tr>\n",
163
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
164
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
165
+ " </td>\n",
166
+ " <td>\n",
167
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
168
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
169
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
170
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
171
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
172
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
173
+ " </span>\n",
174
+ " </td>\n",
175
+ " </tr>\n",
176
+ "</table>"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "# First create the messages:\n",
186
+ "\n",
187
+ "messages = [{\"role\": \"user\", \"content\": \"Pick a business area that is worth exploring for a Gen-Z audience, that can be an agentic-ai opportunity. \\\n",
188
+ " Somehwere where the concept of agentisation can be applied commerically. Respond only with the business idea.\"}]\n",
189
+ "\n",
190
+ "# Then make the first call: \n",
191
+ "\n",
192
+ "response = openai.chat.completions.create(\n",
193
+ " model = \"qwen/qwen3-32b\",\n",
194
+ " messages = messages\n",
195
+ ")\n",
196
+ "\n",
197
+ "# Then read the business idea:\n",
198
+ "\n",
199
+ "business_idea = response.choices[0].message.content\n",
200
+ "print(business_idea)\n",
201
+ "\n",
202
+ "# And repeat! In the next message, include the business idea within the message\n",
203
+ "\n",
204
+ "user_prompt_pain_point = f\"What is the pain point of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Give a brief answer\"\n",
205
+ "\n",
206
+ "response = openai.chat.completions.create(\n",
207
+ " model = \"gemma2-9b-it\",\n",
208
+ " messages = [{\"role\": \"user\", \"content\": user_prompt_pain_point}]\n",
209
+ ")\n",
210
+ "\n",
211
+ "pain_point = response.choices[0].message.content\n",
212
+ "print(pain_point)\n",
213
+ "\n",
214
+ "user_prompt_solution = f\"What is the solution to the pain point {pain_point} of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Provide a step-by-step breakdown\"\n",
215
+ "\n",
216
+ "response = openai.chat.completions.create(\n",
217
+ " model = \"deepseek-r1-distill-llama-70b\",\n",
218
+ " messages = [{\"role\": \"user\", \"content\": user_prompt_solution}]\n",
219
+ ")\n",
220
+ "\n",
221
+ "business_solution = response.choices[0].message.content"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "metadata": {},
228
+ "outputs": [],
229
+ "source": [
230
+ "display(Markdown(business_solution))"
231
+ ]
232
+ },
233
+ {
234
+ "cell_type": "code",
235
+ "execution_count": null,
236
+ "metadata": {},
237
+ "outputs": [],
238
+ "source": []
239
+ }
240
+ ],
241
+ "metadata": {
242
+ "kernelspec": {
243
+ "display_name": ".venv",
244
+ "language": "python",
245
+ "name": "python3"
246
+ },
247
+ "language_info": {
248
+ "codemirror_mode": {
249
+ "name": "ipython",
250
+ "version": 3
251
+ },
252
+ "file_extension": ".py",
253
+ "mimetype": "text/x-python",
254
+ "name": "python",
255
+ "nbconvert_exporter": "python",
256
+ "pygments_lexer": "ipython3",
257
+ "version": "3.12.2"
258
+ }
259
+ },
260
+ "nbformat": 4,
261
+ "nbformat_minor": 2
262
+ }
community_contributions/1_lab1_groq_llama.ipynb ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# First Agentic AI workflow with Groq and Llama-3.3 LLM(Free of cost) "
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 1,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "# First let's do an import\n",
17
+ "from dotenv import load_dotenv"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "# Next it's time to load the API keys into environment variables\n",
27
+ "\n",
28
+ "load_dotenv(override=True)"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "# Check the Groq API key\n",
38
+ "\n",
39
+ "import os\n",
40
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
41
+ "\n",
42
+ "if groq_api_key:\n",
43
+ " print(f\"GROQ API Key exists and begins {groq_api_key[:8]}\")\n",
44
+ "else:\n",
45
+ " print(\"GROQ API Key not set\")\n",
46
+ " \n"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 4,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "# And now - the all important import statement\n",
56
+ "# If you get an import error - head over to troubleshooting guide\n",
57
+ "\n",
58
+ "from groq import Groq"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": 5,
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "# Create a Groq instance\n",
68
+ "groq = Groq()"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 6,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# Create a list of messages in the familiar Groq format\n",
78
+ "\n",
79
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": null,
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "# And now call it!\n",
89
+ "\n",
90
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
91
+ "print(response.choices[0].message.content)\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": []
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": 8,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "# And now - let's ask for a question:\n",
108
+ "\n",
109
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
110
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "# ask it\n",
120
+ "response = groq.chat.completions.create(\n",
121
+ " model=\"llama-3.3-70b-versatile\",\n",
122
+ " messages=messages\n",
123
+ ")\n",
124
+ "\n",
125
+ "question = response.choices[0].message.content\n",
126
+ "\n",
127
+ "print(question)\n"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 10,
133
+ "metadata": {},
134
+ "outputs": [],
135
+ "source": [
136
+ "# form a new messages list\n",
137
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "# Ask it again\n",
147
+ "\n",
148
+ "response = groq.chat.completions.create(\n",
149
+ " model=\"llama-3.3-70b-versatile\",\n",
150
+ " messages=messages\n",
151
+ ")\n",
152
+ "\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "print(answer)\n"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": null,
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": [
163
+ "from IPython.display import Markdown, display\n",
164
+ "\n",
165
+ "display(Markdown(answer))\n",
166
+ "\n"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "metadata": {},
172
+ "source": [
173
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
174
+ " <tr>\n",
175
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
176
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
177
+ " </td>\n",
178
+ " <td>\n",
179
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
180
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
181
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
182
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
183
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
184
+ " </span>\n",
185
+ " </td>\n",
186
+ " </tr>\n",
187
+ "</table>"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 17,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "# First create the messages:\n",
197
+ "\n",
198
+ "messages = [{\"role\": \"user\", \"content\": \"Give me a business area that might be ripe for an Agentic AI solution.\"}]\n",
199
+ "\n",
200
+ "# Then make the first call:\n",
201
+ "\n",
202
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
203
+ "\n",
204
+ "# Then read the business idea:\n",
205
+ "\n",
206
+ "business_idea = response.choices[0].message.content\n",
207
+ "\n",
208
+ "\n",
209
+ "# And repeat!"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {},
216
+ "outputs": [],
217
+ "source": [
218
+ "\n",
219
+ "display(Markdown(business_idea))"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 19,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "# Update the message with the business idea from previous step\n",
229
+ "messages = [{\"role\": \"user\", \"content\": \"What is the pain point in the business area of \" + business_idea + \"?\"}]"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": 20,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": [
238
+ "# Make the second call\n",
239
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
240
+ "# Read the pain point\n",
241
+ "pain_point = response.choices[0].message.content\n"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "display(Markdown(pain_point))\n"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "code",
255
+ "execution_count": null,
256
+ "metadata": {},
257
+ "outputs": [],
258
+ "source": [
259
+ "# Make the third call\n",
260
+ "messages = [{\"role\": \"user\", \"content\": \"What is the Agentic AI solution for the pain point of \" + pain_point + \"?\"}]\n",
261
+ "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
262
+ "# Read the agentic solution\n",
263
+ "agentic_solution = response.choices[0].message.content\n",
264
+ "display(Markdown(agentic_solution))"
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": null,
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": []
273
+ }
274
+ ],
275
+ "metadata": {
276
+ "kernelspec": {
277
+ "display_name": ".venv",
278
+ "language": "python",
279
+ "name": "python3"
280
+ },
281
+ "language_info": {
282
+ "codemirror_mode": {
283
+ "name": "ipython",
284
+ "version": 3
285
+ },
286
+ "file_extension": ".py",
287
+ "mimetype": "text/x-python",
288
+ "name": "python",
289
+ "nbconvert_exporter": "python",
290
+ "pygments_lexer": "ipython3",
291
+ "version": "3.12.10"
292
+ }
293
+ },
294
+ "nbformat": 4,
295
+ "nbformat_minor": 2
296
+ }
community_contributions/1_lab1_marstipton_mac.ipynb ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 12,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# Next it's time to load the API keys into environment variables\n",
104
+ "# If this returns false, see the next cell!\n",
105
+ "\n",
106
+ "load_dotenv(override=True)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "markdown",
111
+ "metadata": {},
112
+ "source": [
113
+ "### Wait, did that just output `False`??\n",
114
+ "\n",
115
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
116
+ "\n",
117
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
118
+ "\n",
119
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
127
+ " <tr>\n",
128
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
129
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
130
+ " </td>\n",
131
+ " <td>\n",
132
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
133
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
134
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
135
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
136
+ " </span>\n",
137
+ " </td>\n",
138
+ " </tr>\n",
139
+ "</table>"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
149
+ "\n",
150
+ "import os\n",
151
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
152
+ "\n",
153
+ "if openai_api_key:\n",
154
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
155
+ "else:\n",
156
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
157
+ " \n"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": 15,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# And now - the all important import statement\n",
167
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
168
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
169
+ "\n",
170
+ "from openai import OpenAI"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": 16,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "# And now we'll create an instance of the OpenAI class\n",
180
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
181
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
182
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
183
+ "\n",
184
+ "openai = OpenAI()"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": 17,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# Create a list of messages in the familiar OpenAI format\n",
194
+ "\n",
195
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
205
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
206
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
207
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
208
+ "\n",
209
+ "response = openai.chat.completions.create(\n",
210
+ " model=\"gpt-4.1-mini\",\n",
211
+ " messages=messages\n",
212
+ ")\n",
213
+ "\n",
214
+ "print(response.choices[0].message.content)\n"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": 8,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "# And now - let's ask for a question:\n",
224
+ "\n",
225
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
226
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
236
+ "\n",
237
+ "response = openai.chat.completions.create(\n",
238
+ " model=\"gpt-4.1-mini\",\n",
239
+ " messages=messages\n",
240
+ ")\n",
241
+ "\n",
242
+ "question = response.choices[0].message.content\n",
243
+ "\n",
244
+ "print(question)\n"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": 10,
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "# form a new messages list\n",
254
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# Ask it again\n",
264
+ "\n",
265
+ "response = openai.chat.completions.create(\n",
266
+ " model=\"gpt-4.1-mini\",\n",
267
+ " messages=messages\n",
268
+ ")\n",
269
+ "\n",
270
+ "answer = response.choices[0].message.content\n",
271
+ "print(answer)\n"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "from IPython.display import Markdown, display\n",
281
+ "\n",
282
+ "display(Markdown(answer))\n",
283
+ "\n"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "markdown",
288
+ "metadata": {},
289
+ "source": [
290
+ "# Congratulations!\n",
291
+ "\n",
292
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
293
+ "\n",
294
+ "Next time things get more interesting..."
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "markdown",
299
+ "metadata": {},
300
+ "source": [
301
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
302
+ " <tr>\n",
303
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
304
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
305
+ " </td>\n",
306
+ " <td>\n",
307
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
308
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
309
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
310
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
311
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
312
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
313
+ " </span>\n",
314
+ " </td>\n",
315
+ " </tr>\n",
316
+ "</table>"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# Step 1: Define the conversation\n",
326
+ "messages = [\n",
327
+ " {\"role\": \"system\", \"content\": \"You are an expert in agentic AI business ideation.\"}\n",
328
+ "]\n",
329
+ "\n",
330
+ "# Step 2: Ask the first question\n",
331
+ "area_prompt = (\n",
332
+ " \"Pick a business area within Singapore startups as of Q4 2025 \"\n",
333
+ " \"that might be worth exploring for an Agentic AI opportunity. \"\n",
334
+ " \"Explain in simple language (for a 15-year-old) and cite resources briefly.\"\n",
335
+ ")\n",
336
+ "messages.append({\"role\": \"user\", \"content\": area_prompt})\n",
337
+ "\n",
338
+ "response = openai.chat.completions.create(\n",
339
+ " model=\"gpt-4.1-mini\",\n",
340
+ " messages=messages\n",
341
+ ")\n",
342
+ "area = response.choices[0].message.content\n",
343
+ "display(Markdown(area))\n",
344
+ "\n",
345
+ "# Add model response to context\n",
346
+ "messages.append({\"role\": \"assistant\", \"content\": area})\n",
347
+ "\n",
348
+ "# Step 3: Ask for a pain point\n",
349
+ "painpoint_prompt = (\n",
350
+ " \"Based on your previous response, pick a recurring pain point in that area \"\n",
351
+ " \"that is ripe for an Agentic AI solution.\"\n",
352
+ ")\n",
353
+ "messages.append({\"role\": \"user\", \"content\": painpoint_prompt})\n",
354
+ "\n",
355
+ "response = openai.chat.completions.create(\n",
356
+ " model=\"gpt-4.1-mini\",\n",
357
+ " messages=messages\n",
358
+ ")\n",
359
+ "painpoint = response.choices[0].message.content\n",
360
+ "display(Markdown(painpoint))\n",
361
+ "\n",
362
+ "# Add model response to context\n",
363
+ "messages.append({\"role\": \"assistant\", \"content\": painpoint})\n",
364
+ "\n",
365
+ "# Step 4: Propose a business idea\n",
366
+ "business_idea_prompt = (\n",
367
+ " \"Propose an Agentic AI solution addressing the pain point above. \"\n",
368
+ " \"Solution should have low overhead, be secure, and offer 80% free functionality, \"\n",
369
+ " \"with full access for SGD 0.99/month per user or SGD 15/org (max 30 users).\"\n",
370
+ ")\n",
371
+ "messages.append({\"role\": \"user\", \"content\": business_idea_prompt})\n",
372
+ "\n",
373
+ "response = openai.chat.completions.create(\n",
374
+ " model=\"gpt-4.1-mini\",\n",
375
+ " messages=messages\n",
376
+ ")\n",
377
+ "business_idea = response.choices[0].message.content\n",
378
+ "display(Markdown(business_idea))\n",
379
+ "\n",
380
+ "# Add to conversation (for future iterations)\n",
381
+ "#messages.append({\"role\": \"assistant\", \"content\": business_idea})"
382
+ ]
383
+ },
384
+ {
385
+ "cell_type": "markdown",
386
+ "metadata": {},
387
+ "source": []
388
+ }
389
+ ],
390
+ "metadata": {
391
+ "kernelspec": {
392
+ "display_name": ".venv",
393
+ "language": "python",
394
+ "name": "python3"
395
+ },
396
+ "language_info": {
397
+ "codemirror_mode": {
398
+ "name": "ipython",
399
+ "version": 3
400
+ },
401
+ "file_extension": ".py",
402
+ "mimetype": "text/x-python",
403
+ "name": "python",
404
+ "nbconvert_exporter": "python",
405
+ "pygments_lexer": "ipython3",
406
+ "version": "3.12.12"
407
+ }
408
+ },
409
+ "nbformat": 4,
410
+ "nbformat_minor": 2
411
+ }
community_contributions/1_lab1_moneek.ipynb ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# Next it's time to load the API keys into environment variables\n",
104
+ "# If this returns false, see the next cell!\n",
105
+ "\n",
106
+ "load_dotenv(override=True)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "markdown",
111
+ "metadata": {},
112
+ "source": [
113
+ "### Wait, did that just output `False`??\n",
114
+ "\n",
115
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
116
+ "\n",
117
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
118
+ "\n",
119
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
127
+ " <tr>\n",
128
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
129
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
130
+ " </td>\n",
131
+ " <td>\n",
132
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
133
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
134
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
135
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
136
+ " </span>\n",
137
+ " </td>\n",
138
+ " </tr>\n",
139
+ "</table>"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
149
+ "\n",
150
+ "import os\n",
151
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
152
+ "\n",
153
+ "if openai_api_key:\n",
154
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
155
+ "else:\n",
156
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
157
+ " \n"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# And now - the all important import statement\n",
167
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
168
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
169
+ "\n",
170
+ "from openai import OpenAI"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "# And now we'll create an instance of the OpenAI class\n",
180
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
181
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
182
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
183
+ "\n",
184
+ "openai = OpenAI()"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# Create a list of messages in the familiar OpenAI format\n",
194
+ "\n",
195
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
205
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
206
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
207
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
208
+ "\n",
209
+ "response = openai.chat.completions.create(\n",
210
+ " model=\"gpt-4.1-nano\",\n",
211
+ " messages=messages\n",
212
+ ")\n",
213
+ "\n",
214
+ "print(response.choices[0].message.content)\n"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "# And now - let's ask for a question:\n",
224
+ "\n",
225
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
226
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
236
+ "\n",
237
+ "response = openai.chat.completions.create(\n",
238
+ " model=\"gpt-4.1-mini\",\n",
239
+ " messages=messages\n",
240
+ ")\n",
241
+ "\n",
242
+ "question = response.choices[0].message.content\n",
243
+ "\n",
244
+ "print(question)\n"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": null,
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "# form a new messages list\n",
254
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# Ask it again\n",
264
+ "\n",
265
+ "response = openai.chat.completions.create(\n",
266
+ " model=\"gpt-4.1-mini\",\n",
267
+ " messages=messages\n",
268
+ ")\n",
269
+ "\n",
270
+ "answer = response.choices[0].message.content\n",
271
+ "print(answer)\n"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "from IPython.display import Markdown, display\n",
281
+ "\n",
282
+ "display(Markdown(answer))\n",
283
+ "\n"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "markdown",
288
+ "metadata": {},
289
+ "source": [
290
+ "# Congratulations!\n",
291
+ "\n",
292
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
293
+ "\n",
294
+ "Next time things get more interesting..."
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "markdown",
299
+ "metadata": {},
300
+ "source": [
301
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
302
+ " <tr>\n",
303
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
304
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
305
+ " </td>\n",
306
+ " <td>\n",
307
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
308
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
309
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
310
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
311
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
312
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
313
+ " </span>\n",
314
+ " </td>\n",
315
+ " </tr>\n",
316
+ "</table>"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# First create the messages:\n",
326
+ "question = \"Pick a business area that may have agentic AI opportunities\"\n",
327
+ "messages = [{\"role\": \"user\", \"content\": question}]\n",
328
+ "\n",
329
+ "# Then make the first call:\n",
330
+ "\n",
331
+ "response = openai.chat.completions.create(\n",
332
+ " model=\"gpt-4.1-mini\",\n",
333
+ " messages=messages\n",
334
+ ")\n",
335
+ "\n",
336
+ "# Then read the business idea:\n",
337
+ "\n",
338
+ "business_idea = response.choices[0].message.content\n",
339
+ "print(business_idea)\n",
340
+ "\n",
341
+ "# And repeat! In the next message, include the business idea within the message"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "code",
346
+ "execution_count": null,
347
+ "metadata": {},
348
+ "outputs": [],
349
+ "source": [
350
+ "messages = [{\"role\": \"user\", \"content\": question + \"\\n\\n\" + business_idea},\n",
351
+ " {\"role\": \"assistant\", \"content\": \"What is the pain point in this industry?\" }]\n",
352
+ "\n",
353
+ "response = openai.chat.completions.create(\n",
354
+ " model=\"gpt-4.1-mini\",\n",
355
+ " messages=messages\n",
356
+ ")\n",
357
+ "\n",
358
+ "pain_point = response.choices[0].message.content\n",
359
+ "print(pain_point)"
360
+ ]
361
+ },
362
+ {
363
+ "cell_type": "code",
364
+ "execution_count": null,
365
+ "metadata": {},
366
+ "outputs": [],
367
+ "source": [
368
+ "messages = [{\"role\": \"user\", \"content\": question + \"\\n\\n\" + business_idea + \"\\n\\n\" + pain_point}, \n",
369
+ " {\"role\": \"assistant\", \"content\": \"What is the Agentic AI solution?\"}]\n",
370
+ "\n",
371
+ "response = openai.chat.completions.create(\n",
372
+ " model=\"gpt-4.1-mini\",\n",
373
+ " messages=messages\n",
374
+ ")\n",
375
+ "\n",
376
+ "agentic_solution = response.choices[0].message.content\n",
377
+ "print(agentic_solution)\n"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "markdown",
382
+ "metadata": {},
383
+ "source": []
384
+ }
385
+ ],
386
+ "metadata": {
387
+ "kernelspec": {
388
+ "display_name": ".venv",
389
+ "language": "python",
390
+ "name": "python3"
391
+ },
392
+ "language_info": {
393
+ "codemirror_mode": {
394
+ "name": "ipython",
395
+ "version": 3
396
+ },
397
+ "file_extension": ".py",
398
+ "mimetype": "text/x-python",
399
+ "name": "python",
400
+ "nbconvert_exporter": "python",
401
+ "pygments_lexer": "ipython3",
402
+ "version": "3.12.11"
403
+ }
404
+ },
405
+ "nbformat": 4,
406
+ "nbformat_minor": 2
407
+ }
community_contributions/1_lab1_open_router.ipynb ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
23
+ " Well in that case, you're ready!!\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
41
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
42
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
43
+ " </span>\n",
44
+ " </td>\n",
45
+ " </tr>\n",
46
+ "</table>"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "markdown",
51
+ "metadata": {},
52
+ "source": [
53
+ "### And please do remember to contact me if I can help\n",
54
+ "\n",
55
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
56
+ "\n",
57
+ "\n",
58
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
59
+ "\n",
60
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
61
+ "- Open extensions (View >> extensions)\n",
62
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
63
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
64
+ "Then View >> Explorer to bring back the File Explorer.\n",
65
+ "\n",
66
+ "And then:\n",
67
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
68
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
69
+ "3. Enjoy!\n",
70
+ "\n",
71
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
72
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
73
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
74
+ "2. In the Settings search bar, type \"venv\" \n",
75
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
76
+ "And then try again.\n",
77
+ "\n",
78
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
79
+ "`conda deactivate` \n",
80
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
81
+ "`conda config --set auto_activate_base false` \n",
82
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": 76,
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "# First let's do an import\n",
92
+ "from dotenv import load_dotenv\n"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "# Next it's time to load the API keys into environment variables\n",
102
+ "\n",
103
+ "load_dotenv(override=True)"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "# Check the keys\n",
113
+ "\n",
114
+ "import os\n",
115
+ "open_router_api_key = os.getenv('OPEN_ROUTER_API_KEY')\n",
116
+ "\n",
117
+ "if open_router_api_key:\n",
118
+ " print(f\"Open router API Key exists and begins {open_router_api_key[:8]}\")\n",
119
+ "else:\n",
120
+ " print(\"Open router API Key not set - please head to the troubleshooting guide in the setup folder\")\n"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": 79,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "from openai import OpenAI"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": 80,
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "# Initialize the client to point at OpenRouter instead of OpenAI\n",
139
+ "# You can use the exact same OpenAI Python packageβ€”just swap the base_url!\n",
140
+ "client = OpenAI(\n",
141
+ " base_url=\"https://openrouter.ai/api/v1\",\n",
142
+ " api_key=open_router_api_key\n",
143
+ ")"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 81,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "client = OpenAI(\n",
162
+ " base_url=\"https://openrouter.ai/api/v1\",\n",
163
+ " api_key=open_router_api_key\n",
164
+ ")\n",
165
+ "\n",
166
+ "resp = client.chat.completions.create(\n",
167
+ " # Select a model from https://openrouter.ai/models and provide the model name here\n",
168
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
169
+ " messages=messages\n",
170
+ ")\n",
171
+ "print(resp.choices[0].message.content)"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": 83,
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "# And now - let's ask for a question:\n",
181
+ "\n",
182
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
183
+ "messages = [{\"role\": \"user\", \"content\": question}]"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": null,
189
+ "metadata": {},
190
+ "outputs": [],
191
+ "source": [
192
+ "response = client.chat.completions.create(\n",
193
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
194
+ " messages=messages\n",
195
+ ")\n",
196
+ "\n",
197
+ "question = response.choices[0].message.content\n",
198
+ "\n",
199
+ "print(question)"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": 85,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# form a new messages list\n",
209
+ "\n",
210
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "# Ask it again\n",
220
+ "\n",
221
+ "response = client.chat.completions.create(\n",
222
+ " model=\"meta-llama/llama-3.3-8b-instruct:free\",\n",
223
+ " messages=messages\n",
224
+ ")\n",
225
+ "\n",
226
+ "answer = response.choices[0].message.content\n",
227
+ "print(answer)"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "code",
232
+ "execution_count": null,
233
+ "metadata": {},
234
+ "outputs": [],
235
+ "source": [
236
+ "from IPython.display import Markdown, display\n",
237
+ "\n",
238
+ "display(Markdown(answer))\n",
239
+ "\n"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "markdown",
244
+ "metadata": {},
245
+ "source": [
246
+ "# Congratulations!\n",
247
+ "\n",
248
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
249
+ "\n",
250
+ "Next time things get more interesting..."
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "markdown",
255
+ "metadata": {},
256
+ "source": [
257
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
258
+ " <tr>\n",
259
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
260
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
261
+ " </td>\n",
262
+ " <td>\n",
263
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
264
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
265
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
266
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
267
+ " Finally have 3 third LLM call propose the Agentic AI solution.\n",
268
+ " </span>\n",
269
+ " </td>\n",
270
+ " </tr>\n",
271
+ "</table>"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "# First create the messages:\n",
281
+ "\n",
282
+ "\n",
283
+ "messages = [\"Something here\"]\n",
284
+ "\n",
285
+ "# Then make the first call:\n",
286
+ "\n",
287
+ "response =\n",
288
+ "\n",
289
+ "# Then read the business idea:\n",
290
+ "\n",
291
+ "business_idea = response.\n",
292
+ "\n",
293
+ "# And repeat!"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "markdown",
298
+ "metadata": {},
299
+ "source": []
300
+ }
301
+ ],
302
+ "metadata": {
303
+ "kernelspec": {
304
+ "display_name": ".venv",
305
+ "language": "python",
306
+ "name": "python3"
307
+ },
308
+ "language_info": {
309
+ "codemirror_mode": {
310
+ "name": "ipython",
311
+ "version": 3
312
+ },
313
+ "file_extension": ".py",
314
+ "mimetype": "text/x-python",
315
+ "name": "python",
316
+ "nbconvert_exporter": "python",
317
+ "pygments_lexer": "ipython3",
318
+ "version": "3.12.7"
319
+ }
320
+ },
321
+ "nbformat": 4,
322
+ "nbformat_minor": 2
323
+ }
community_contributions/1_lab2_Kaushik_Parallelization.ipynb ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "import json\n",
11
+ "from dotenv import load_dotenv\n",
12
+ "from openai import OpenAI\n",
13
+ "from IPython.display import Markdown"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "markdown",
18
+ "metadata": {},
19
+ "source": [
20
+ "### Refresh dot env"
21
+ ]
22
+ },
23
+ {
24
+ "cell_type": "code",
25
+ "execution_count": null,
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "load_dotenv(override=True)"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": 3,
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "open_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
39
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "markdown",
44
+ "metadata": {},
45
+ "source": [
46
+ "### Create initial query to get challange reccomendation"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 4,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "query = 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. '\n",
56
+ "query += 'Answer only with the question, no explanation.'\n",
57
+ "\n",
58
+ "messages = [{'role':'user', 'content':query}]"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": null,
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "print(messages)"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "markdown",
72
+ "metadata": {},
73
+ "source": [
74
+ "### Call openai gpt-4o-mini "
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 6,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "openai = OpenAI()\n",
84
+ "\n",
85
+ "response = openai.chat.completions.create(\n",
86
+ " messages=messages,\n",
87
+ " model='gpt-4o-mini'\n",
88
+ ")\n",
89
+ "\n",
90
+ "challange = response.choices[0].message.content\n"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "print(challange)"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 8,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "competitors = []\n",
109
+ "answers = []"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "markdown",
114
+ "metadata": {},
115
+ "source": [
116
+ "### Create messages with the challange query"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": 9,
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "messages = [{'role':'user', 'content':challange}]"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "print(messages)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "!ollama pull llama3.2"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 12,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "from threading import Thread"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": 13,
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "def gpt_mini_processor():\n",
162
+ " modleName = 'gpt-4o-mini'\n",
163
+ " competitors.append(modleName)\n",
164
+ " response_gpt = openai.chat.completions.create(\n",
165
+ " messages=messages,\n",
166
+ " model=modleName\n",
167
+ " )\n",
168
+ " answers.append(response_gpt.choices[0].message.content)\n",
169
+ "\n",
170
+ "def gemini_processor():\n",
171
+ " gemini = OpenAI(api_key=google_api_key, base_url='https://generativelanguage.googleapis.com/v1beta/openai/')\n",
172
+ " modleName = 'gemini-2.0-flash'\n",
173
+ " competitors.append(modleName)\n",
174
+ " response_gemini = gemini.chat.completions.create(\n",
175
+ " messages=messages,\n",
176
+ " model=modleName\n",
177
+ " )\n",
178
+ " answers.append(response_gemini.choices[0].message.content)\n",
179
+ "\n",
180
+ "def llama_processor():\n",
181
+ " ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
182
+ " modleName = 'llama3.2'\n",
183
+ " competitors.append(modleName)\n",
184
+ " response_llama = ollama.chat.completions.create(\n",
185
+ " messages=messages,\n",
186
+ " model=modleName\n",
187
+ " )\n",
188
+ " answers.append(response_llama.choices[0].message.content)"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "markdown",
193
+ "metadata": {},
194
+ "source": [
195
+ "### Paraller execution of LLM calls"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": 14,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "thread1 = Thread(target=gpt_mini_processor)\n",
205
+ "thread2 = Thread(target=gemini_processor)\n",
206
+ "thread3 = Thread(target=llama_processor)\n",
207
+ "\n",
208
+ "thread1.start()\n",
209
+ "thread2.start()\n",
210
+ "thread3.start()\n",
211
+ "\n",
212
+ "thread1.join()\n",
213
+ "thread2.join()\n",
214
+ "thread3.join()"
215
+ ]
216
+ },
217
+ {
218
+ "cell_type": "code",
219
+ "execution_count": null,
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": [
223
+ "print(competitors)\n",
224
+ "print(answers)"
225
+ ]
226
+ },
227
+ {
228
+ "cell_type": "code",
229
+ "execution_count": null,
230
+ "metadata": {},
231
+ "outputs": [],
232
+ "source": [
233
+ "for competitor, answer in zip(competitors, answers):\n",
234
+ " print(f'Competitor:{competitor}\\n\\n{answer}')"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": 17,
240
+ "metadata": {},
241
+ "outputs": [],
242
+ "source": [
243
+ "together = ''\n",
244
+ "for index, answer in enumerate(answers):\n",
245
+ " together += f'# Response from competitor {index + 1}\\n\\n'\n",
246
+ " together += answer + '\\n\\n'"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "code",
251
+ "execution_count": null,
252
+ "metadata": {},
253
+ "outputs": [],
254
+ "source": [
255
+ "print(together)"
256
+ ]
257
+ },
258
+ {
259
+ "cell_type": "markdown",
260
+ "metadata": {},
261
+ "source": [
262
+ "### Prompt to judge the LLM results"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": 19,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": [
271
+ "to_judge = f'''You are judging a competition between {len(competitors)} competitors.\n",
272
+ "Each model has been given this question:\n",
273
+ "\n",
274
+ "{challange}\n",
275
+ "\n",
276
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
277
+ "Respond with JSON, and only JSON, with the following format:\n",
278
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
279
+ "\n",
280
+ "Here are the responses from each competitor:\n",
281
+ "\n",
282
+ "{together}\n",
283
+ "\n",
284
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n",
285
+ "\n",
286
+ "'''"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "code",
291
+ "execution_count": 20,
292
+ "metadata": {},
293
+ "outputs": [],
294
+ "source": [
295
+ "to_judge_message = [{'role':'user', 'content':to_judge}]"
296
+ ]
297
+ },
298
+ {
299
+ "cell_type": "markdown",
300
+ "metadata": {},
301
+ "source": [
302
+ "### Execute o3-mini to analyze the LLM results"
303
+ ]
304
+ },
305
+ {
306
+ "cell_type": "code",
307
+ "execution_count": null,
308
+ "metadata": {},
309
+ "outputs": [],
310
+ "source": [
311
+ "openai = OpenAI()\n",
312
+ "response = openai.chat.completions.create(\n",
313
+ " messages=to_judge_message,\n",
314
+ " model='o3-mini'\n",
315
+ ")\n",
316
+ "result = response.choices[0].message.content\n",
317
+ "print(result)"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": null,
323
+ "metadata": {},
324
+ "outputs": [],
325
+ "source": [
326
+ "results_dict = json.loads(result)\n",
327
+ "ranks = results_dict[\"results\"]\n",
328
+ "for index, result in enumerate(ranks):\n",
329
+ " competitor = competitors[int(result)-1]\n",
330
+ " print(f\"Rank {index+1}: {competitor}\")"
331
+ ]
332
+ }
333
+ ],
334
+ "metadata": {
335
+ "kernelspec": {
336
+ "display_name": ".venv",
337
+ "language": "python",
338
+ "name": "python3"
339
+ },
340
+ "language_info": {
341
+ "codemirror_mode": {
342
+ "name": "ipython",
343
+ "version": 3
344
+ },
345
+ "file_extension": ".py",
346
+ "mimetype": "text/x-python",
347
+ "name": "python",
348
+ "nbconvert_exporter": "python",
349
+ "pygments_lexer": "ipython3",
350
+ "version": "3.12.10"
351
+ }
352
+ },
353
+ "nbformat": 4,
354
+ "nbformat_minor": 2
355
+ }
community_contributions/1_lab2_Routing_Workflow.ipynb ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Judging and Routing β€” Optimizing Resource Usage by Evaluating Problem Complexity"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "In the original Lab 2, we explored the **Orchestrator–Worker pattern**, where a planner sent the same question to multiple agents, and a judge assessed their responses to evaluate agent intelligence.\n",
15
+ "\n",
16
+ "In this notebook, we extend that design by adding multiple judges and a routing component to optimize model usage based on task complexity. "
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {},
22
+ "source": [
23
+ "## Imports and Environment Setup"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 1,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "import os\n",
33
+ "import json\n",
34
+ "from dotenv import load_dotenv\n",
35
+ "from openai import OpenAI\n",
36
+ "from anthropic import Anthropic\n",
37
+ "from IPython.display import Markdown, display"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 2,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "load_dotenv(override=True)\n",
47
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
48
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
49
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
50
+ "if openai_api_key and google_api_key and deepseek_api_key:\n",
51
+ " print(\"All keys were loaded successfully\")"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "!ollama pull llama3.2\n",
61
+ "!ollama pull mistral"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "markdown",
66
+ "metadata": {},
67
+ "source": [
68
+ "## Creating Models"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "markdown",
73
+ "metadata": {},
74
+ "source": [
75
+ "The notebook uses instances of GPT, Gemini and DeepSeek APIs, along with two local models served via Ollama: ```llama3.2``` and ```mistral```."
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 3,
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "model_specs = {\n",
85
+ " \"gpt-4o-mini\" : None,\n",
86
+ " \"gemini-2.0-flash\": {\n",
87
+ " \"api_key\" : google_api_key,\n",
88
+ " \"url\" : \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
89
+ " },\n",
90
+ " \"deepseek-chat\" : {\n",
91
+ " \"api_key\" : deepseek_api_key,\n",
92
+ " \"url\" : \"https://api.deepseek.com/v1\"\n",
93
+ " },\n",
94
+ " \"llama3.2\" : {\n",
95
+ " \"api_key\" : \"ollama\",\n",
96
+ " \"url\" : \"http://localhost:11434/v1\"\n",
97
+ " },\n",
98
+ " \"mistral\" : {\n",
99
+ " \"api_key\" : \"ollama\",\n",
100
+ " \"url\" : \"http://localhost:11434/v1\"\n",
101
+ " }\n",
102
+ "}\n",
103
+ "\n",
104
+ "def create_model(model_name):\n",
105
+ " spec = model_specs[model_name]\n",
106
+ " if spec is None:\n",
107
+ " return OpenAI()\n",
108
+ " \n",
109
+ " return OpenAI(api_key=spec[\"api_key\"], base_url=spec[\"url\"])"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 5,
115
+ "metadata": {},
116
+ "outputs": [
117
+ {
118
+ "ename": "OpenAIError",
119
+ "evalue": "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable",
120
+ "output_type": "error",
121
+ "traceback": [
122
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
123
+ "\u001b[31mOpenAIError\u001b[39m Traceback (most recent call last)",
124
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[5]\u001b[39m\u001b[32m, line 6\u001b[39m\n\u001b[32m 2\u001b[39m generator = create_model(orchestrator_model)\n\u001b[32m 3\u001b[39m router = create_model(orchestrator_model)\n\u001b[32m 5\u001b[39m qa_models = {\n\u001b[32m----> \u001b[39m\u001b[32m6\u001b[39m model_name : \u001b[43mcreate_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_name\u001b[49m\u001b[43m)\u001b[49m \n\u001b[32m 7\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m model_name \u001b[38;5;129;01min\u001b[39;00m model_specs.keys()\n\u001b[32m 8\u001b[39m }\n\u001b[32m 10\u001b[39m judges = {\n\u001b[32m 11\u001b[39m model_name : create_model(model_name) \n\u001b[32m 12\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m model_name, specs \u001b[38;5;129;01min\u001b[39;00m model_specs.items() \n\u001b[32m 13\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m(specs) \u001b[38;5;129;01mor\u001b[39;00m specs[\u001b[33m\"\u001b[39m\u001b[33mapi_key\u001b[39m\u001b[33m\"\u001b[39m] != \u001b[33m\"\u001b[39m\u001b[33mollama\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 14\u001b[39m }\n",
125
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 24\u001b[39m, in \u001b[36mcreate_model\u001b[39m\u001b[34m(model_name)\u001b[39m\n\u001b[32m 22\u001b[39m spec = model_specs[model_name]\n\u001b[32m 23\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m spec \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m---> \u001b[39m\u001b[32m24\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mOpenAI\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 26\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m OpenAI(api_key=spec[\u001b[33m\"\u001b[39m\u001b[33mapi_key\u001b[39m\u001b[33m\"\u001b[39m], base_url=spec[\u001b[33m\"\u001b[39m\u001b[33murl\u001b[39m\u001b[33m\"\u001b[39m])\n",
126
+ "\u001b[36mFile \u001b[39m\u001b[32md:\\projectsUdemy\\agents\\.venv\\Lib\\site-packages\\openai\\_client.py:135\u001b[39m, in \u001b[36mOpenAI.__init__\u001b[39m\u001b[34m(self, api_key, organization, project, webhook_secret, base_url, websocket_base_url, timeout, max_retries, default_headers, default_query, http_client, _strict_response_validation)\u001b[39m\n\u001b[32m 133\u001b[39m api_key = os.environ.get(\u001b[33m\"\u001b[39m\u001b[33mOPENAI_API_KEY\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 134\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m api_key \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m135\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m OpenAIError(\n\u001b[32m 136\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mThe api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 137\u001b[39m )\n\u001b[32m 138\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(api_key):\n\u001b[32m 139\u001b[39m \u001b[38;5;28mself\u001b[39m.api_key = \u001b[33m\"\u001b[39m\u001b[33m\"\u001b[39m\n",
127
+ "\u001b[31mOpenAIError\u001b[39m: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable"
128
+ ]
129
+ }
130
+ ],
131
+ "source": [
132
+ "orchestrator_model = \"gemini-2.0-flash\"\n",
133
+ "generator = create_model(orchestrator_model)\n",
134
+ "router = create_model(orchestrator_model)\n",
135
+ "\n",
136
+ "qa_models = {\n",
137
+ " model_name : create_model(model_name) \n",
138
+ " for model_name in model_specs.keys()\n",
139
+ "}\n",
140
+ "\n",
141
+ "judges = {\n",
142
+ " model_name : create_model(model_name) \n",
143
+ " for model_name, specs in model_specs.items() \n",
144
+ " if not(specs) or specs[\"api_key\"] != \"ollama\"\n",
145
+ "}"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "markdown",
150
+ "metadata": {},
151
+ "source": [
152
+ "## Orchestrator-Worker Workflow"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "markdown",
157
+ "metadata": {},
158
+ "source": [
159
+ "First, we generate a question to evaluate the intelligence of each LLM."
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs \"\n",
169
+ "request += \"to evaluate and rank them based on their intelligence. \" \n",
170
+ "request += \"Answer **only** with the question, no explanation or preamble.\"\n",
171
+ "\n",
172
+ "messages = [{\"role\": \"user\", \"content\": request}]\n",
173
+ "messages"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 7,
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "response = generator.chat.completions.create(\n",
183
+ " model=orchestrator_model,\n",
184
+ " messages=messages,\n",
185
+ ")\n",
186
+ "eval_question = response.choices[0].message.content"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": null,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "display(Markdown(eval_question))"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "markdown",
200
+ "metadata": {},
201
+ "source": [
202
+ "### Task Parallelization"
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "markdown",
207
+ "metadata": {},
208
+ "source": [
209
+ "Now, having the question and all the models instantiated it's time to see what each model has to say about the complex task it was given."
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {},
216
+ "outputs": [],
217
+ "source": [
218
+ "question = [{\"role\": \"user\", \"content\": eval_question}]\n",
219
+ "answers = []\n",
220
+ "competitors = []\n",
221
+ "\n",
222
+ "for name, model in qa_models.items():\n",
223
+ " response = model.chat.completions.create(model=name, messages=question)\n",
224
+ " answer = response.choices[0].message.content\n",
225
+ " competitors.append(name)\n",
226
+ " answers.append(answer)\n",
227
+ "\n",
228
+ "answers"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": null,
234
+ "metadata": {},
235
+ "outputs": [],
236
+ "source": [
237
+ "report = \"# Answer report for each of the 5 models\\n\\n\"\n",
238
+ "report += \"\\n\\n\".join([f\"## **Model: {model}**\\n\\n{answer}\" for model, answer in zip(competitors, answers)])\n",
239
+ "display(Markdown(report))"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "markdown",
244
+ "metadata": {},
245
+ "source": [
246
+ "### Synthetizer/Judge"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "markdown",
251
+ "metadata": {},
252
+ "source": [
253
+ "The Judge Agents ranks the LLM responses based on coherence and relevance to the evaluation prompt. Judges vote and the final LLM ranking is based on the aggregated ranking of all three judges."
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "together = \"\"\n",
263
+ "for index, answer in enumerate(answers):\n",
264
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
265
+ " together += answer + \"\\n\\n\"\n",
266
+ "\n",
267
+ "together"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": 12,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "judge_prompt = f\"\"\"\n",
277
+ " You are judging a competition between {len(competitors)} LLM competitors.\n",
278
+ " Each model has been given this nuanced question to evaluate their intelligence:\n",
279
+ "\n",
280
+ " {eval_question}\n",
281
+ "\n",
282
+ " Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
283
+ " Respond with JSON, and only JSON, with the following format:\n",
284
+ " {{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
285
+ " With 'best competitor number being ONLY the number', for instance:\n",
286
+ " {{\"results\": [\"5\", \"2\", \"4\", ...]}}\n",
287
+ " Here are the responses from each competitor:\n",
288
+ "\n",
289
+ " {together}\n",
290
+ "\n",
291
+ " Now respond with the JSON with the ranked order of the competitors, nothing else. Do NOT include MARKDOWN FORMATTING or CODE BLOCKS. ONLY the JSON\n",
292
+ " \"\"\"\n",
293
+ "\n",
294
+ "judge_messages = [{\"role\": \"user\", \"content\": judge_prompt}]"
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "code",
299
+ "execution_count": null,
300
+ "metadata": {},
301
+ "outputs": [],
302
+ "source": [
303
+ "from collections import defaultdict\n",
304
+ "import re\n",
305
+ "\n",
306
+ "N = len(competitors)\n",
307
+ "scores = defaultdict(int)\n",
308
+ "for judge_name, judge in judges.items():\n",
309
+ " response = judge.chat.completions.create(\n",
310
+ " model=judge_name,\n",
311
+ " messages=judge_messages,\n",
312
+ " )\n",
313
+ " response = response.choices[0].message.content\n",
314
+ " response_json = re.findall(r'\\{.*?\\}', response)[0]\n",
315
+ " results = json.loads(response_json)[\"results\"]\n",
316
+ " ranks = [int(result) for result in results]\n",
317
+ " print(f\"Judge {judge_name} ranking:\")\n",
318
+ " for i, c in enumerate(ranks):\n",
319
+ " model_name = competitors[c - 1]\n",
320
+ " print(f\"#{i+1} : {model_name}\")\n",
321
+ " scores[c - 1] += (N - i)\n",
322
+ " print()"
323
+ ]
324
+ },
325
+ {
326
+ "cell_type": "code",
327
+ "execution_count": null,
328
+ "metadata": {},
329
+ "outputs": [],
330
+ "source": [
331
+ "sorted_indices = sorted(scores, key=scores.get)\n",
332
+ "\n",
333
+ "# Convert to model names\n",
334
+ "ranked_model_names = [competitors[i] for i in sorted_indices]\n",
335
+ "\n",
336
+ "print(\"Final ranking from best to worst:\")\n",
337
+ "for i, name in enumerate(ranked_model_names[::-1], 1):\n",
338
+ " print(f\"#{i}: {name}\")"
339
+ ]
340
+ },
341
+ {
342
+ "cell_type": "markdown",
343
+ "metadata": {},
344
+ "source": [
345
+ "## Routing Workflow"
346
+ ]
347
+ },
348
+ {
349
+ "cell_type": "markdown",
350
+ "metadata": {},
351
+ "source": [
352
+ "We now define a routing agent responsible for classifying task complexity and delegating the prompt to the most appropriate model."
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": 15,
358
+ "metadata": {},
359
+ "outputs": [],
360
+ "source": [
361
+ "def classify_question_complexity(question: str, routing_agent, routing_model) -> int:\n",
362
+ " \"\"\"\n",
363
+ " Ask an LLM to classify the question complexity from 1 (easy) to 5 (very hard).\n",
364
+ " \"\"\"\n",
365
+ " prompt = f\"\"\"\n",
366
+ " You are a classifier responsible for assigning a complexity level to user questions, based on how difficult they would be for a language model to answer.\n",
367
+ "\n",
368
+ " Please read the question below and assign a complexity score from 1 to 5:\n",
369
+ "\n",
370
+ " - Level 1: Very simple factual or definitional question (e.g., β€œWhat is the capital of France?”)\n",
371
+ " - Level 2: Slightly more involved, requiring basic reasoning or comparison\n",
372
+ " - Level 3: Moderate complexity, requiring synthesis, context understanding, or multi-part answers\n",
373
+ " - Level 4: High complexity, requiring abstract thinking, ethical judgment, or creative generation\n",
374
+ " - Level 5: Extremely challenging, requiring deep reasoning, philosophical reflection, or long-term multi-step inference\n",
375
+ "\n",
376
+ " Respond ONLY with a single integer between 1 and 5 that best reflects the complexity of the question.\n",
377
+ "\n",
378
+ " Question:\n",
379
+ " {question}\n",
380
+ " \"\"\"\n",
381
+ "\n",
382
+ " response = routing_agent.chat.completions.create(\n",
383
+ " model=routing_model,\n",
384
+ " messages=[{\"role\": \"user\", \"content\": prompt}]\n",
385
+ " )\n",
386
+ " try:\n",
387
+ " return int(response.choices[0].message.content.strip())\n",
388
+ " except Exception:\n",
389
+ " return 3 # default to medium complexity on error\n",
390
+ " \n",
391
+ "def route_question_to_model(question: str, models_by_rank, classifier_model=router, model_name=orchestrator_model):\n",
392
+ " level = classify_question_complexity(question, classifier_model, model_name)\n",
393
+ " selected_model_name = models_by_rank[level - 1]\n",
394
+ " return selected_model_name"
395
+ ]
396
+ },
397
+ {
398
+ "cell_type": "code",
399
+ "execution_count": 16,
400
+ "metadata": {},
401
+ "outputs": [],
402
+ "source": [
403
+ "difficulty_prompts = [\n",
404
+ " \"Generate a very basic, factual question that a small or entry-level language model could answer easily. It should require no reasoning, just direct knowledge lookup.\",\n",
405
+ " \"Generate a slightly involved question that requires basic reasoning, comparison, or combining two known facts. Still within the grasp of small models but not purely factual.\",\n",
406
+ " \"Generate a moderately challenging question that requires some synthesis of ideas, multi-step reasoning, or contextual understanding. A mid-tier model should be able to answer it with effort.\",\n",
407
+ " \"Generate a difficult question involving abstract thinking, open-ended reasoning, or ethical tradeoffs. The question should challenge large models to produce thoughtful and coherent responses.\",\n",
408
+ " \"Generate an extremely complex and nuanced question that tests the limits of current language models. It should require deep reasoning, long-term planning, philosophy, or advanced multi-domain knowledge.\"\n",
409
+ "]\n",
410
+ "def generate_question(level, generator=generator, generator_model=orchestrator_model):\n",
411
+ " prompt = (\n",
412
+ " f\"{difficulty_prompts[level - 1]}\\n\"\n",
413
+ " \"Answer only with the question, no explanation.\"\n",
414
+ " )\n",
415
+ " messages = [{\"role\": \"user\", \"content\": prompt}]\n",
416
+ " response = generator.chat.completions.create(\n",
417
+ " model=generator_model, # or your planner model\n",
418
+ " messages=messages\n",
419
+ " )\n",
420
+ " \n",
421
+ " return response.choices[0].message.content\n",
422
+ "\n"
423
+ ]
424
+ },
425
+ {
426
+ "cell_type": "markdown",
427
+ "metadata": {},
428
+ "source": [
429
+ "### Testing Routing Workflow"
430
+ ]
431
+ },
432
+ {
433
+ "cell_type": "markdown",
434
+ "metadata": {},
435
+ "source": [
436
+ "Finally, to test the routing workflow, we create a function that accepts a task complexity level and triggers the full routing process.\n",
437
+ "\n",
438
+ "*Note: A level-N prompt isn't always assigned to the Nth-most capable model due to the classifier's subjective decisions.*"
439
+ ]
440
+ },
441
+ {
442
+ "cell_type": "code",
443
+ "execution_count": 17,
444
+ "metadata": {},
445
+ "outputs": [],
446
+ "source": [
447
+ "def test_generation_routing(level):\n",
448
+ " question = generate_question(level=level)\n",
449
+ " answer_model = route_question_to_model(question, ranked_model_names)\n",
450
+ " messages = [{\"role\": \"user\", \"content\": question}]\n",
451
+ "\n",
452
+ " response =qa_models[answer_model].chat.completions.create(\n",
453
+ " model=answer_model, # or your planner model\n",
454
+ " messages=messages\n",
455
+ " )\n",
456
+ " print(f\"Question : {question}\")\n",
457
+ " print(f\"Routed to {answer_model}\")\n",
458
+ " display(Markdown(response.choices[0].message.content))"
459
+ ]
460
+ },
461
+ {
462
+ "cell_type": "code",
463
+ "execution_count": null,
464
+ "metadata": {},
465
+ "outputs": [],
466
+ "source": [
467
+ "test_generation_routing(level=1)"
468
+ ]
469
+ },
470
+ {
471
+ "cell_type": "code",
472
+ "execution_count": null,
473
+ "metadata": {},
474
+ "outputs": [],
475
+ "source": [
476
+ "test_generation_routing(level=2)"
477
+ ]
478
+ },
479
+ {
480
+ "cell_type": "code",
481
+ "execution_count": null,
482
+ "metadata": {},
483
+ "outputs": [],
484
+ "source": [
485
+ "test_generation_routing(level=3)"
486
+ ]
487
+ },
488
+ {
489
+ "cell_type": "code",
490
+ "execution_count": null,
491
+ "metadata": {},
492
+ "outputs": [],
493
+ "source": [
494
+ "test_generation_routing(level=4)"
495
+ ]
496
+ },
497
+ {
498
+ "cell_type": "code",
499
+ "execution_count": null,
500
+ "metadata": {},
501
+ "outputs": [],
502
+ "source": [
503
+ "test_generation_routing(level=5)"
504
+ ]
505
+ }
506
+ ],
507
+ "metadata": {
508
+ "kernelspec": {
509
+ "display_name": ".venv",
510
+ "language": "python",
511
+ "name": "python3"
512
+ },
513
+ "language_info": {
514
+ "codemirror_mode": {
515
+ "name": "ipython",
516
+ "version": 3
517
+ },
518
+ "file_extension": ".py",
519
+ "mimetype": "text/x-python",
520
+ "name": "python",
521
+ "nbconvert_exporter": "python",
522
+ "pygments_lexer": "ipython3",
523
+ "version": "3.12.3"
524
+ }
525
+ },
526
+ "nbformat": 4,
527
+ "nbformat_minor": 2
528
+ }
community_contributions/2_lab2-Evaluator-AnnpaS18.ipynb ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 1,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "\n",
70
+ "if openai_api_key:\n",
71
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
72
+ "else:\n",
73
+ " print(\"OpenAI API Key not set\")\n",
74
+ " \n",
75
+ "if anthropic_api_key:\n",
76
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
77
+ "else:\n",
78
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
79
+ "\n",
80
+ "if google_api_key:\n",
81
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
82
+ "else:\n",
83
+ " print(\"Google API Key not set (and this is optional)\")\n",
84
+ "\n",
85
+ "if deepseek_api_key:\n",
86
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
87
+ "else:\n",
88
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
89
+ "\n",
90
+ "if groq_api_key:\n",
91
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
92
+ "else:\n",
93
+ " print(\"Groq API Key not set (and this is optional)\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 4,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
103
+ "request += \"Answer only with the question, no explanation.\"\n",
104
+ "messages = [{\"role\": \"user\", \"content\": request}]"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "messages"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "openai = OpenAI()\n",
123
+ "response = openai.chat.completions.create(\n",
124
+ " model=\"gpt-4o-mini\",\n",
125
+ " messages=messages,\n",
126
+ ")\n",
127
+ "question = response.choices[0].message.content\n",
128
+ "print(question)\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": 7,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "competitors = []\n",
138
+ "answers = []\n",
139
+ "messages = [{\"role\": \"user\", \"content\": question}]"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# The API we know well\n",
149
+ "\n",
150
+ "model_name = \"gpt-4o-mini\"\n",
151
+ "\n",
152
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "\n",
155
+ "display(Markdown(answer))\n",
156
+ "competitors.append(model_name)\n",
157
+ "answers.append(answer)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
167
+ "\n",
168
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
169
+ "\n",
170
+ "claude = Anthropic()\n",
171
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
172
+ "answer = response.content[0].text\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "competitors.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
186
+ "model_name = \"gemini-2.0-flash\"\n",
187
+ "\n",
188
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "competitors.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
203
+ "model_name = \"deepseek-chat\"\n",
204
+ "\n",
205
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "competitors.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
220
+ "model_name = \"llama-3.3-70b-versatile\"\n",
221
+ "\n",
222
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
223
+ "answer = response.choices[0].message.content\n",
224
+ "\n",
225
+ "display(Markdown(answer))\n",
226
+ "competitors.append(model_name)\n",
227
+ "answers.append(answer)\n"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "## For the next cell, we will use Ollama\n",
235
+ "\n",
236
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
237
+ "and runs models locally using high performance C++ code.\n",
238
+ "\n",
239
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
240
+ "\n",
241
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
242
+ "\n",
243
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
244
+ "\n",
245
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
246
+ "\n",
247
+ "`ollama pull <model_name>` downloads a model locally \n",
248
+ "`ollama ls` lists all the models you've downloaded \n",
249
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
257
+ " <tr>\n",
258
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
259
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
260
+ " </td>\n",
261
+ " <td>\n",
262
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
263
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
264
+ " </span>\n",
265
+ " </td>\n",
266
+ " </tr>\n",
267
+ "</table>"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "!ollama pull llama3.2"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
286
+ "model_name = \"llama3.2\"\n",
287
+ "\n",
288
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
289
+ "answer = response.choices[0].message.content\n",
290
+ "\n",
291
+ "display(Markdown(answer))\n",
292
+ "competitors.append(model_name)\n",
293
+ "answers.append(answer)"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": null,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "# So where are we?\n",
303
+ "\n",
304
+ "print(competitors)\n",
305
+ "print(answers)\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "# It's nice to know how to use \"zip\"\n",
315
+ "for competitor, answer in zip(competitors, answers):\n",
316
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": 20,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# Let's bring this together - note the use of \"enumerate\"\n",
326
+ "\n",
327
+ "together = \"\"\n",
328
+ "for index, answer in enumerate(answers):\n",
329
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
330
+ " together += answer + \"\\n\\n\""
331
+ ]
332
+ },
333
+ {
334
+ "cell_type": "code",
335
+ "execution_count": null,
336
+ "metadata": {},
337
+ "outputs": [],
338
+ "source": [
339
+ "print(together)"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": 22,
345
+ "metadata": {},
346
+ "outputs": [],
347
+ "source": [
348
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
349
+ "Each model has been given this question:\n",
350
+ "\n",
351
+ "{question}\n",
352
+ "\n",
353
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
354
+ "Respond with JSON, and only JSON, with the following format:\n",
355
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
356
+ "\n",
357
+ "Here are the responses from each competitor:\n",
358
+ "\n",
359
+ "{together}\n",
360
+ "\n",
361
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
362
+ ]
363
+ },
364
+ {
365
+ "cell_type": "code",
366
+ "execution_count": null,
367
+ "metadata": {},
368
+ "outputs": [],
369
+ "source": [
370
+ "print(judge)"
371
+ ]
372
+ },
373
+ {
374
+ "cell_type": "code",
375
+ "execution_count": 29,
376
+ "metadata": {},
377
+ "outputs": [],
378
+ "source": [
379
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "code",
384
+ "execution_count": null,
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": [
388
+ "# Judgement time!\n",
389
+ "\n",
390
+ "openai = OpenAI()\n",
391
+ "response = openai.chat.completions.create(\n",
392
+ " model=\"o3-mini\",\n",
393
+ " messages=judge_messages,\n",
394
+ ")\n",
395
+ "results = response.choices[0].message.content\n",
396
+ "print(results)\n"
397
+ ]
398
+ },
399
+ {
400
+ "cell_type": "code",
401
+ "execution_count": null,
402
+ "metadata": {},
403
+ "outputs": [],
404
+ "source": [
405
+ "# OK let's turn this into results!\n",
406
+ "\n",
407
+ "results_dict = json.loads(results)\n",
408
+ "ranks = results_dict[\"results\"]\n",
409
+ "for index, result in enumerate(ranks):\n",
410
+ " competitor = competitors[int(result)-1]\n",
411
+ " print(f\"Rank {index+1}: {competitor}\")"
412
+ ]
413
+ },
414
+ {
415
+ "cell_type": "markdown",
416
+ "metadata": {},
417
+ "source": [
418
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
419
+ " <tr>\n",
420
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
421
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
422
+ " </td>\n",
423
+ " <td>\n",
424
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
425
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
426
+ " </span>\n",
427
+ " </td>\n",
428
+ " </tr>\n",
429
+ "</table>"
430
+ ]
431
+ },
432
+ {
433
+ "cell_type": "markdown",
434
+ "metadata": {},
435
+ "source": [
436
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
437
+ " <tr>\n",
438
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
439
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
440
+ " </td>\n",
441
+ " <td>\n",
442
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
443
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
444
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
445
+ " to business projects where accuracy is critical.\n",
446
+ " </span>\n",
447
+ " </td>\n",
448
+ " </tr>\n",
449
+ "</table>"
450
+ ]
451
+ }
452
+ ],
453
+ "metadata": {
454
+ "kernelspec": {
455
+ "display_name": ".venv",
456
+ "language": "python",
457
+ "name": "python3"
458
+ },
459
+ "language_info": {
460
+ "codemirror_mode": {
461
+ "name": "ipython",
462
+ "version": 3
463
+ },
464
+ "file_extension": ".py",
465
+ "mimetype": "text/x-python",
466
+ "name": "python",
467
+ "nbconvert_exporter": "python",
468
+ "pygments_lexer": "ipython3",
469
+ "version": "3.12.9"
470
+ }
471
+ },
472
+ "nbformat": 4,
473
+ "nbformat_minor": 2
474
+ }
community_contributions/2_lab2-judge-prompt-changed.ipynb ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 1,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "\n",
70
+ "if openai_api_key:\n",
71
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
72
+ "else:\n",
73
+ " print(\"OpenAI API Key not set\")\n",
74
+ " \n",
75
+ "if anthropic_api_key:\n",
76
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
77
+ "else:\n",
78
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
79
+ "\n",
80
+ "if google_api_key:\n",
81
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
82
+ "else:\n",
83
+ " print(\"Google API Key not set (and this is optional)\")\n",
84
+ "\n",
85
+ "if deepseek_api_key:\n",
86
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
87
+ "else:\n",
88
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
89
+ "\n",
90
+ "if groq_api_key:\n",
91
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
92
+ "else:\n",
93
+ " print(\"Groq API Key not set (and this is optional)\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 4,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
103
+ "request += \"Answer only with the question, no explanation.\"\n",
104
+ "messages = [{\"role\": \"user\", \"content\": request}]"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "messages"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "openai = OpenAI()\n",
123
+ "response = openai.chat.completions.create(\n",
124
+ " model=\"gpt-4o-mini\",\n",
125
+ " messages=messages,\n",
126
+ ")\n",
127
+ "question = response.choices[0].message.content\n",
128
+ "print(question)\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": 7,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "competitors = []\n",
138
+ "answers = []\n",
139
+ "messages = [{\"role\": \"user\", \"content\": question}]"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# The API we know well\n",
149
+ "\n",
150
+ "model_name = \"gpt-4o-mini\"\n",
151
+ "\n",
152
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "\n",
155
+ "display(Markdown(answer))\n",
156
+ "competitors.append(model_name)\n",
157
+ "answers.append(answer)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
167
+ "\n",
168
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
169
+ "\n",
170
+ "claude = Anthropic()\n",
171
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
172
+ "answer = response.content[0].text\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "competitors.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
186
+ "model_name = \"gemini-2.0-flash\"\n",
187
+ "\n",
188
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "competitors.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
203
+ "model_name = \"deepseek-chat\"\n",
204
+ "\n",
205
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "competitors.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
220
+ "model_name = \"llama-3.3-70b-versatile\"\n",
221
+ "\n",
222
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
223
+ "answer = response.choices[0].message.content\n",
224
+ "\n",
225
+ "display(Markdown(answer))\n",
226
+ "competitors.append(model_name)\n",
227
+ "answers.append(answer)\n"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "## For the next cell, we will use Ollama\n",
235
+ "\n",
236
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
237
+ "and runs models locally using high performance C++ code.\n",
238
+ "\n",
239
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
240
+ "\n",
241
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
242
+ "\n",
243
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
244
+ "\n",
245
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
246
+ "\n",
247
+ "`ollama pull <model_name>` downloads a model locally \n",
248
+ "`ollama ls` lists all the models you've downloaded \n",
249
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
257
+ " <tr>\n",
258
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
259
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
260
+ " </td>\n",
261
+ " <td>\n",
262
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
263
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
264
+ " </span>\n",
265
+ " </td>\n",
266
+ " </tr>\n",
267
+ "</table>"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "!ollama pull llama3.2"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
286
+ "model_name = \"llama3.2\"\n",
287
+ "\n",
288
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
289
+ "answer = response.choices[0].message.content\n",
290
+ "\n",
291
+ "display(Markdown(answer))\n",
292
+ "competitors.append(model_name)\n",
293
+ "answers.append(answer)"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": null,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "# So where are we?\n",
303
+ "\n",
304
+ "print(competitors)\n",
305
+ "print(answers)\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "# It's nice to know how to use \"zip\"\n",
315
+ "for competitor, answer in zip(competitors, answers):\n",
316
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": 20,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# Let's bring this together - note the use of \"enumerate\"\n",
326
+ "\n",
327
+ "together = \"\"\n",
328
+ "for index, answer in enumerate(answers):\n",
329
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
330
+ " together += answer + \"\\n\\n\""
331
+ ]
332
+ },
333
+ {
334
+ "cell_type": "code",
335
+ "execution_count": null,
336
+ "metadata": {},
337
+ "outputs": [],
338
+ "source": [
339
+ "print(together)"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": null,
345
+ "metadata": {},
346
+ "outputs": [],
347
+ "source": [
348
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
349
+ "Each model has been given this question:\n",
350
+ "\n",
351
+ "{question}\n",
352
+ "\n",
353
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
354
+ "Respond with JSON, and only JSON, with the following format:\n",
355
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
356
+ "Answer only the number for example\n",
357
+ "{{\"results\": [\"1\", \"2\", \"3\", ...]}}\n",
358
+ "\n",
359
+ "Here are the responses from each competitor:\n",
360
+ "\n",
361
+ "{together}\n",
362
+ "\n",
363
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "metadata": {},
370
+ "outputs": [],
371
+ "source": [
372
+ "print(judge)"
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": 29,
378
+ "metadata": {},
379
+ "outputs": [],
380
+ "source": [
381
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
382
+ ]
383
+ },
384
+ {
385
+ "cell_type": "code",
386
+ "execution_count": null,
387
+ "metadata": {},
388
+ "outputs": [],
389
+ "source": [
390
+ "# Judgement time!\n",
391
+ "\n",
392
+ "openai = OpenAI()\n",
393
+ "response = openai.chat.completions.create(\n",
394
+ " model=\"o3-mini\",\n",
395
+ " messages=judge_messages,\n",
396
+ ")\n",
397
+ "results = response.choices[0].message.content\n",
398
+ "print(results)\n"
399
+ ]
400
+ },
401
+ {
402
+ "cell_type": "code",
403
+ "execution_count": null,
404
+ "metadata": {},
405
+ "outputs": [],
406
+ "source": [
407
+ "# OK let's turn this into results!\n",
408
+ "\n",
409
+ "results_dict = json.loads(results)\n",
410
+ "ranks = results_dict[\"results\"]\n",
411
+ "for index, result in enumerate(ranks):\n",
412
+ " competitor = competitors[int(result)-1]\n",
413
+ " print(f\"Rank {index+1}: {competitor}\")"
414
+ ]
415
+ },
416
+ {
417
+ "cell_type": "markdown",
418
+ "metadata": {},
419
+ "source": [
420
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
421
+ " <tr>\n",
422
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
423
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
424
+ " </td>\n",
425
+ " <td>\n",
426
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
427
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
428
+ " </span>\n",
429
+ " </td>\n",
430
+ " </tr>\n",
431
+ "</table>"
432
+ ]
433
+ },
434
+ {
435
+ "cell_type": "markdown",
436
+ "metadata": {},
437
+ "source": [
438
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
439
+ " <tr>\n",
440
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
441
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
442
+ " </td>\n",
443
+ " <td>\n",
444
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
445
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
446
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
447
+ " to business projects where accuracy is critical.\n",
448
+ " </span>\n",
449
+ " </td>\n",
450
+ " </tr>\n",
451
+ "</table>"
452
+ ]
453
+ }
454
+ ],
455
+ "metadata": {
456
+ "kernelspec": {
457
+ "display_name": ".venv",
458
+ "language": "python",
459
+ "name": "python3"
460
+ },
461
+ "language_info": {
462
+ "codemirror_mode": {
463
+ "name": "ipython",
464
+ "version": 3
465
+ },
466
+ "file_extension": ".py",
467
+ "mimetype": "text/x-python",
468
+ "name": "python",
469
+ "nbconvert_exporter": "python",
470
+ "pygments_lexer": "ipython3",
471
+ "version": "3.12.9"
472
+ }
473
+ },
474
+ "nbformat": 4,
475
+ "nbformat_minor": 2
476
+ }
community_contributions/2_lab2-parallelization.ipynb ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Changes I've made with this lab.\n",
10
+ "1) Modified the original question to instead generate a range of questions, 12 of them. These questions will be used to evaluate each LLM's reasoning, knowledge, creativity, and ability to handle nuanced scenarios.\n",
11
+ "2) I've changed this lab to run the queries in parallel. Thanks GPT for helping with the code to do that. :)\n",
12
+ "3) Instead of having one LLM rate all the responses, I have all of the LLM's rate each others work and then use a Borda Count to asign points to determine the winner."
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": null,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
22
+ "\n",
23
+ "import os\n",
24
+ "import json\n",
25
+ "from dotenv import load_dotenv\n",
26
+ "from openai import OpenAI\n",
27
+ "from anthropic import Anthropic\n",
28
+ "from IPython.display import Markdown, display"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "# Always remember to do this!\n",
38
+ "load_dotenv(override=True)"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": null,
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "# Print the key prefixes to help with any debugging\n",
48
+ "\n",
49
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
50
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
51
+ "gemini_api_key = os.getenv('GEMINI_API_KEY')\n",
52
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
53
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
54
+ "\n",
55
+ "if openai_api_key:\n",
56
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
57
+ "else:\n",
58
+ " print(\"OpenAI API Key not set\")\n",
59
+ " \n",
60
+ "if anthropic_api_key:\n",
61
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
62
+ "else:\n",
63
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
64
+ "\n",
65
+ "if gemini_api_key:\n",
66
+ " print(f\"Gemini API Key exists and begins {gemini_api_key[:2]}\")\n",
67
+ "else:\n",
68
+ " print(\"Gemini API Key not set (and this is optional)\")\n",
69
+ "\n",
70
+ "if deepseek_api_key:\n",
71
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
72
+ "else:\n",
73
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
74
+ "\n",
75
+ "if groq_api_key:\n",
76
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
77
+ "else:\n",
78
+ " print(\"Groq API Key not set (and this is optional)\")"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "request = \"\"\"You are being evaluated for your reasoning, knowledge, creativity, and ability to handle nuanced scenarios. \n",
88
+ "Generate 12 questions that cover the following categories:\n",
89
+ "- Logical reasoning and problem solving\n",
90
+ "- Creative writing and storytelling\n",
91
+ "- Factual accuracy and knowledge recall\n",
92
+ "- Following instructions with strict constraints\n",
93
+ "- Multi-step planning and organization\n",
94
+ "- Ethical dilemmas and debatable issues\n",
95
+ "- Philosophical or abstract reasoning\n",
96
+ "- Summarization and explanation at different levels\n",
97
+ "- Translation and multilingual ability\n",
98
+ "- Roleplay or adaptive communication style\n",
99
+ "\n",
100
+ "Number each question from 1 to 12. \n",
101
+ "The result should be a balanced benchmark question set that fully tests an LLM’s capabilities.\n",
102
+ "\n",
103
+ "Important: Output only clean plain text. \n",
104
+ "Do not use any markup, formatting symbols, quotation marks, brackets, lists, or special characters \n",
105
+ "that could cause misinterpretation. Only provide plain text questions, one per line, numbered 1 to 20.\n",
106
+ "\"\"\"\n",
107
+ "request += \"Answer only with the question, no explanation.\"\n",
108
+ "messages = [{\"role\": \"user\", \"content\": request}]"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "# Generate the questions.\n",
118
+ "openai = OpenAI()\n",
119
+ "response = openai.chat.completions.create(\n",
120
+ " model=\"gpt-4o-mini\",\n",
121
+ " messages=messages,\n",
122
+ ")\n",
123
+ "question = response.choices[0].message.content\n",
124
+ "\n",
125
+ "display(Markdown(question))"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "competitors = []\n",
135
+ "answers = []\n",
136
+ "messages = [{\"role\": \"user\", \"content\": question}]"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": [
145
+ "# Ask the LLM's in Parallel\n",
146
+ "\n",
147
+ "import asyncio\n",
148
+ "\n",
149
+ "clients = {\n",
150
+ " \"openai\": OpenAI(),\n",
151
+ " \"claude\": Anthropic(),\n",
152
+ " \"gemini\": OpenAI(api_key=gemini_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"),\n",
153
+ " \"deepseek\": OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\"),\n",
154
+ " \"groq\": OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\"),\n",
155
+ "}\n",
156
+ "\n",
157
+ "# Get the answers from the LLM\n",
158
+ "async def call_llm(model_name, messages):\n",
159
+ " try:\n",
160
+ " if \"claude\" in model_name:\n",
161
+ " response = await asyncio.to_thread(\n",
162
+ " clients[\"claude\"].messages.create,\n",
163
+ " model=model_name,\n",
164
+ " messages=messages,\n",
165
+ " max_tokens=3000,\n",
166
+ " )\n",
167
+ " answer = \"\".join([c.text for c in response.content if c.type == \"text\"])\n",
168
+ " \n",
169
+ " elif \"gpt-4o-mini\" in model_name:\n",
170
+ " response = await asyncio.to_thread(\n",
171
+ " clients[\"openai\"].chat.completions.create,\n",
172
+ " model=model_name,\n",
173
+ " messages=messages,\n",
174
+ " )\n",
175
+ " answer = response.choices[0].message.content\n",
176
+ "\n",
177
+ " elif \"gemini\" in model_name:\n",
178
+ " response = await asyncio.to_thread(\n",
179
+ " clients[\"gemini\"].chat.completions.create,\n",
180
+ " model=model_name,\n",
181
+ " messages=messages,\n",
182
+ " )\n",
183
+ " answer = response.choices[0].message.content\n",
184
+ "\n",
185
+ " elif \"deepseek\" in model_name:\n",
186
+ " response = await asyncio.to_thread(\n",
187
+ " clients[\"deepseek\"].chat.completions.create,\n",
188
+ " model=model_name,\n",
189
+ " messages=messages,\n",
190
+ " )\n",
191
+ " answer = response.choices[0].message.content\n",
192
+ "\n",
193
+ " elif \"llama\" in model_name:\n",
194
+ " response = await asyncio.to_thread(\n",
195
+ " clients[\"groq\"].chat.completions.create,\n",
196
+ " model=model_name,\n",
197
+ " messages=messages,\n",
198
+ " )\n",
199
+ " answer = response.choices[0].message.content\n",
200
+ "\n",
201
+ " return model_name, answer \n",
202
+ "\n",
203
+ " except Exception as e:\n",
204
+ " print (f\"❌ Error: {str(e)}\")\n",
205
+ " return model_name, \"I was not able to generate answers for any of the questions.\"\n",
206
+ "\n",
207
+ "\n",
208
+ "# send out the calls to the LLM to ask teh questions.\n",
209
+ "async def ask_questions_in_parallel(messages):\n",
210
+ " competitor_models = [\n",
211
+ " \"gpt-4o-mini\",\n",
212
+ " \"claude-3-7-sonnet-latest\",\n",
213
+ " \"gemini-2.0-flash\",\n",
214
+ " \"deepseek-chat\",\n",
215
+ " \"llama-3.3-70b-versatile\"\n",
216
+ " ]\n",
217
+ "\n",
218
+ " # create tasks to call the LLM's in parallel\n",
219
+ " tasks = [call_llm(model, messages) for model in competitor_models]\n",
220
+ "\n",
221
+ " answers = []\n",
222
+ " competitors = []\n",
223
+ "\n",
224
+ " # When we have an answer, we can process it. No waiting.\n",
225
+ " for task in asyncio.as_completed(tasks):\n",
226
+ " model_name, answer = await task\n",
227
+ " competitors.append(model_name)\n",
228
+ " answers.append(answer)\n",
229
+ " print(f\"\\nβœ… Got response from {model_name}\")\n",
230
+ "\n",
231
+ " return competitors, answers"
232
+ ]
233
+ },
234
+ {
235
+ "cell_type": "code",
236
+ "execution_count": null,
237
+ "metadata": {},
238
+ "outputs": [],
239
+ "source": [
240
+ "# Fire off the ask to all the LLM's at once. Parallelization...\n",
241
+ "competitors, answers = await ask_questions_in_parallel(messages)"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "#Look at the results\n",
251
+ "print (len(answers))\n",
252
+ "print (len(competitors))\n",
253
+ "print (competitors)"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "# Let's bring this together - note the use of \"enumerate\"\n",
263
+ "\n",
264
+ "together = \"\"\n",
265
+ "for index, answer in enumerate(answers):\n",
266
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
267
+ " together += answer + \"\\n\\n\""
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "print(together)"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "\n",
286
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
287
+ "Each model has been given the folowing questions:\n",
288
+ "\n",
289
+ "{question}\n",
290
+ "\n",
291
+ "Your task is to evaluate the overall strength of the arguments presented by each competitor. \n",
292
+ "Consider the following factors:\n",
293
+ "- Clarity: how clearly the ideas are communicated\n",
294
+ "- Relevance: how directly the response addresses the question\n",
295
+ "- Depth: the level of reasoning, insight, or supporting evidence provided\n",
296
+ "- Persuasiveness: how compelling or convincing the response is overall\n",
297
+ "Respond with JSON, and only JSON.\n",
298
+ "The output must be a single JSON array of competitor names, ordered from best to worst.\n",
299
+ "Do not include any keys, labels, or extra text.\n",
300
+ "\n",
301
+ "Example format:\n",
302
+ "[\"1\", \"3\", \"5\", \"2\", \"4\"]\n",
303
+ "\n",
304
+ "Here are the responses from each competitor:\n",
305
+ "\n",
306
+ "{together}\n",
307
+ "\n",
308
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\n",
309
+ "Do not deviate from the json format as described above. Do not include the term ranking in the final json\"\"\"\n"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "code",
314
+ "execution_count": null,
315
+ "metadata": {},
316
+ "outputs": [],
317
+ "source": [
318
+ "print(judge)"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": null,
324
+ "metadata": {},
325
+ "outputs": [],
326
+ "source": [
327
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": null,
333
+ "metadata": {},
334
+ "outputs": [],
335
+ "source": [
336
+ "# Have each LLM rate all of the results.\n",
337
+ "results = dict()\n",
338
+ "LLM_result = ''\n",
339
+ "\n",
340
+ "competitors, answers = await ask_questions_in_parallel(judge_messages)\n",
341
+ "\n",
342
+ "results = dict()\n",
343
+ "for index, each_competitor in enumerate(competitors):\n",
344
+ " results[each_competitor] = answers[index].strip()"
345
+ ]
346
+ },
347
+ {
348
+ "cell_type": "code",
349
+ "execution_count": null,
350
+ "metadata": {},
351
+ "outputs": [],
352
+ "source": [
353
+ "# See the results\n",
354
+ "print (len(answers))\n",
355
+ "results = dict()\n",
356
+ "for index, each_competitor in enumerate(competitors):\n",
357
+ " results[each_competitor] = answers[index]\n",
358
+ "\n",
359
+ "print (results)"
360
+ ]
361
+ },
362
+ {
363
+ "cell_type": "code",
364
+ "execution_count": null,
365
+ "metadata": {},
366
+ "outputs": [],
367
+ "source": [
368
+ "# Lets convert these rankings into scores. Borda Count - (1st gets 4, 2nd gets 3, etc.).\n",
369
+ "number_of_competitors = len(competitors)\n",
370
+ "scores = {}\n",
371
+ "\n",
372
+ "for rankings in results.values():\n",
373
+ " print(rankings)"
374
+ ]
375
+ },
376
+ {
377
+ "cell_type": "code",
378
+ "execution_count": null,
379
+ "metadata": {},
380
+ "outputs": [],
381
+ "source": [
382
+ "# # Borda count points (1st gets n-1, 2nd gets n-2, etc.)\n",
383
+ "num_competitors = len(competitors)\n",
384
+ "\n",
385
+ "competitor_dict = dict()\n",
386
+ "for index, each_competitor in enumerate(competitors):\n",
387
+ " competitor_dict[each_competitor] = index + 1\n",
388
+ "\n",
389
+ "borda_scores_dict = dict()\n",
390
+ "for each_competitor in competitors:\n",
391
+ " if each_competitor not in borda_scores_dict:\n",
392
+ " borda_scores_dict[each_competitor] = 0\n",
393
+ "\n",
394
+ "for voter_llm, ranking_str in results.items():\n",
395
+ " ranking_indices = json.loads(ranking_str)\n",
396
+ " ranking_indices = [int(x) for x in ranking_indices]\n",
397
+ "\n",
398
+ " # For each position in the ranking, award points\n",
399
+ " for position, competitor_index in enumerate(ranking_indices):\n",
400
+ " competitor_name = competitors[competitor_index - 1]\n",
401
+ "\n",
402
+ " # Borda count points (1st gets n-1, 2nd gets n-2, etc.)\n",
403
+ " points = num_competitors - 1 - position \n",
404
+ " borda_scores_dict[competitor_name] += points\n",
405
+ " \n",
406
+ "sorted_results = sorted(borda_scores_dict.items(), key=lambda x: x[1], reverse=True)\n",
407
+ "\n",
408
+ "print(f\"{'Rank':<4} {'LLM':<30} {'Points':<3}\")\n",
409
+ "print(\"-\" * 50)\n",
410
+ "\n",
411
+ "for rank, (llm, points) in enumerate(sorted_results, 1):\n",
412
+ " print(f\"{rank:<4} {llm:<30} {points:<8}\")\n",
413
+ "\n",
414
+ "print(\"\\nQuestions asked:\")\n",
415
+ "print(question)"
416
+ ]
417
+ }
418
+ ],
419
+ "metadata": {
420
+ "kernelspec": {
421
+ "display_name": ".venv",
422
+ "language": "python",
423
+ "name": "python3"
424
+ },
425
+ "language_info": {
426
+ "codemirror_mode": {
427
+ "name": "ipython",
428
+ "version": 3
429
+ },
430
+ "file_extension": ".py",
431
+ "mimetype": "text/x-python",
432
+ "name": "python",
433
+ "nbconvert_exporter": "python",
434
+ "pygments_lexer": "ipython3",
435
+ "version": "3.12.2"
436
+ }
437
+ },
438
+ "nbformat": 4,
439
+ "nbformat_minor": 2
440
+ }
community_contributions/2_lab2.ipynb ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os #allows the code to interact with the operating system\n",
39
+ "import json #imports Python's JSON library\n",
40
+ "from dotenv import load_dotenv #allows the code to load the .env file. A .env file must be explicity loaded\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": 2,
49
+ "metadata": {},
50
+ "outputs": [
51
+ {
52
+ "data": {
53
+ "text/plain": [
54
+ "True"
55
+ ]
56
+ },
57
+ "execution_count": 2,
58
+ "metadata": {},
59
+ "output_type": "execute_result"
60
+ }
61
+ ],
62
+ "source": [
63
+ "# Always remember to do this!\n",
64
+ "load_dotenv(override=True) #prioritizes the local .env file and will replace existing env variables"
65
+ ]
66
+ },
67
+ {
68
+ "cell_type": "code",
69
+ "execution_count": 3,
70
+ "metadata": {},
71
+ "outputs": [
72
+ {
73
+ "name": "stdout",
74
+ "output_type": "stream",
75
+ "text": [
76
+ "OpenAI API Key exists and begins sk-proj-\n",
77
+ "Anthropic API Key not set (and this is optional)\n",
78
+ "Google API Key not set (and this is optional)\n",
79
+ "DeepSeek API Key not set (and this is optional)\n",
80
+ "Groq API Key not set (and this is optional)\n"
81
+ ]
82
+ }
83
+ ],
84
+ "source": [
85
+ "# Print the key prefixes to help with any debugging\n",
86
+ "\n",
87
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
88
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
89
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
90
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
91
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
92
+ "\n",
93
+ "if openai_api_key:\n",
94
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
95
+ "else:\n",
96
+ " print(\"OpenAI API Key not set\")\n",
97
+ " \n",
98
+ "if anthropic_api_key:\n",
99
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
100
+ "else:\n",
101
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
102
+ "\n",
103
+ "if google_api_key:\n",
104
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
105
+ "else:\n",
106
+ " print(\"Google API Key not set (and this is optional)\")\n",
107
+ "\n",
108
+ "if deepseek_api_key:\n",
109
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
110
+ "else:\n",
111
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
112
+ "\n",
113
+ "if groq_api_key:\n",
114
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
115
+ "else:\n",
116
+ " print(\"Groq API Key not set (and this is optional)\")"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": null,
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
126
+ "request += \"Answer only with the question, no explanation. I want the question to be related to the cruelty of life\"\n",
127
+ "messages = [{\"role\": \"user\", \"content\": request}]"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 5,
133
+ "metadata": {},
134
+ "outputs": [
135
+ {
136
+ "data": {
137
+ "text/plain": [
138
+ "[{'role': 'user',\n",
139
+ " 'content': 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. Answer only with the question, no explanation.'}]"
140
+ ]
141
+ },
142
+ "execution_count": 5,
143
+ "metadata": {},
144
+ "output_type": "execute_result"
145
+ }
146
+ ],
147
+ "source": [
148
+ "messages"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 7,
154
+ "metadata": {},
155
+ "outputs": [
156
+ {
157
+ "name": "stdout",
158
+ "output_type": "stream",
159
+ "text": [
160
+ "In a scenario where two intelligent agents with differing ethical frameworks encounter a moral dilemma involving a choice between the greater good and individual rights, how should they navigate their decision-making process, and what factors should they consider to justify their final actions?\n"
161
+ ]
162
+ }
163
+ ],
164
+ "source": [
165
+ "openai = OpenAI()\n",
166
+ "response = openai.chat.completions.create(\n",
167
+ " model=\"gpt-4o-mini\",\n",
168
+ " messages=messages,\n",
169
+ ")\n",
170
+ "question = response.choices[0].message.content\n",
171
+ "print(question)\n"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": 7,
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "competitors = []\n",
181
+ "answers = []\n",
182
+ "messages = [{\"role\": \"user\", \"content\": question}]"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": null,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "# The API we know well\n",
192
+ "\n",
193
+ "model_name = \"gpt-4o-mini\"\n",
194
+ "\n",
195
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
196
+ "answer = response.choices[0].message.content\n",
197
+ "\n",
198
+ "display(Markdown(answer))\n",
199
+ "competitors.append(model_name)\n",
200
+ "answers.append(answer)"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "metadata": {},
207
+ "outputs": [],
208
+ "source": [
209
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
210
+ "\n",
211
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
212
+ "\n",
213
+ "claude = Anthropic()\n",
214
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
215
+ "answer = response.content[0].text\n",
216
+ "\n",
217
+ "display(Markdown(answer))\n",
218
+ "competitors.append(model_name)\n",
219
+ "answers.append(answer)"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
229
+ "model_name = \"gemini-2.0-flash\"\n",
230
+ "\n",
231
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
232
+ "answer = response.choices[0].message.content\n",
233
+ "\n",
234
+ "display(Markdown(answer))\n",
235
+ "competitors.append(model_name)\n",
236
+ "answers.append(answer)"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": null,
242
+ "metadata": {},
243
+ "outputs": [],
244
+ "source": [
245
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
246
+ "model_name = \"deepseek-chat\"\n",
247
+ "\n",
248
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
249
+ "answer = response.choices[0].message.content\n",
250
+ "\n",
251
+ "display(Markdown(answer))\n",
252
+ "competitors.append(model_name)\n",
253
+ "answers.append(answer)"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "metadata": {},
260
+ "outputs": [],
261
+ "source": [
262
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
263
+ "model_name = \"llama-3.3-70b-versatile\"\n",
264
+ "\n",
265
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
266
+ "answer = response.choices[0].message.content\n",
267
+ "\n",
268
+ "display(Markdown(answer))\n",
269
+ "competitors.append(model_name)\n",
270
+ "answers.append(answer)\n"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "markdown",
275
+ "metadata": {},
276
+ "source": [
277
+ "## For the next cell, we will use Ollama\n",
278
+ "\n",
279
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
280
+ "and runs models locally using high performance C++ code.\n",
281
+ "\n",
282
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
283
+ "\n",
284
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
285
+ "\n",
286
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
287
+ "\n",
288
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
289
+ "\n",
290
+ "`ollama pull <model_name>` downloads a model locally \n",
291
+ "`ollama ls` lists all the models you've downloaded \n",
292
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "markdown",
297
+ "metadata": {},
298
+ "source": [
299
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
300
+ " <tr>\n",
301
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
302
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
303
+ " </td>\n",
304
+ " <td>\n",
305
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
306
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
307
+ " </span>\n",
308
+ " </td>\n",
309
+ " </tr>\n",
310
+ "</table>"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": null,
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "!ollama pull llama3.2"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": null,
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": [
328
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
329
+ "model_name = \"llama3.2\"\n",
330
+ "\n",
331
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
332
+ "answer = response.choices[0].message.content\n",
333
+ "\n",
334
+ "display(Markdown(answer))\n",
335
+ "competitors.append(model_name)\n",
336
+ "answers.append(answer)"
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": null,
342
+ "metadata": {},
343
+ "outputs": [],
344
+ "source": [
345
+ "# So where are we?\n",
346
+ "\n",
347
+ "print(competitors)\n",
348
+ "print(answers)\n"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": null,
354
+ "metadata": {},
355
+ "outputs": [],
356
+ "source": [
357
+ "# It's nice to know how to use \"zip\"\n",
358
+ "for competitor, answer in zip(competitors, answers):\n",
359
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
360
+ ]
361
+ },
362
+ {
363
+ "cell_type": "code",
364
+ "execution_count": 20,
365
+ "metadata": {},
366
+ "outputs": [],
367
+ "source": [
368
+ "# Let's bring this together - note the use of \"enumerate\"\n",
369
+ "\n",
370
+ "together = \"\"\n",
371
+ "for index, answer in enumerate(answers):\n",
372
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
373
+ " together += answer + \"\\n\\n\""
374
+ ]
375
+ },
376
+ {
377
+ "cell_type": "code",
378
+ "execution_count": null,
379
+ "metadata": {},
380
+ "outputs": [],
381
+ "source": [
382
+ "print(together)"
383
+ ]
384
+ },
385
+ {
386
+ "cell_type": "code",
387
+ "execution_count": 22,
388
+ "metadata": {},
389
+ "outputs": [],
390
+ "source": [
391
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
392
+ "Each model has been given this question:\n",
393
+ "\n",
394
+ "{question}\n",
395
+ "\n",
396
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
397
+ "Respond with JSON, and only JSON, with the following format:\n",
398
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
399
+ "\n",
400
+ "Here are the responses from each competitor:\n",
401
+ "\n",
402
+ "{together}\n",
403
+ "\n",
404
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
405
+ ]
406
+ },
407
+ {
408
+ "cell_type": "code",
409
+ "execution_count": null,
410
+ "metadata": {},
411
+ "outputs": [],
412
+ "source": [
413
+ "print(judge)"
414
+ ]
415
+ },
416
+ {
417
+ "cell_type": "code",
418
+ "execution_count": 29,
419
+ "metadata": {},
420
+ "outputs": [],
421
+ "source": [
422
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
423
+ ]
424
+ },
425
+ {
426
+ "cell_type": "code",
427
+ "execution_count": null,
428
+ "metadata": {},
429
+ "outputs": [],
430
+ "source": [
431
+ "# Judgement time!\n",
432
+ "\n",
433
+ "openai = OpenAI()\n",
434
+ "response = openai.chat.completions.create(\n",
435
+ " model=\"o3-mini\",\n",
436
+ " messages=judge_messages,\n",
437
+ ")\n",
438
+ "results = response.choices[0].message.content\n",
439
+ "print(results)\n"
440
+ ]
441
+ },
442
+ {
443
+ "cell_type": "code",
444
+ "execution_count": null,
445
+ "metadata": {},
446
+ "outputs": [],
447
+ "source": [
448
+ "# OK let's turn this into results!\n",
449
+ "\n",
450
+ "results_dict = json.loads(results)\n",
451
+ "ranks = results_dict[\"results\"]\n",
452
+ "for index, result in enumerate(ranks):\n",
453
+ " competitor = competitors[int(result)-1]\n",
454
+ " print(f\"Rank {index+1}: {competitor}\")"
455
+ ]
456
+ },
457
+ {
458
+ "cell_type": "markdown",
459
+ "metadata": {},
460
+ "source": [
461
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
462
+ " <tr>\n",
463
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
464
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
465
+ " </td>\n",
466
+ " <td>\n",
467
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
468
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
469
+ " </span>\n",
470
+ " </td>\n",
471
+ " </tr>\n",
472
+ "</table>"
473
+ ]
474
+ },
475
+ {
476
+ "cell_type": "markdown",
477
+ "metadata": {},
478
+ "source": [
479
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
480
+ " <tr>\n",
481
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
482
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
483
+ " </td>\n",
484
+ " <td>\n",
485
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
486
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
487
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
488
+ " to business projects where accuracy is critical.\n",
489
+ " </span>\n",
490
+ " </td>\n",
491
+ " </tr>\n",
492
+ "</table>"
493
+ ]
494
+ }
495
+ ],
496
+ "metadata": {
497
+ "kernelspec": {
498
+ "display_name": ".venv",
499
+ "language": "python",
500
+ "name": "python3"
501
+ },
502
+ "language_info": {
503
+ "codemirror_mode": {
504
+ "name": "ipython",
505
+ "version": 3
506
+ },
507
+ "file_extension": ".py",
508
+ "mimetype": "text/x-python",
509
+ "name": "python",
510
+ "nbconvert_exporter": "python",
511
+ "pygments_lexer": "ipython3",
512
+ "version": "3.12.12"
513
+ }
514
+ },
515
+ "nbformat": 4,
516
+ "nbformat_minor": 2
517
+ }
community_contributions/2_lab2_Execution_measurement.py ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import asyncio
4
+ import concurrent.futures
5
+ import time
6
+ from typing import Dict, List, Tuple, Optional
7
+ from dotenv import load_dotenv
8
+ from openai import OpenAI
9
+
10
+ load_dotenv(override=True)
11
+
12
+ openai = OpenAI()
13
+ competitors = []
14
+ answers = []
15
+ together = ""
16
+ openai_api_key = os.getenv('OPENAI_API_KEY')
17
+ anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')
18
+ google_api_key = os.getenv('GOOGLE_API_KEY')
19
+ deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')
20
+ groq_api_key = os.getenv('GROQ_API_KEY')
21
+
22
+ models_dict = {
23
+ 'openai': {
24
+ 'model': 'gpt-4o-mini',
25
+ 'api_key': openai_api_key,
26
+ 'base_url': None
27
+ },
28
+ 'gemini': {
29
+ 'model': 'gemini-2.0-flash',
30
+ 'api_key': google_api_key,
31
+ 'base_url': 'https://generativelanguage.googleapis.com/v1beta/openai/'
32
+ },
33
+ 'groq': {
34
+ 'model': 'llama-3.3-70b-versatile',
35
+ 'api_key': groq_api_key,
36
+ 'base_url': 'https://api.groq.com/openai/v1'
37
+ },
38
+ 'ollama': {
39
+ 'model': 'llama3.2',
40
+ 'api_key': 'ollama',
41
+ 'base_url': 'http://localhost:11434/v1'
42
+ }
43
+ }
44
+
45
+ def key_checker():
46
+
47
+ if openai_api_key:
48
+ print(f"OpenAI API Key exists and begins {openai_api_key[:8]}")
49
+ else:
50
+ print("OpenAI API Key not set")
51
+
52
+ if anthropic_api_key:
53
+ print(f"Anthropic API Key exists and begins {anthropic_api_key[:7]}")
54
+ else:
55
+ print("Anthropic API Key not set (and this is optional)")
56
+
57
+ if google_api_key:
58
+ print(f"Google API Key exists and begins {google_api_key[:2]}")
59
+ else:
60
+ print("Google API Key not set (and this is optional)")
61
+
62
+ if deepseek_api_key:
63
+ print(f"DeepSeek API Key exists and begins {deepseek_api_key[:3]}")
64
+ else:
65
+ print("DeepSeek API Key not set (and this is optional)")
66
+
67
+ if groq_api_key:
68
+ print(f"Groq API Key exists and begins {groq_api_key[:4]}")
69
+ else:
70
+ print("Groq API Key not set (and this is optional)")
71
+
72
+ def question_prompt_generator():
73
+ request = "Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. "
74
+ request += "Answer only with the question, no explanation."
75
+ messages = [{"role": "user", "content": request}]
76
+ return messages
77
+
78
+ def generate_competition_question():
79
+ """
80
+ Generate a challenging question for the LLM competition
81
+ Returns the question text and formatted messages for LLM calls
82
+ """
83
+ print("Generating competition question...")
84
+ question_prompt = question_prompt_generator()
85
+ question = llm_caller(question_prompt)
86
+ question_messages = [{"role": "user", "content": question}]
87
+ print(f"Question: \n{question}")
88
+ return question, question_messages
89
+
90
+ def llm_caller(messages):
91
+ response = openai.chat.completions.create(
92
+ model="gpt-4o-mini",
93
+ messages=messages,
94
+ )
95
+ return response.choices[0].message.content
96
+
97
+ def llm_caller_with_model(messages, model_name, api_key, base_url):
98
+ llm = None
99
+
100
+ if base_url:
101
+ try:
102
+ llm = OpenAI(api_key=api_key, base_url=base_url)
103
+ except Exception as e:
104
+ print(f"Error creating OpenAI client: {e}")
105
+ return None
106
+ else:
107
+ try:
108
+ llm = OpenAI(api_key=api_key)
109
+ except Exception as e:
110
+ print(f"Error creating OpenAI client: {e}")
111
+ return None
112
+
113
+ response = llm.chat.completions.create(model=model_name, messages=messages)
114
+ return response.choices[0].message.content
115
+
116
+ def get_single_model_answer(provider: str, details: Dict, question_messages: List[Dict]) -> Tuple[str, Optional[str]]:
117
+ """
118
+ Call a single model and return (provider, answer) or (provider, None) if failed.
119
+ This function is designed to be used with ThreadPoolExecutor.
120
+ """
121
+ print(f"Calling model {provider}...")
122
+ try:
123
+ answer = llm_caller_with_model(question_messages, details['model'], details['api_key'], details['base_url'])
124
+ print(f"Model {provider} was successfully called!")
125
+ return provider, answer
126
+ except Exception as e:
127
+ print(f"Model {provider} failed to call: {e}")
128
+ return provider, None
129
+
130
+ def get_models_answers(question_messages):
131
+ """
132
+ Sequential version - kept for backward compatibility
133
+ """
134
+ for provider, details in models_dict.items():
135
+ print(f"Calling model {provider}...")
136
+ try:
137
+ answer = llm_caller_with_model(question_messages, details['model'], details['api_key'], details['base_url'])
138
+ print(f"Model {provider} was successful called!")
139
+ except Exception as e:
140
+ print(f"Model {provider} failed to call: {e}")
141
+ continue
142
+ competitors.append(provider)
143
+ answers.append(answer)
144
+
145
+ def get_models_answers_parallel(question_messages, max_workers: int = 4):
146
+ """
147
+ Parallel version - calls all models simultaneously using ThreadPoolExecutor
148
+ """
149
+ print("Starting parallel execution of all models...")
150
+
151
+ # Clear previous results
152
+ competitors.clear()
153
+ answers.clear()
154
+
155
+ # Use ThreadPoolExecutor for parallel execution
156
+ with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
157
+ # Submit all tasks
158
+ future_to_provider = {
159
+ executor.submit(get_single_model_answer, provider, details, question_messages): provider
160
+ for provider, details in models_dict.items()
161
+ }
162
+
163
+ # Collect results as they complete
164
+ for future in concurrent.futures.as_completed(future_to_provider):
165
+ provider, answer = future.result()
166
+ if answer is not None: # Only add successful calls
167
+ competitors.append(provider)
168
+ answers.append(answer)
169
+
170
+ print(f"Parallel execution completed. {len(competitors)} models responded successfully.")
171
+
172
+ async def get_single_model_answer_async(provider: str, details: Dict, question_messages: List[Dict]) -> Tuple[str, Optional[str]]:
173
+ """
174
+ Async version of single model call - for even better performance
175
+ """
176
+ print(f"Calling model {provider} (async)...")
177
+ try:
178
+ # Run the synchronous call in a thread pool
179
+ loop = asyncio.get_event_loop()
180
+ answer = await loop.run_in_executor(
181
+ None,
182
+ llm_caller_with_model,
183
+ question_messages,
184
+ details['model'],
185
+ details['api_key'],
186
+ details['base_url']
187
+ )
188
+ print(f"Model {provider} was successfully called!")
189
+ return provider, answer
190
+ except Exception as e:
191
+ print(f"Model {provider} failed to call: {e}")
192
+ return provider, None
193
+
194
+ async def get_models_answers_async(question_messages):
195
+ """
196
+ Async version - calls all models simultaneously using asyncio
197
+ """
198
+ print("Starting async execution of all models...")
199
+
200
+ # Clear previous results
201
+ competitors.clear()
202
+ answers.clear()
203
+
204
+ # Create tasks for all models
205
+ tasks = [
206
+ get_single_model_answer_async(provider, details, question_messages)
207
+ for provider, details in models_dict.items()
208
+ ]
209
+
210
+ # Wait for all tasks to complete
211
+ results = await asyncio.gather(*tasks, return_exceptions=True)
212
+
213
+ # Process results
214
+ for result in results:
215
+ if isinstance(result, Exception):
216
+ print(f"Task failed with exception: {result}")
217
+ continue
218
+ provider, answer = result
219
+ if answer is not None: # Only add successful calls
220
+ competitors.append(provider)
221
+ answers.append(answer)
222
+
223
+ print(f"Async execution completed. {len(competitors)} models responded successfully.")
224
+
225
+ def together_maker(answers):
226
+ together = ""
227
+ for index, answer in enumerate(answers):
228
+ together += f"# Response from competitor {index+1}\n\n"
229
+ together += answer + "\n\n"
230
+ return together
231
+
232
+ def judge_prompt_generator(competitors, question, together):
233
+ judge = f"""You are judging a competition between {len(competitors)} competitors.
234
+ Each model has been given this question:
235
+
236
+ {question}
237
+
238
+ Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.
239
+ Respond with JSON, and only JSON, with the following format:
240
+ {{"results": ["best competitor number", "second best competitor number", "third best competitor number", ...]}}
241
+
242
+ Here are the responses from each competitor:
243
+
244
+ {together}
245
+
246
+ Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks."""
247
+ return judge
248
+
249
+ def judge_caller(judge_prompt, competitors):
250
+ print(f"Calling judge...")
251
+ judge_messages = [{"role": "user", "content": judge_prompt}]
252
+ results = llm_caller_with_model(judge_messages, "o3-mini", openai_api_key, None)
253
+ results_dict = json.loads(results)
254
+ ranks = results_dict["results"]
255
+ for index, result in enumerate(ranks):
256
+ competitor = competitors[int(result)-1]
257
+ print(f"Rank {index+1}: {competitor}")
258
+ return ranks
259
+
260
+ def compare_execution_methods(question_messages, runs_per_method=1):
261
+ """
262
+ Compare performance of different execution methods
263
+ """
264
+ methods = ['sequential', 'parallel', 'async']
265
+ results = {}
266
+
267
+ for method in methods:
268
+ print(f"\n{'='*50}")
269
+ print(f"Testing {method} execution method")
270
+ print(f"{'='*50}")
271
+
272
+ method_times = []
273
+
274
+ for run in range(runs_per_method):
275
+ print(f"\nRun {run + 1}/{runs_per_method}")
276
+
277
+ # Clear previous results
278
+ competitors.clear()
279
+ answers.clear()
280
+
281
+ start_time = time.time()
282
+
283
+ if method == 'sequential':
284
+ get_models_answers(question_messages)
285
+ elif method == 'parallel':
286
+ get_models_answers_parallel(question_messages, max_workers=4)
287
+ elif method == 'async':
288
+ asyncio.run(get_models_answers_async(question_messages))
289
+
290
+ execution_time = time.time() - start_time
291
+ method_times.append(execution_time)
292
+ print(f"Run {run + 1} completed in {execution_time:.2f} seconds")
293
+
294
+ avg_time = sum(method_times) / len(method_times)
295
+ results[method] = {
296
+ 'times': method_times,
297
+ 'avg_time': avg_time,
298
+ 'successful_models': len(competitors)
299
+ }
300
+
301
+ print(f"\n{method.upper()} Results:")
302
+ print(f" Average time: {avg_time:.2f} seconds")
303
+ print(f" Successful models: {len(competitors)}")
304
+ print(f" All times: {[f'{t:.2f}s' for t in method_times]}")
305
+
306
+ # Print comparison summary
307
+ print(f"\n{'='*60}")
308
+ print("PERFORMANCE COMPARISON SUMMARY")
309
+ print(f"{'='*60}")
310
+
311
+ for method, data in results.items():
312
+ print(f"{method.upper():>12}: {data['avg_time']:>6.2f}s avg, {data['successful_models']} models")
313
+
314
+ # Calculate speedup
315
+ if 'sequential' in results:
316
+ seq_time = results['sequential']['avg_time']
317
+ print(f"\nSpeedup vs Sequential:")
318
+ for method, data in results.items():
319
+ if method != 'sequential':
320
+ speedup = seq_time / data['avg_time']
321
+ print(f" {method.upper()}: {speedup:.2f}x faster")
322
+
323
+ return results
324
+
325
+ def run_llm_competition(question_messages, execution_method, question):
326
+ """
327
+ Run the LLM competition with the specified execution method
328
+ """
329
+ print(f"\nUsing {execution_method} execution method...")
330
+ start_time = time.time()
331
+
332
+ if execution_method == 'sequential':
333
+ get_models_answers(question_messages)
334
+ elif execution_method == 'parallel':
335
+ get_models_answers_parallel(question_messages, max_workers=4)
336
+ elif execution_method == 'async':
337
+ asyncio.run(get_models_answers_async(question_messages))
338
+ else:
339
+ raise ValueError(f"Unknown execution method: {execution_method}")
340
+
341
+ execution_time = time.time() - start_time
342
+ print(f"Execution completed in {execution_time:.2f} seconds")
343
+
344
+ together = together_maker(answers)
345
+ judge_prompt = judge_prompt_generator(competitors, question, together)
346
+ judge_caller(judge_prompt, competitors)
347
+
348
+ return execution_time
349
+
350
+ # Interactive execution method selection
351
+ def get_execution_method():
352
+ """
353
+ Prompt user to select execution method
354
+ """
355
+ print("\n" + "="*60)
356
+ print("EXECUTION METHOD SELECTION")
357
+ print("="*60)
358
+ print("Choose how to execute the LLM calls:")
359
+ print("1. Sequential - Call models one after another (original method)")
360
+ print("2. Parallel - Call all models simultaneously (recommended)")
361
+ print("3. Async - Use async/await for maximum performance")
362
+ print("4. Compare - Run all methods and compare performance")
363
+ print("="*60)
364
+
365
+ while True:
366
+ try:
367
+ choice = input("Enter your choice (1-4): ").strip()
368
+
369
+ if choice == '1':
370
+ return 'sequential'
371
+ elif choice == '2':
372
+ return 'parallel'
373
+ elif choice == '3':
374
+ return 'async'
375
+ elif choice == '4':
376
+ return 'compare'
377
+ else:
378
+ print("Invalid choice. Please enter 1, 2, 3, or 4.")
379
+ continue
380
+ except KeyboardInterrupt:
381
+ print("\nExiting...")
382
+ exit(0)
383
+ except EOFError:
384
+ print("\nExiting...")
385
+ exit(0)
386
+
387
+ def main():
388
+ key_checker()
389
+
390
+ # Get user's execution method choice
391
+ EXECUTION_METHOD = get_execution_method()
392
+ # Generate the competition question and get the question messages
393
+ question, question_messages = generate_competition_question()
394
+
395
+ if EXECUTION_METHOD == 'compare':
396
+ print("\nRunning performance comparison...")
397
+ compare_execution_methods(question_messages, runs_per_method=1)
398
+ else:
399
+ run_llm_competition(question_messages, EXECUTION_METHOD, question)
400
+
401
+ main()
community_contributions/2_lab2_ReAct_Pattern.ipynb ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
35
+ " <tr>\n",
36
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
37
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
38
+ " </td>\n",
39
+ " <td>\n",
40
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
41
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
42
+ " </span>\n",
43
+ " </td>\n",
44
+ " </tr>\n",
45
+ "</table>"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "# ReAct Pattern"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 26,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "import openai\n",
62
+ "import os\n",
63
+ "from dotenv import load_dotenv\n",
64
+ "import io\n",
65
+ "from anthropic import Anthropic\n",
66
+ "from IPython.display import Markdown, display"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "# Print the key prefixes to help with any debugging\n",
76
+ "\n",
77
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
78
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
79
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
80
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
81
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
82
+ "\n",
83
+ "if openai_api_key:\n",
84
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
85
+ "else:\n",
86
+ " print(\"OpenAI API Key not set\")\n",
87
+ " \n",
88
+ "if anthropic_api_key:\n",
89
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
90
+ "else:\n",
91
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
92
+ "\n",
93
+ "if google_api_key:\n",
94
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
95
+ "else:\n",
96
+ " print(\"Google API Key not set (and this is optional)\")\n",
97
+ "\n",
98
+ "if deepseek_api_key:\n",
99
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
100
+ "else:\n",
101
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
102
+ "\n",
103
+ "if groq_api_key:\n",
104
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
105
+ "else:\n",
106
+ " print(\"Groq API Key not set (and this is optional)\")"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 50,
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "\n",
116
+ "from openai import OpenAI\n",
117
+ "\n",
118
+ "openai = OpenAI()\n",
119
+ "\n",
120
+ "# Request prompt\n",
121
+ "request = (\n",
122
+ " \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
123
+ " \"Answer only with the question, no explanation.\"\n",
124
+ ")\n",
125
+ "\n",
126
+ "\n",
127
+ "\n",
128
+ "def generate_question(prompt: str) -> str:\n",
129
+ " response = openai.chat.completions.create(\n",
130
+ " model='gpt-4o-mini',\n",
131
+ " messages=[{'role': 'user', 'content': prompt}]\n",
132
+ " )\n",
133
+ " question = response.choices[0].message.content\n",
134
+ " return question\n",
135
+ "\n",
136
+ "def react_agent_decide_model(question: str) -> str:\n",
137
+ " prompt = f\"\"\"\n",
138
+ " You are an intelligent AI assistant tasked with evaluating which language model is most suitable to answer a given question.\n",
139
+ "\n",
140
+ " Available models:\n",
141
+ " - OpenAI: excels at reasoning and factual answers.\n",
142
+ " - Claude: better for philosophical, nuanced, and ethical topics.\n",
143
+ " - Gemini: good for concise and structured summaries.\n",
144
+ " - Groq: good for creative or exploratory tasks.\n",
145
+ " - DeepSeek: strong at coding, technical reasoning, and multilingual responses.\n",
146
+ "\n",
147
+ " Here is the question to answer:\n",
148
+ " \"{question}\"\n",
149
+ "\n",
150
+ " ### Thought:\n",
151
+ " Which model is best suited to answer this question, and why?\n",
152
+ "\n",
153
+ " ### Action:\n",
154
+ " Respond with only the model name you choose (e.g., \"Claude\").\n",
155
+ " \"\"\"\n",
156
+ "\n",
157
+ " response = openai.chat.completions.create(\n",
158
+ " model=\"o3-mini\",\n",
159
+ " messages=[{\"role\": \"user\", \"content\": prompt}]\n",
160
+ " )\n",
161
+ " model = response.choices[0].message.content.strip()\n",
162
+ " return model\n",
163
+ "\n",
164
+ "def generate_answer_openai(prompt):\n",
165
+ " answer = openai.chat.completions.create(\n",
166
+ " model='gpt-4o-mini',\n",
167
+ " messages=[{'role': 'user', 'content': prompt}]\n",
168
+ " ).choices[0].message.content\n",
169
+ " return answer\n",
170
+ "\n",
171
+ "def generate_answer_anthropic(prompt):\n",
172
+ " anthropic = Anthropic(api_key=anthropic_api_key)\n",
173
+ " model_name = \"claude-3-5-sonnet-20240620\"\n",
174
+ " answer = anthropic.messages.create(\n",
175
+ " model=model_name,\n",
176
+ " messages=[{'role': 'user', 'content': prompt}],\n",
177
+ " max_tokens=1000\n",
178
+ " ).content[0].text\n",
179
+ " return answer\n",
180
+ "\n",
181
+ "def generate_answer_deepseek(prompt):\n",
182
+ " deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
183
+ " model_name = \"deepseek-chat\" \n",
184
+ " answer = deepseek.chat.completions.create(\n",
185
+ " model=model_name,\n",
186
+ " messages=[{'role': 'user', 'content': prompt}],\n",
187
+ " base_url='https://api.deepseek.com/v1'\n",
188
+ " ).choices[0].message.content\n",
189
+ " return answer\n",
190
+ "\n",
191
+ "def generate_answer_gemini(prompt):\n",
192
+ " gemini=OpenAI(base_url='https://generativelanguage.googleapis.com/v1beta/openai/',api_key=google_api_key)\n",
193
+ " model_name = \"gemini-2.0-flash\"\n",
194
+ " answer = gemini.chat.completions.create(\n",
195
+ " model=model_name,\n",
196
+ " messages=[{'role': 'user', 'content': prompt}],\n",
197
+ " ).choices[0].message.content\n",
198
+ " return answer\n",
199
+ "\n",
200
+ "def generate_answer_groq(prompt):\n",
201
+ " groq=OpenAI(base_url='https://api.groq.com/openai/v1',api_key=groq_api_key)\n",
202
+ " model_name=\"llama3-70b-8192\"\n",
203
+ " answer = groq.chat.completions.create(\n",
204
+ " model=model_name,\n",
205
+ " messages=[{'role': 'user', 'content': prompt}],\n",
206
+ " base_url=\"https://api.groq.com/openai/v1\"\n",
207
+ " ).choices[0].message.content\n",
208
+ " return answer\n",
209
+ "\n",
210
+ "def main():\n",
211
+ " print(\"Generating question...\")\n",
212
+ " question = generate_question(request)\n",
213
+ " print(f\"\\n🧠 Question: {question}\\n\")\n",
214
+ " selected_model = react_agent_decide_model(question)\n",
215
+ " print(f\"\\nπŸ”Ή {selected_model}:\\n\")\n",
216
+ " \n",
217
+ " if selected_model.lower() == \"openai\":\n",
218
+ " answer = generate_answer_openai(question)\n",
219
+ " elif selected_model.lower() == \"deepseek\":\n",
220
+ " answer = generate_answer_deepseek(question)\n",
221
+ " elif selected_model.lower() == \"gemini\":\n",
222
+ " answer = generate_answer_gemini(question)\n",
223
+ " elif selected_model.lower() == \"groq\":\n",
224
+ " answer = generate_answer_groq(question)\n",
225
+ " elif selected_model.lower() == \"claude\":\n",
226
+ " answer = generate_answer_anthropic(question)\n",
227
+ " print(f\"\\nπŸ”Ή {selected_model}:\\n{answer}\\n\")\n",
228
+ " \n"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": null,
234
+ "metadata": {},
235
+ "outputs": [],
236
+ "source": [
237
+ "main()"
238
+ ]
239
+ },
240
+ {
241
+ "cell_type": "code",
242
+ "execution_count": null,
243
+ "metadata": {},
244
+ "outputs": [],
245
+ "source": []
246
+ },
247
+ {
248
+ "cell_type": "markdown",
249
+ "metadata": {},
250
+ "source": [
251
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
252
+ " <tr>\n",
253
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
254
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
255
+ " </td>\n",
256
+ " <td>\n",
257
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
258
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
259
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
260
+ " to business projects where accuracy is critical.\n",
261
+ " </span>\n",
262
+ " </td>\n",
263
+ " </tr>\n",
264
+ "</table>"
265
+ ]
266
+ }
267
+ ],
268
+ "metadata": {
269
+ "kernelspec": {
270
+ "display_name": ".venv",
271
+ "language": "python",
272
+ "name": "python3"
273
+ },
274
+ "language_info": {
275
+ "codemirror_mode": {
276
+ "name": "ipython",
277
+ "version": 3
278
+ },
279
+ "file_extension": ".py",
280
+ "mimetype": "text/x-python",
281
+ "name": "python",
282
+ "nbconvert_exporter": "python",
283
+ "pygments_lexer": "ipython3",
284
+ "version": "3.12.4"
285
+ }
286
+ },
287
+ "nbformat": 4,
288
+ "nbformat_minor": 2
289
+ }
community_contributions/2_lab2_akash_parallelization.ipynb ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
19
+ "\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "from dotenv import load_dotenv\n",
23
+ "from openai import OpenAI, AsyncOpenAI\n",
24
+ "from IPython.display import Markdown, display\n",
25
+ "import asyncio\n",
26
+ "from functools import partial"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "# Always remember to do this!\n",
36
+ "load_dotenv(override=True)"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "# Print the key prefixes to help with any debugging\n",
46
+ "\n",
47
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
48
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
49
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
50
+ "\n",
51
+ "if openai_api_key:\n",
52
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
53
+ "else:\n",
54
+ " print(\"OpenAI API Key not set\")\n",
55
+ "\n",
56
+ "\n",
57
+ "if google_api_key:\n",
58
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
59
+ "else:\n",
60
+ " print(\"Google API Key not set (and this is optional)\")\n",
61
+ "\n",
62
+ "if groq_api_key:\n",
63
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
64
+ "else:\n",
65
+ " print(\"Groq API Key not set (and this is optional)\")"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
75
+ "request += \"Answer only with the question, no explanation.\"\n",
76
+ "messages = [{\"role\": \"user\", \"content\": request}]"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "openai = AsyncOpenAI()\n",
86
+ "response = await openai.chat.completions.create(\n",
87
+ " model=\"gpt-4o-mini\",\n",
88
+ " messages=messages,\n",
89
+ ")\n",
90
+ "question = response.choices[0].message.content\n",
91
+ "print(question)\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "messages = [{\"role\": \"user\", \"content\": question}]"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "from dataclasses import dataclass\n",
110
+ "\n",
111
+ "@dataclass\n",
112
+ "class LLMResource:\n",
113
+ " api_key: str\n",
114
+ " model: str\n",
115
+ " url: str = None # optional otherwise NOone\n",
116
+ "\n",
117
+ "llm_resources = [\n",
118
+ " LLMResource(api_key=openai_api_key, model=\"gpt-4o-mini\"),\n",
119
+ " LLMResource(api_key=google_api_key, model=\"gemini-2.5-flash\", url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"),\n",
120
+ " LLMResource(api_key=groq_api_key, model=\"qwen/qwen3-32b\", url=\"https://api.groq.com/openai/v1\"),\n",
121
+ " LLMResource(api_key=\"ollama\", model=\"deepseek-r1:1.5b\", url=\"http://localhost:11434/v1\" )\n",
122
+ "]\n"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "metadata": {},
129
+ "outputs": [],
130
+ "source": [
131
+ "\n",
132
+ "\n",
133
+ "async def llm_call(key, model_name, url, messages) -> tuple:\n",
134
+ " if url is None:\n",
135
+ " llm = AsyncOpenAI(api_key=key)\n",
136
+ " else: \n",
137
+ " llm = AsyncOpenAI(base_url=url,api_key=key)\n",
138
+ " \n",
139
+ " response = await llm.chat.completions.create(\n",
140
+ " model=model_name, messages=messages)\n",
141
+ " \n",
142
+ " answer = (model_name, response.choices[0].message.content)\n",
143
+ "\n",
144
+ " return answer #returns tuple of modle and response from LLM\n",
145
+ "\n",
146
+ "llm_callable = partial(llm_call, messages=messages) #prefill with messages\n",
147
+ "# Always remember to do this!"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {},
154
+ "outputs": [],
155
+ "source": [
156
+ "#gather all responses concurrently\n",
157
+ "tasks = [llm_callable(res.api_key,res.model,res.url) for res in llm_resources]\n",
158
+ "results = await asyncio.gather(*tasks)\n",
159
+ "together = [f'Response from competitor {model}:{answer}' for model,answer in results]#gather results once all model finish running\n"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "judge = f\"\"\"You are judging a competition between {len(llm_resources)} competitors.\n",
169
+ "Each model has been given this question:\n",
170
+ "\n",
171
+ "{request}\n",
172
+ "\n",
173
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
174
+ "Respond with JSON, and only JSON, with the following format:\n",
175
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
176
+ "\n",
177
+ "Here are the responses from each competitor:\n",
178
+ "\n",
179
+ "{together} # all responses\n",
180
+ "\n",
181
+ "Now respond with the JSON with the ranked order of the competitors name, nothing else. Do not include markdown formatting or code blocks.\"\"\""
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "print(judge)"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": null,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# Judgement time!\n",
209
+ "\n",
210
+ "openai = OpenAI()\n",
211
+ "response = openai.chat.completions.create(\n",
212
+ " model=\"o3-mini\",\n",
213
+ " messages=judge_messages,\n",
214
+ ")\n",
215
+ "results = response.choices[0].message.content\n",
216
+ "print(results)\n"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "metadata": {},
223
+ "outputs": [],
224
+ "source": [
225
+ "# OK let's turn this into results!\n",
226
+ "\n",
227
+ "results_dict = json.loads(results)\n",
228
+ "\n",
229
+ "ranks = results_dict[\"results\"]\n",
230
+ "\n",
231
+ "for index, result in enumerate(ranks):\n",
232
+ " print(f\"Rank {index+1}: {result}\")"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "markdown",
237
+ "metadata": {},
238
+ "source": [
239
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
240
+ " <tr>\n",
241
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
242
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
243
+ " </td>\n",
244
+ " <td>\n",
245
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
246
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
247
+ " </span>\n",
248
+ " </td>\n",
249
+ " </tr>\n",
250
+ "</table>"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "markdown",
255
+ "metadata": {},
256
+ "source": [
257
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
258
+ " <tr>\n",
259
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
260
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
261
+ " </td>\n",
262
+ " <td>\n",
263
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
264
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
265
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
266
+ " to business projects where accuracy is critical.\n",
267
+ " </span>\n",
268
+ " </td>\n",
269
+ " </tr>\n",
270
+ "</table>"
271
+ ]
272
+ }
273
+ ],
274
+ "metadata": {
275
+ "kernelspec": {
276
+ "display_name": ".venv",
277
+ "language": "python",
278
+ "name": "python3"
279
+ },
280
+ "language_info": {
281
+ "codemirror_mode": {
282
+ "name": "ipython",
283
+ "version": 3
284
+ },
285
+ "file_extension": ".py",
286
+ "mimetype": "text/x-python",
287
+ "name": "python",
288
+ "nbconvert_exporter": "python",
289
+ "pygments_lexer": "ipython3",
290
+ "version": "3.12.3"
291
+ }
292
+ },
293
+ "nbformat": 4,
294
+ "nbformat_minor": 2
295
+ }
community_contributions/2_lab2_async.ipynb ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 1,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
19
+ "\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "import asyncio\n",
23
+ "from dotenv import load_dotenv\n",
24
+ "from openai import OpenAI, AsyncOpenAI\n",
25
+ "from anthropic import AsyncAnthropic\n",
26
+ "from pydantic import BaseModel"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "# Always remember to do this!\n",
36
+ "load_dotenv(override=True)"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "# Print the key prefixes to help with any debugging\n",
46
+ "\n",
47
+ "OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
48
+ "ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')\n",
49
+ "GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')\n",
50
+ "DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY')\n",
51
+ "GROQ_API_KEY = os.getenv('GROQ_API_KEY')\n",
52
+ "\n",
53
+ "if OPENAI_API_KEY:\n",
54
+ " print(f\"OpenAI API Key exists and begins {OPENAI_API_KEY[:8]}\")\n",
55
+ "else:\n",
56
+ " print(\"OpenAI API Key not set\")\n",
57
+ " \n",
58
+ "if ANTHROPIC_API_KEY:\n",
59
+ " print(f\"Anthropic API Key exists and begins {ANTHROPIC_API_KEY[:7]}\")\n",
60
+ "else:\n",
61
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
62
+ "\n",
63
+ "if GOOGLE_API_KEY:\n",
64
+ " print(f\"Google API Key exists and begins {GOOGLE_API_KEY[:2]}\")\n",
65
+ "else:\n",
66
+ " print(\"Google API Key not set (and this is optional)\")\n",
67
+ "\n",
68
+ "if DEEPSEEK_API_KEY:\n",
69
+ " print(f\"DeepSeek API Key exists and begins {DEEPSEEK_API_KEY[:3]}\")\n",
70
+ "else:\n",
71
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
72
+ "\n",
73
+ "if GROQ_API_KEY:\n",
74
+ " print(f\"Groq API Key exists and begins {GROQ_API_KEY[:4]}\")\n",
75
+ "else:\n",
76
+ " print(\"Groq API Key not set (and this is optional)\")"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": 4,
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
86
+ "request += \"Answer only with the question, no explanation.\"\n",
87
+ "messages = [{\"role\": \"user\", \"content\": request}]"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "print(messages)"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "openai = AsyncOpenAI()\n",
106
+ "response = await openai.chat.completions.create(\n",
107
+ " model=\"gpt-4o-mini\",\n",
108
+ " messages=messages,\n",
109
+ ")\n",
110
+ "question = response.choices[0].message.content\n",
111
+ "print(question)\n"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": 7,
117
+ "metadata": {},
118
+ "outputs": [],
119
+ "source": [
120
+ "# Define Pydantic model for storing LLM results\n",
121
+ "class LLMResult(BaseModel):\n",
122
+ " model: str\n",
123
+ " answer: str\n"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": 8,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "results: list[LLMResult] = []\n",
133
+ "messages = [{\"role\": \"user\", \"content\": question}]"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "execution_count": 9,
139
+ "metadata": {},
140
+ "outputs": [],
141
+ "source": [
142
+ "# The API we know well\n",
143
+ "async def openai_answer() -> None:\n",
144
+ "\n",
145
+ " if OPENAI_API_KEY is None:\n",
146
+ " return None\n",
147
+ " \n",
148
+ " print(\"OpenAI starting!\")\n",
149
+ " model_name = \"gpt-4o-mini\"\n",
150
+ "\n",
151
+ " try:\n",
152
+ " response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
153
+ " answer = response.choices[0].message.content\n",
154
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
155
+ " except Exception as e:\n",
156
+ " print(f\"Error with OpenAI: {e}\")\n",
157
+ " return None\n",
158
+ "\n",
159
+ " print(\"OpenAI done!\")"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": 10,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
169
+ "\n",
170
+ "async def anthropic_answer() -> None:\n",
171
+ "\n",
172
+ " if ANTHROPIC_API_KEY is None:\n",
173
+ " return None\n",
174
+ " \n",
175
+ " print(\"Anthropic starting!\")\n",
176
+ " model_name = \"claude-3-7-sonnet-latest\"\n",
177
+ "\n",
178
+ " claude = AsyncAnthropic()\n",
179
+ " try:\n",
180
+ " response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
181
+ " answer = response.content[0].text\n",
182
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
183
+ " except Exception as e:\n",
184
+ " print(f\"Error with Anthropic: {e}\")\n",
185
+ " return None\n",
186
+ "\n",
187
+ " print(\"Anthropic done!\")"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 11,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "async def google_answer() -> None:\n",
197
+ "\n",
198
+ " if GOOGLE_API_KEY is None:\n",
199
+ " return None\n",
200
+ " \n",
201
+ " print(\"Google starting!\")\n",
202
+ " model_name = \"gemini-2.0-flash\"\n",
203
+ "\n",
204
+ " gemini = AsyncOpenAI(api_key=GOOGLE_API_KEY, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
205
+ " try:\n",
206
+ " response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
207
+ " answer = response.choices[0].message.content\n",
208
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
209
+ " except Exception as e:\n",
210
+ " print(f\"Error with Google: {e}\")\n",
211
+ " return None\n",
212
+ "\n",
213
+ " print(\"Google done!\")"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": 12,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "async def deepseek_answer() -> None:\n",
223
+ "\n",
224
+ " if DEEPSEEK_API_KEY is None:\n",
225
+ " return None\n",
226
+ " \n",
227
+ " print(\"DeepSeek starting!\")\n",
228
+ " model_name = \"deepseek-chat\"\n",
229
+ "\n",
230
+ " deepseek = AsyncOpenAI(api_key=DEEPSEEK_API_KEY, base_url=\"https://api.deepseek.com/v1\")\n",
231
+ " try:\n",
232
+ " response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
233
+ " answer = response.choices[0].message.content\n",
234
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
235
+ " except Exception as e:\n",
236
+ " print(f\"Error with DeepSeek: {e}\")\n",
237
+ " return None\n",
238
+ "\n",
239
+ " print(\"DeepSeek done!\")"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": 13,
245
+ "metadata": {},
246
+ "outputs": [],
247
+ "source": [
248
+ "async def groq_answer() -> None:\n",
249
+ "\n",
250
+ " if GROQ_API_KEY is None:\n",
251
+ " return None\n",
252
+ " \n",
253
+ " print(\"Groq starting!\")\n",
254
+ " model_name = \"llama-3.3-70b-versatile\"\n",
255
+ "\n",
256
+ " groq = AsyncOpenAI(api_key=GROQ_API_KEY, base_url=\"https://api.groq.com/openai/v1\")\n",
257
+ " try:\n",
258
+ " response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
259
+ " answer = response.choices[0].message.content\n",
260
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
261
+ " except Exception as e:\n",
262
+ " print(f\"Error with Groq: {e}\")\n",
263
+ " return None\n",
264
+ "\n",
265
+ " print(\"Groq done!\")\n"
266
+ ]
267
+ },
268
+ {
269
+ "cell_type": "markdown",
270
+ "metadata": {},
271
+ "source": [
272
+ "## For the next cell, we will use Ollama\n",
273
+ "\n",
274
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
275
+ "and runs models locally using high performance C++ code.\n",
276
+ "\n",
277
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
278
+ "\n",
279
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
280
+ "\n",
281
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
282
+ "\n",
283
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
284
+ "\n",
285
+ "`ollama pull <model_name>` downloads a model locally \n",
286
+ "`ollama ls` lists all the models you've downloaded \n",
287
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "markdown",
292
+ "metadata": {},
293
+ "source": [
294
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
295
+ " <tr>\n",
296
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
297
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
298
+ " </td>\n",
299
+ " <td>\n",
300
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
301
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
302
+ " </span>\n",
303
+ " </td>\n",
304
+ " </tr>\n",
305
+ "</table>"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "!ollama pull llama3.2"
315
+ ]
316
+ },
317
+ {
318
+ "cell_type": "code",
319
+ "execution_count": 15,
320
+ "metadata": {},
321
+ "outputs": [],
322
+ "source": [
323
+ "async def ollama_answer() -> None:\n",
324
+ " model_name = \"llama3.2\"\n",
325
+ "\n",
326
+ " print(\"Ollama starting!\")\n",
327
+ " ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
328
+ " try:\n",
329
+ " response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
330
+ " answer = response.choices[0].message.content\n",
331
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
332
+ " except Exception as e:\n",
333
+ " print(f\"Error with Ollama: {e}\")\n",
334
+ " return None\n",
335
+ "\n",
336
+ " print(\"Ollama done!\") "
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": null,
342
+ "metadata": {},
343
+ "outputs": [],
344
+ "source": [
345
+ "async def gather_answers():\n",
346
+ " tasks = [\n",
347
+ " openai_answer(),\n",
348
+ " anthropic_answer(),\n",
349
+ " google_answer(),\n",
350
+ " deepseek_answer(),\n",
351
+ " groq_answer(),\n",
352
+ " ollama_answer()\n",
353
+ " ]\n",
354
+ " await asyncio.gather(*tasks)\n",
355
+ "\n",
356
+ "await gather_answers()"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": null,
362
+ "metadata": {},
363
+ "outputs": [],
364
+ "source": [
365
+ "together = \"\"\n",
366
+ "competitors = []\n",
367
+ "answers = []\n",
368
+ "\n",
369
+ "for res in results:\n",
370
+ " competitor = res.model\n",
371
+ " answer = res.answer\n",
372
+ " competitors.append(competitor)\n",
373
+ " answers.append(answer)\n",
374
+ " together += f\"# Response from competitor {competitor}\\n\\n\"\n",
375
+ " together += answer + \"\\n\\n\"\n",
376
+ "\n",
377
+ "print(f\"Number of competitors: {len(results)}\")\n",
378
+ "print(together)\n"
379
+ ]
380
+ },
381
+ {
382
+ "cell_type": "code",
383
+ "execution_count": 18,
384
+ "metadata": {},
385
+ "outputs": [],
386
+ "source": [
387
+ "judge = f\"\"\"You are judging a competition between {len(results)} competitors.\n",
388
+ "Each model has been given this question:\n",
389
+ "\n",
390
+ "{question}\n",
391
+ "\n",
392
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
393
+ "Respond with JSON, and only JSON, with the following format:\n",
394
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
395
+ "\n",
396
+ "Here are the responses from each competitor:\n",
397
+ "\n",
398
+ "{together}\n",
399
+ "\n",
400
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
401
+ ]
402
+ },
403
+ {
404
+ "cell_type": "code",
405
+ "execution_count": null,
406
+ "metadata": {},
407
+ "outputs": [],
408
+ "source": [
409
+ "print(judge)"
410
+ ]
411
+ },
412
+ {
413
+ "cell_type": "code",
414
+ "execution_count": 20,
415
+ "metadata": {},
416
+ "outputs": [],
417
+ "source": [
418
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
419
+ ]
420
+ },
421
+ {
422
+ "cell_type": "code",
423
+ "execution_count": null,
424
+ "metadata": {},
425
+ "outputs": [],
426
+ "source": [
427
+ "# Judgement time!\n",
428
+ "\n",
429
+ "openai = OpenAI()\n",
430
+ "response = openai.chat.completions.create(\n",
431
+ " model=\"o3-mini\",\n",
432
+ " messages=judge_messages,\n",
433
+ ")\n",
434
+ "judgement = response.choices[0].message.content\n",
435
+ "print(judgement)\n"
436
+ ]
437
+ },
438
+ {
439
+ "cell_type": "code",
440
+ "execution_count": null,
441
+ "metadata": {},
442
+ "outputs": [],
443
+ "source": [
444
+ "# OK let's turn this into results!\n",
445
+ "\n",
446
+ "results_dict = json.loads(judgement)\n",
447
+ "ranks = results_dict[\"results\"]\n",
448
+ "for index, comp in enumerate(ranks):\n",
449
+ " print(f\"Rank {index+1}: {comp}\")"
450
+ ]
451
+ }
452
+ ],
453
+ "metadata": {
454
+ "kernelspec": {
455
+ "display_name": ".venv",
456
+ "language": "python",
457
+ "name": "python3"
458
+ },
459
+ "language_info": {
460
+ "codemirror_mode": {
461
+ "name": "ipython",
462
+ "version": 3
463
+ },
464
+ "file_extension": ".py",
465
+ "mimetype": "text/x-python",
466
+ "name": "python",
467
+ "nbconvert_exporter": "python",
468
+ "pygments_lexer": "ipython3",
469
+ "version": "3.12.11"
470
+ }
471
+ },
472
+ "nbformat": 4,
473
+ "nbformat_minor": 2
474
+ }
community_contributions/2_lab2_async_with_reasons.ipynb ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "This was derived from 2_lab2_async. "
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 1,
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
26
+ "\n",
27
+ "import os\n",
28
+ "import json\n",
29
+ "import asyncio\n",
30
+ "from dotenv import load_dotenv\n",
31
+ "from openai import OpenAI, AsyncOpenAI\n",
32
+ "from anthropic import AsyncAnthropic\n",
33
+ "from pydantic import BaseModel"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 2,
39
+ "metadata": {},
40
+ "outputs": [
41
+ {
42
+ "data": {
43
+ "text/plain": [
44
+ "True"
45
+ ]
46
+ },
47
+ "execution_count": 2,
48
+ "metadata": {},
49
+ "output_type": "execute_result"
50
+ }
51
+ ],
52
+ "source": [
53
+ "# Always remember to do this!\n",
54
+ "load_dotenv(override=True)"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 3,
60
+ "metadata": {},
61
+ "outputs": [
62
+ {
63
+ "name": "stdout",
64
+ "output_type": "stream",
65
+ "text": [
66
+ "OpenAI API Key not set\n",
67
+ "Anthropic API Key not set (and this is optional)\n",
68
+ "Google API Key exists and begins AI\n",
69
+ "DeepSeek API Key not set (and this is optional)\n",
70
+ "Groq API Key not set (and this is optional)\n"
71
+ ]
72
+ }
73
+ ],
74
+ "source": [
75
+ "# Print the key prefixes to help with any debugging\n",
76
+ "\n",
77
+ "OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
78
+ "ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')\n",
79
+ "GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')\n",
80
+ "DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY')\n",
81
+ "GROQ_API_KEY = os.getenv('GROQ_API_KEY')\n",
82
+ "\n",
83
+ "if OPENAI_API_KEY:\n",
84
+ " print(f\"OpenAI API Key exists and begins {OPENAI_API_KEY[:8]}\")\n",
85
+ "else:\n",
86
+ " print(\"OpenAI API Key not set\")\n",
87
+ " \n",
88
+ "if ANTHROPIC_API_KEY:\n",
89
+ " print(f\"Anthropic API Key exists and begins {ANTHROPIC_API_KEY[:7]}\")\n",
90
+ "else:\n",
91
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
92
+ "\n",
93
+ "if GOOGLE_API_KEY:\n",
94
+ " print(f\"Google API Key exists and begins {GOOGLE_API_KEY[:2]}\")\n",
95
+ "else:\n",
96
+ " print(\"Google API Key not set (and this is optional)\")\n",
97
+ "\n",
98
+ "if DEEPSEEK_API_KEY:\n",
99
+ " print(f\"DeepSeek API Key exists and begins {DEEPSEEK_API_KEY[:3]}\")\n",
100
+ "else:\n",
101
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
102
+ "\n",
103
+ "if GROQ_API_KEY:\n",
104
+ " print(f\"Groq API Key exists and begins {GROQ_API_KEY[:4]}\")\n",
105
+ "else:\n",
106
+ " print(\"Groq API Key not set (and this is optional)\")"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 4,
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
116
+ "request += \"Answer only with the question, no explanation.\"\n",
117
+ "messages = [{\"role\": \"user\", \"content\": request}]"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": 5,
123
+ "metadata": {},
124
+ "outputs": [
125
+ {
126
+ "name": "stdout",
127
+ "output_type": "stream",
128
+ "text": [
129
+ "[{'role': 'user', 'content': 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. Answer only with the question, no explanation.'}]\n"
130
+ ]
131
+ }
132
+ ],
133
+ "source": [
134
+ "print(messages)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": 6,
140
+ "metadata": {},
141
+ "outputs": [
142
+ {
143
+ "ename": "OpenAIError",
144
+ "evalue": "The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable",
145
+ "output_type": "error",
146
+ "traceback": [
147
+ "\u001b[31m---------------------------------------------------------------------------\u001b[39m",
148
+ "\u001b[31mOpenAIError\u001b[39m Traceback (most recent call last)",
149
+ "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[6]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m openai = \u001b[43mAsyncOpenAI\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2\u001b[39m response = \u001b[38;5;28;01mawait\u001b[39;00m openai.chat.completions.create(\n\u001b[32m 3\u001b[39m model=\u001b[33m\"\u001b[39m\u001b[33mgpt-4o-mini\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 4\u001b[39m messages=messages,\n\u001b[32m 5\u001b[39m )\n\u001b[32m 6\u001b[39m question = response.choices[\u001b[32m0\u001b[39m].message.content\n",
150
+ "\u001b[36mFile \u001b[39m\u001b[32md:\\projectsUdemy\\agents\\.venv\\Lib\\site-packages\\openai\\_client.py:480\u001b[39m, in \u001b[36mAsyncOpenAI.__init__\u001b[39m\u001b[34m(self, api_key, organization, project, webhook_secret, base_url, websocket_base_url, timeout, max_retries, default_headers, default_query, http_client, _strict_response_validation)\u001b[39m\n\u001b[32m 478\u001b[39m api_key = os.environ.get(\u001b[33m\"\u001b[39m\u001b[33mOPENAI_API_KEY\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 479\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m api_key \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m480\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m OpenAIError(\n\u001b[32m 481\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mThe api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 482\u001b[39m )\n\u001b[32m 483\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(api_key):\n\u001b[32m 484\u001b[39m \u001b[38;5;28mself\u001b[39m.api_key = \u001b[33m\"\u001b[39m\u001b[33m\"\u001b[39m\n",
151
+ "\u001b[31mOpenAIError\u001b[39m: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable"
152
+ ]
153
+ }
154
+ ],
155
+ "source": [
156
+ "openai = AsyncOpenAI()\n",
157
+ "response = await openai.chat.completions.create(\n",
158
+ " model=\"gpt-4o-mini\",\n",
159
+ " messages=messages,\n",
160
+ ")\n",
161
+ "question = response.choices[0].message.content\n",
162
+ "print(question)\n"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "# Define Pydantic model for storing LLM results\n",
172
+ "class LLMResult(BaseModel):\n",
173
+ " model: str\n",
174
+ " answer: str\n"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "metadata": {},
181
+ "outputs": [],
182
+ "source": [
183
+ "results: list[LLMResult] = []\n",
184
+ "messages = [{\"role\": \"user\", \"content\": question}]"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# The API we know well\n",
194
+ "async def openai_answer() -> None:\n",
195
+ "\n",
196
+ " if OPENAI_API_KEY is None:\n",
197
+ " return None\n",
198
+ " \n",
199
+ " print(\"OpenAI starting!\")\n",
200
+ " model_name = \"gpt-4o-mini\"\n",
201
+ "\n",
202
+ " try:\n",
203
+ " response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
204
+ " answer = response.choices[0].message.content\n",
205
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
206
+ " except Exception as e:\n",
207
+ " print(f\"Error with OpenAI: {e}\")\n",
208
+ " return None\n",
209
+ "\n",
210
+ " print(\"OpenAI done!\")"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
220
+ "\n",
221
+ "async def anthropic_answer() -> None:\n",
222
+ "\n",
223
+ " if ANTHROPIC_API_KEY is None:\n",
224
+ " return None\n",
225
+ " \n",
226
+ " print(\"Anthropic starting!\")\n",
227
+ " model_name = \"claude-3-7-sonnet-latest\"\n",
228
+ "\n",
229
+ " claude = AsyncAnthropic()\n",
230
+ " try:\n",
231
+ " response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
232
+ " answer = response.content[0].text\n",
233
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
234
+ " except Exception as e:\n",
235
+ " print(f\"Error with Anthropic: {e}\")\n",
236
+ " return None\n",
237
+ "\n",
238
+ " print(\"Anthropic done!\")"
239
+ ]
240
+ },
241
+ {
242
+ "cell_type": "code",
243
+ "execution_count": 7,
244
+ "metadata": {},
245
+ "outputs": [],
246
+ "source": [
247
+ "async def google_answer() -> None:\n",
248
+ "\n",
249
+ " if GOOGLE_API_KEY is None:\n",
250
+ " return None\n",
251
+ " \n",
252
+ " print(\"Google starting!\")\n",
253
+ " model_name = \"gemini-2.0-flash\"\n",
254
+ "\n",
255
+ " gemini = AsyncOpenAI(api_key=GOOGLE_API_KEY, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
256
+ " try:\n",
257
+ " response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
258
+ " answer = response.choices[0].message.content\n",
259
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
260
+ " except Exception as e:\n",
261
+ " print(f\"Error with Google: {e}\")\n",
262
+ " return None\n",
263
+ "\n",
264
+ " print(\"Google done!\")"
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": null,
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": [
273
+ "async def deepseek_answer() -> None:\n",
274
+ "\n",
275
+ " if DEEPSEEK_API_KEY is None:\n",
276
+ " return None\n",
277
+ " \n",
278
+ " print(\"DeepSeek starting!\")\n",
279
+ " model_name = \"deepseek-chat\"\n",
280
+ "\n",
281
+ " deepseek = AsyncOpenAI(api_key=DEEPSEEK_API_KEY, base_url=\"https://api.deepseek.com/v1\")\n",
282
+ " try:\n",
283
+ " response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
284
+ " answer = response.choices[0].message.content\n",
285
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
286
+ " except Exception as e:\n",
287
+ " print(f\"Error with DeepSeek: {e}\")\n",
288
+ " return None\n",
289
+ "\n",
290
+ " print(\"DeepSeek done!\")"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "async def groq_answer() -> None:\n",
300
+ "\n",
301
+ " if GROQ_API_KEY is None:\n",
302
+ " return None\n",
303
+ " \n",
304
+ " print(\"Groq starting!\")\n",
305
+ " model_name = \"llama-3.3-70b-versatile\"\n",
306
+ "\n",
307
+ " groq = AsyncOpenAI(api_key=GROQ_API_KEY, base_url=\"https://api.groq.com/openai/v1\")\n",
308
+ " try:\n",
309
+ " response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
310
+ " answer = response.choices[0].message.content\n",
311
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
312
+ " except Exception as e:\n",
313
+ " print(f\"Error with Groq: {e}\")\n",
314
+ " return None\n",
315
+ "\n",
316
+ " print(\"Groq done!\")\n"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "markdown",
321
+ "metadata": {},
322
+ "source": [
323
+ "## For the next cell, we will use Ollama\n",
324
+ "\n",
325
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
326
+ "and runs models locally using high performance C++ code.\n",
327
+ "\n",
328
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
329
+ "\n",
330
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
331
+ "\n",
332
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
333
+ "\n",
334
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
335
+ "\n",
336
+ "`ollama pull <model_name>` downloads a model locally \n",
337
+ "`ollama ls` lists all the models you've downloaded \n",
338
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
339
+ ]
340
+ },
341
+ {
342
+ "cell_type": "markdown",
343
+ "metadata": {},
344
+ "source": [
345
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
346
+ " <tr>\n",
347
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
348
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
349
+ " </td>\n",
350
+ " <td>\n",
351
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
352
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
353
+ " </span>\n",
354
+ " </td>\n",
355
+ " </tr>\n",
356
+ "</table>"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": null,
362
+ "metadata": {},
363
+ "outputs": [],
364
+ "source": [
365
+ "!ollama pull llama3.2"
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "execution_count": null,
371
+ "metadata": {},
372
+ "outputs": [],
373
+ "source": [
374
+ "async def ollama_answer() -> None:\n",
375
+ " model_name = \"llama3.2\"\n",
376
+ "\n",
377
+ " print(\"Ollama starting!\")\n",
378
+ " ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
379
+ " try:\n",
380
+ " response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
381
+ " answer = response.choices[0].message.content\n",
382
+ " results.append(LLMResult(model=model_name, answer=answer))\n",
383
+ " except Exception as e:\n",
384
+ " print(f\"Error with Ollama: {e}\")\n",
385
+ " return None\n",
386
+ "\n",
387
+ " print(\"Ollama done!\") "
388
+ ]
389
+ },
390
+ {
391
+ "cell_type": "code",
392
+ "execution_count": null,
393
+ "metadata": {},
394
+ "outputs": [],
395
+ "source": [
396
+ "async def gather_answers():\n",
397
+ " tasks = [\n",
398
+ " openai_answer(),\n",
399
+ " anthropic_answer(),\n",
400
+ " google_answer(),\n",
401
+ " deepseek_answer(),\n",
402
+ " groq_answer(),\n",
403
+ " ollama_answer()\n",
404
+ " ]\n",
405
+ " await asyncio.gather(*tasks)\n",
406
+ "\n",
407
+ "await gather_answers()"
408
+ ]
409
+ },
410
+ {
411
+ "cell_type": "code",
412
+ "execution_count": null,
413
+ "metadata": {},
414
+ "outputs": [],
415
+ "source": [
416
+ "together = \"\"\n",
417
+ "competitors = []\n",
418
+ "answers = []\n",
419
+ "\n",
420
+ "for res in results:\n",
421
+ " competitor = res.model\n",
422
+ " answer = res.answer\n",
423
+ " competitors.append(competitor)\n",
424
+ " answers.append(answer)\n",
425
+ " together += f\"# Response from competitor {competitor}\\n\\n\"\n",
426
+ " together += answer + \"\\n\\n\"\n",
427
+ "\n",
428
+ "print(f\"Number of competitors: {len(results)}\")\n",
429
+ "print(together)\n"
430
+ ]
431
+ },
432
+ {
433
+ "cell_type": "code",
434
+ "execution_count": null,
435
+ "metadata": {},
436
+ "outputs": [],
437
+ "source": [
438
+ "judge = f\"\"\"You are judging a competition between {len(results)} competitors.\n",
439
+ "Each model has been given this question:\n",
440
+ "\n",
441
+ "{question}\n",
442
+ "\n",
443
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
444
+ "Respond with JSON, and only JSON, with the following format:\n",
445
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...],\n",
446
+ "\"explanations\": [\"explanation for each rank\", \"explanation for each rank\", \"explanation for each rank\", ...]}}\n",
447
+ "\n",
448
+ "Here are the responses from each competitor:\n",
449
+ "\n",
450
+ "{together}\n",
451
+ "\n",
452
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
453
+ ]
454
+ },
455
+ {
456
+ "cell_type": "code",
457
+ "execution_count": null,
458
+ "metadata": {},
459
+ "outputs": [],
460
+ "source": [
461
+ "print(judge)"
462
+ ]
463
+ },
464
+ {
465
+ "cell_type": "code",
466
+ "execution_count": null,
467
+ "metadata": {},
468
+ "outputs": [],
469
+ "source": [
470
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
471
+ ]
472
+ },
473
+ {
474
+ "cell_type": "code",
475
+ "execution_count": null,
476
+ "metadata": {},
477
+ "outputs": [],
478
+ "source": [
479
+ "# Judgement time!\n",
480
+ "\n",
481
+ "openai = OpenAI()\n",
482
+ "response = openai.chat.completions.create(\n",
483
+ " model=\"o3-mini\",\n",
484
+ " messages=judge_messages,\n",
485
+ ")\n",
486
+ "judgement = response.choices[0].message.content\n",
487
+ "print(judgement)\n"
488
+ ]
489
+ },
490
+ {
491
+ "cell_type": "code",
492
+ "execution_count": null,
493
+ "metadata": {},
494
+ "outputs": [],
495
+ "source": [
496
+ "# OK let's turn this into results!\n",
497
+ "\n",
498
+ "results_dict = json.loads(judgement)\n",
499
+ "ranks = results_dict[\"results\"]\n",
500
+ "explanations = results_dict[\"explanations\"]\n",
501
+ "for index, comp in enumerate(ranks):\n",
502
+ " print(f\"Rank {index+1}: {comp} \\n\\t{explanations[index]}\")"
503
+ ]
504
+ },
505
+ {
506
+ "cell_type": "code",
507
+ "execution_count": null,
508
+ "metadata": {},
509
+ "outputs": [],
510
+ "source": []
511
+ }
512
+ ],
513
+ "metadata": {
514
+ "kernelspec": {
515
+ "display_name": ".venv",
516
+ "language": "python",
517
+ "name": "python3"
518
+ },
519
+ "language_info": {
520
+ "codemirror_mode": {
521
+ "name": "ipython",
522
+ "version": 3
523
+ },
524
+ "file_extension": ".py",
525
+ "mimetype": "text/x-python",
526
+ "name": "python",
527
+ "nbconvert_exporter": "python",
528
+ "pygments_lexer": "ipython3",
529
+ "version": "3.12.3"
530
+ }
531
+ },
532
+ "nbformat": 4,
533
+ "nbformat_minor": 2
534
+ }
community_contributions/2_lab2_doclee99_gpt5_improves_gemini.25flash.ipynb ADDED
@@ -0,0 +1,620 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "\n",
70
+ "if openai_api_key:\n",
71
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
72
+ "else:\n",
73
+ " print(\"OpenAI API Key not set\")\n",
74
+ " \n",
75
+ "if anthropic_api_key:\n",
76
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
77
+ "else:\n",
78
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
79
+ "\n",
80
+ "if google_api_key:\n",
81
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
82
+ "else:\n",
83
+ " print(\"Google API Key not set (and this is optional)\")\n",
84
+ "\n",
85
+ "if deepseek_api_key:\n",
86
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
87
+ "else:\n",
88
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
89
+ "\n",
90
+ "if groq_api_key:\n",
91
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
92
+ "else:\n",
93
+ " print(\"Groq API Key not set (and this is optional)\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
103
+ "request += \"Answer only with the question, no explanation.\"\n",
104
+ "messages = [{\"role\": \"user\", \"content\": request}]"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "messages"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "openai = OpenAI()\n",
123
+ "response = openai.chat.completions.create(\n",
124
+ " model=\"gpt-4o-mini\",\n",
125
+ " messages=messages,\n",
126
+ ")\n",
127
+ "question = response.choices[0].message.content\n",
128
+ "print(question)\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "competitors = []\n",
138
+ "answers = []\n",
139
+ "messages = [{\"role\": \"user\", \"content\": question}]"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# The API we know well\n",
149
+ "\n",
150
+ "model_name = \"gpt-4o-mini\"\n",
151
+ "\n",
152
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "\n",
155
+ "display(Markdown(answer))\n",
156
+ "competitors.append(model_name)\n",
157
+ "answers.append(answer)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
167
+ "\n",
168
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
169
+ "\n",
170
+ "claude = Anthropic()\n",
171
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
172
+ "answer = response.content[0].text\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "competitors.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
186
+ "model_name = \"gemini-2.0-flash\"\n",
187
+ "\n",
188
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "competitors.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
203
+ "model_name = \"deepseek-chat\"\n",
204
+ "\n",
205
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "competitors.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
220
+ "model_name = \"llama-3.3-70b-versatile\"\n",
221
+ "\n",
222
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
223
+ "answer = response.choices[0].message.content\n",
224
+ "\n",
225
+ "display(Markdown(answer))\n",
226
+ "competitors.append(model_name)\n",
227
+ "answers.append(answer)\n"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "## For the next cell, we will use Ollama\n",
235
+ "\n",
236
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
237
+ "and runs models locally using high performance C++ code.\n",
238
+ "\n",
239
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
240
+ "\n",
241
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
242
+ "\n",
243
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
244
+ "\n",
245
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
246
+ "\n",
247
+ "`ollama pull <model_name>` downloads a model locally \n",
248
+ "`ollama ls` lists all the models you've downloaded \n",
249
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
257
+ " <tr>\n",
258
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
259
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
260
+ " </td>\n",
261
+ " <td>\n",
262
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
263
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
264
+ " </span>\n",
265
+ " </td>\n",
266
+ " </tr>\n",
267
+ "</table>"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "!ollama pull llama3.2"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
286
+ "model_name = \"llama3.2\"\n",
287
+ "\n",
288
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
289
+ "answer = response.choices[0].message.content\n",
290
+ "\n",
291
+ "display(Markdown(answer))\n",
292
+ "competitors.append(model_name)\n",
293
+ "answers.append(answer)"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": null,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "# So where are we?\n",
303
+ "\n",
304
+ "print(competitors)\n",
305
+ "print(answers)\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "# It's nice to know how to use \"zip\"\n",
315
+ "for competitor, answer in zip(competitors, answers):\n",
316
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# Let's bring this together - note the use of \"enumerate\"\n",
326
+ "\n",
327
+ "together = \"\"\n",
328
+ "for index, answer in enumerate(answers):\n",
329
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
330
+ " together += answer + \"\\n\\n\""
331
+ ]
332
+ },
333
+ {
334
+ "cell_type": "code",
335
+ "execution_count": null,
336
+ "metadata": {},
337
+ "outputs": [],
338
+ "source": [
339
+ "# print(together)\n",
340
+ "display(Markdown(together))"
341
+ ]
342
+ },
343
+ {
344
+ "cell_type": "code",
345
+ "execution_count": null,
346
+ "metadata": {},
347
+ "outputs": [],
348
+ "source": [
349
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
350
+ "Each model has been given this question:\n",
351
+ "\n",
352
+ "{question}\n",
353
+ "\n",
354
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
355
+ "Respond with JSON, and only JSON, with the following format:\n",
356
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
357
+ "\n",
358
+ "Here are the responses from each competitor:\n",
359
+ "\n",
360
+ "{together}\n",
361
+ "\n",
362
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
363
+ ]
364
+ },
365
+ {
366
+ "cell_type": "code",
367
+ "execution_count": null,
368
+ "metadata": {},
369
+ "outputs": [],
370
+ "source": [
371
+ "print(judge)"
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "code",
376
+ "execution_count": null,
377
+ "metadata": {},
378
+ "outputs": [],
379
+ "source": [
380
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
381
+ ]
382
+ },
383
+ {
384
+ "cell_type": "code",
385
+ "execution_count": null,
386
+ "metadata": {},
387
+ "outputs": [],
388
+ "source": [
389
+ "# Judgement time!\n",
390
+ "\n",
391
+ "openai = OpenAI()\n",
392
+ "response = openai.chat.completions.create(\n",
393
+ " model=\"o3-mini\",\n",
394
+ " messages=judge_messages,\n",
395
+ ")\n",
396
+ "results = response.choices[0].message.content\n",
397
+ "print(results)\n"
398
+ ]
399
+ },
400
+ {
401
+ "cell_type": "code",
402
+ "execution_count": null,
403
+ "metadata": {},
404
+ "outputs": [],
405
+ "source": [
406
+ "# OK let's turn this into results!\n",
407
+ "\n",
408
+ "results_dict = json.loads(results)\n",
409
+ "ranks = results_dict[\"results\"]\n",
410
+ "for index, result in enumerate(ranks):\n",
411
+ " competitor = competitors[int(result)-1]\n",
412
+ " print(f\"Rank {index+1}: {competitor}\")"
413
+ ]
414
+ },
415
+ {
416
+ "cell_type": "markdown",
417
+ "metadata": {},
418
+ "source": [
419
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
420
+ " <tr>\n",
421
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
422
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
423
+ " </td>\n",
424
+ " <td>\n",
425
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
426
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
427
+ " </span>\n",
428
+ " </td>\n",
429
+ " </tr>\n",
430
+ "</table>"
431
+ ]
432
+ },
433
+ {
434
+ "cell_type": "code",
435
+ "execution_count": null,
436
+ "metadata": {},
437
+ "outputs": [],
438
+ "source": [
439
+ "# Implement Evaluator-Optimizer workflow design pattern - An Optimizer LLM analyzes the response of the top-ranked competitor\n",
440
+ "# and creates a system prompt designed to improve the response. The system prompot is then\n",
441
+ "# sent back to the top-ranked competitor to deliver a new response. \n",
442
+ "# The optimizer LLM then compares the new response to the old response and surmises\n",
443
+ "# what aspects of the system prompt may be responsible for the differences in the responses.\n",
444
+ "\n",
445
+ "\n",
446
+ "\n",
447
+ "# Get the top competitor (model name) and their response\n",
448
+ "top_rank_index = int(ranks[0]) - 1\n",
449
+ "top_competitor_name = competitors[top_rank_index]\n",
450
+ "top_competitor_response = answers[top_rank_index]\n",
451
+ "top_competitor_prompt = question\n",
452
+ "\n",
453
+ "# Compose a system prompt for GPT-5 to act as an expert evaluator of question quality and answer depth\n",
454
+ "system_prompt = (\n",
455
+ " \"You are an expert evaluator of LLM prompt quality and answer depth. \"\n",
456
+ " \"Your task is to analyze the comprehensiveness and depth of thought in the following answer, \"\n",
457
+ " \"which was generated by a language model in response to a challenging question. \"\n",
458
+ " \"Consider aspects such as completeness, insight, reasoning, and nuance. \"\n",
459
+ " \"Provide a detailed analysis of the answer's strengths and weaknesses and store in the 'markdown_analysis' property.\"\n",
460
+ " \"Generate a suggested system prompt that will improve the answer and store in the 'system_prompt' property.\"\n",
461
+ ")\n",
462
+ "\n",
463
+ "# Compose the user prompt for GPT-5\n",
464
+ "user_prompt = (\n",
465
+ " f\"Prompt:\\n{top_competitor_prompt}\\n\\n\"\n",
466
+ " f\"Answer:\\n{top_competitor_response}\\n\\n\"\n",
467
+ " \"Please analyze the comprehensiveness and depth of thought of the above answer. \"\n",
468
+ " \"Discuss its strengths and weaknesses in detail.\"\n",
469
+ ")\n",
470
+ "\n",
471
+ "# Call GPT-5 to perform the evaluation\n",
472
+ "gpt5 = OpenAI()\n",
473
+ "\n",
474
+ "# Define the tool schema\n",
475
+ "tools = [\n",
476
+ " {\n",
477
+ " \"type\": \"function\",\n",
478
+ " \"function\": {\n",
479
+ " \"name\": \"markdown_and_structured_data\",\n",
480
+ " \"description\": \"Provide both markdown analysis and structured data\",\n",
481
+ " \"parameters\": {\n",
482
+ " \"type\": \"object\",\n",
483
+ " \"properties\": {\n",
484
+ " \"markdown_analysis\": {\n",
485
+ " \"type\": \"string\",\n",
486
+ " \"description\": \"Detailed markdown analysis\"\n",
487
+ " },\n",
488
+ " \"system_prompt\": {\n",
489
+ " \"type\": \"string\"\n",
490
+ " }\n",
491
+ " },\n",
492
+ " \"required\": [\"markdown_analysis\", \"sentiment\", \"confidence\", \"key_phrases\"]\n",
493
+ " }\n",
494
+ " }\n",
495
+ " }\n",
496
+ "]\n",
497
+ "\n",
498
+ "gpt5_response = gpt5.chat.completions.create(\n",
499
+ " model=\"gpt-5\",\n",
500
+ " messages=[\n",
501
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
502
+ " {\"role\": \"user\", \"content\": user_prompt}\n",
503
+ " ],\n",
504
+ " tools=tools,\n",
505
+ " tool_choice={\"type\": \"function\", \"function\": {\"name\": \"markdown_and_structured_data\"}}\n",
506
+ ")\n",
507
+ "\n",
508
+ "tool_call = gpt5_response.choices[0].message.tool_calls[0]\n",
509
+ "arguments = json.loads(tool_call.function.arguments)\n",
510
+ "\n",
511
+ "markdown_analysis = arguments[\"markdown_analysis\"]\n",
512
+ "system_prompt = arguments[\"system_prompt\"]\n",
513
+ "\n",
514
+ "\n",
515
+ "\n",
516
+ "\n",
517
+ "# Display the evaluation\n",
518
+ "from IPython.display import Markdown, display\n",
519
+ "display(Markdown(\"### GPT-5 Evaluation of Top Competitor's Answer\"))\n",
520
+ "display(Markdown(f\"Top Competitor: {top_competitor_name}\"))\n",
521
+ "display(Markdown(markdown_analysis))\n",
522
+ "display(Markdown(\"### Suggested System Prompt\"))\n",
523
+ "display(Markdown(system_prompt))\n",
524
+ "\n",
525
+ "\n",
526
+ "# The top competitor was gemini-2.0-flash, so send the original question and suggested system prompt to generate a new response\n",
527
+ "# Send the system_prompt and original question to gemini-2.0-flash to generate a new answer\n",
528
+ "\n",
529
+ "gemini_response = gemini.chat.completions.create(\n",
530
+ " model=\"gemini-2.0-flash\",\n",
531
+ " messages=[\n",
532
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
533
+ " {\"role\": \"user\", \"content\": question}\n",
534
+ " ]\n",
535
+ ")\n",
536
+ "\n",
537
+ "new_answer = gemini_response.choices[0].message.content\n",
538
+ "\n",
539
+ "display(Markdown(\"### Gemini-2.0-Flash New Answer with Suggested System Prompt\"))\n",
540
+ "display(Markdown(new_answer))\n",
541
+ "\n",
542
+ "comparison_prompt = f\"\"\"You are an expert LLM evaluator. Compare the following two answers to the same question, where the only difference is that the second answer was generated using a system prompt suggested by you (GPT-5) after evaluating the first answer.\n",
543
+ "\n",
544
+ "Original Answer (from {top_competitor_name}):\n",
545
+ "{top_competitor_response}\n",
546
+ "\n",
547
+ "New Answer (from {top_competitor_name} with your system prompt):\n",
548
+ "{new_answer}\n",
549
+ "\n",
550
+ "System Prompt Used for New Answer:\n",
551
+ "{system_prompt}\n",
552
+ "\n",
553
+ "Please analyze:\n",
554
+ "- What are the key differences between the two answers?\n",
555
+ "- What aspects of the system prompt likely contributed to these differences?\n",
556
+ "- Did the system prompt improve the quality, accuracy, or style of the answer? How?\n",
557
+ "- Any remaining limitations or further suggestions.\n",
558
+ "\n",
559
+ "Provide a detailed, structured analysis.\n",
560
+ "\"\"\"\n",
561
+ "\n",
562
+ "gpt5_comparison_response = gpt5.chat.completions.create(\n",
563
+ " model=\"gpt-5\",\n",
564
+ " messages=[\n",
565
+ " {\"role\": \"system\", \"content\": \"You are an expert LLM evaluator.\"},\n",
566
+ " {\"role\": \"user\", \"content\": comparison_prompt}\n",
567
+ " ]\n",
568
+ ")\n",
569
+ "\n",
570
+ "comparison_analysis = gpt5_comparison_response.choices[0].message.content\n",
571
+ "\n",
572
+ "display(Markdown(\"### GPT-5 Analysis: Impact of System Prompt on Gemini-2.0-Flash's Answer\"))\n",
573
+ "display(Markdown(comparison_analysis))\n",
574
+ "\n",
575
+ "\n"
576
+ ]
577
+ },
578
+ {
579
+ "cell_type": "markdown",
580
+ "metadata": {},
581
+ "source": [
582
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
583
+ " <tr>\n",
584
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
585
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
586
+ " </td>\n",
587
+ " <td>\n",
588
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
589
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
590
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
591
+ " to business projects where accuracy is critical.\n",
592
+ " </span>\n",
593
+ " </td>\n",
594
+ " </tr>\n",
595
+ "</table>"
596
+ ]
597
+ }
598
+ ],
599
+ "metadata": {
600
+ "kernelspec": {
601
+ "display_name": ".venv",
602
+ "language": "python",
603
+ "name": "python3"
604
+ },
605
+ "language_info": {
606
+ "codemirror_mode": {
607
+ "name": "ipython",
608
+ "version": 3
609
+ },
610
+ "file_extension": ".py",
611
+ "mimetype": "text/x-python",
612
+ "name": "python",
613
+ "nbconvert_exporter": "python",
614
+ "pygments_lexer": "ipython3",
615
+ "version": "3.12.7"
616
+ }
617
+ },
618
+ "nbformat": 4,
619
+ "nbformat_minor": 2
620
+ }
community_contributions/2_lab2_evaluator_mars.ipynb ADDED
@@ -0,0 +1,677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "\n",
70
+ "if openai_api_key:\n",
71
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
72
+ "else:\n",
73
+ " print(\"OpenAI API Key not set\")\n",
74
+ " \n",
75
+ "if anthropic_api_key:\n",
76
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
77
+ "else:\n",
78
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
79
+ "\n",
80
+ "if google_api_key:\n",
81
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
82
+ "else:\n",
83
+ " print(\"Google API Key not set (and this is optional)\")\n",
84
+ "\n",
85
+ "if deepseek_api_key:\n",
86
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
87
+ "else:\n",
88
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
89
+ "\n",
90
+ "if groq_api_key:\n",
91
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
92
+ "else:\n",
93
+ " print(\"Groq API Key not set (and this is optional)\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
103
+ "request += \"Answer only with the question, no explanation.\"\n",
104
+ "messages = [{\"role\": \"user\", \"content\": request}]"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "messages"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "openai = OpenAI()\n",
123
+ "response = openai.chat.completions.create(\n",
124
+ " model=\"gpt-5-mini\",\n",
125
+ " messages=messages,\n",
126
+ ")\n",
127
+ "question = response.choices[0].message.content\n",
128
+ "print(question)\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "competitors = []\n",
138
+ "answers = []\n",
139
+ "messages = [{\"role\": \"user\", \"content\": question}]"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "markdown",
144
+ "metadata": {},
145
+ "source": [
146
+ "## Note - update since the videos\n",
147
+ "\n",
148
+ "I've updated the model names to use the latest models below, like GPT 5 and Claude Sonnet 4.5. It's worth noting that these models can be quite slow - like 1-2 minutes - but they do a great job! Feel free to switch them for faster models if you'd prefer, like the ones I use in the video."
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": null,
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "# The API we know well\n",
158
+ "# I've updated this with the latest model, but it can take some time because it likes to think!\n",
159
+ "# Replace the model with gpt-4.1-mini if you'd prefer not to wait 1-2 mins\n",
160
+ "\n",
161
+ "model_name = \"gpt-5-nano\"\n",
162
+ "\n",
163
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
164
+ "answer = response.choices[0].message.content\n",
165
+ "\n",
166
+ "display(Markdown(answer))\n",
167
+ "competitors.append(model_name)\n",
168
+ "answers.append(answer)"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": null,
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
178
+ "\n",
179
+ "model_name = \"claude-sonnet-4-5\"\n",
180
+ "\n",
181
+ "claude = Anthropic()\n",
182
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=5000)\n",
183
+ "answer = response.content[0].text\n",
184
+ "\n",
185
+ "display(Markdown(answer))\n",
186
+ "competitors.append(model_name)\n",
187
+ "answers.append(answer)"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": null,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
197
+ "model_name = \"gemini-2.5-flash\"\n",
198
+ "\n",
199
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
200
+ "answer = response.choices[0].message.content\n",
201
+ "\n",
202
+ "display(Markdown(answer))\n",
203
+ "competitors.append(model_name)\n",
204
+ "answers.append(answer)"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": null,
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
214
+ "model_name = \"deepseek-chat\"\n",
215
+ "\n",
216
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
217
+ "answer = response.choices[0].message.content\n",
218
+ "\n",
219
+ "display(Markdown(answer))\n",
220
+ "competitors.append(model_name)\n",
221
+ "answers.append(answer)"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "metadata": {},
228
+ "outputs": [],
229
+ "source": [
230
+ "# Updated with the latest Open Source model from OpenAI\n",
231
+ "\n",
232
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
233
+ "model_name = \"openai/gpt-oss-120b\"\n",
234
+ "\n",
235
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
236
+ "answer = response.choices[0].message.content\n",
237
+ "\n",
238
+ "display(Markdown(answer))\n",
239
+ "competitors.append(model_name)\n",
240
+ "answers.append(answer)\n"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "markdown",
245
+ "metadata": {},
246
+ "source": [
247
+ "## For the next cell, we will use Ollama\n",
248
+ "\n",
249
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
250
+ "and runs models locally using high performance C++ code.\n",
251
+ "\n",
252
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
253
+ "\n",
254
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
255
+ "\n",
256
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
257
+ "\n",
258
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
259
+ "\n",
260
+ "`ollama pull <model_name>` downloads a model locally \n",
261
+ "`ollama ls` lists all the models you've downloaded \n",
262
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "markdown",
267
+ "metadata": {},
268
+ "source": [
269
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
270
+ " <tr>\n",
271
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
272
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
273
+ " </td>\n",
274
+ " <td>\n",
275
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
276
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
277
+ " </span>\n",
278
+ " </td>\n",
279
+ " </tr>\n",
280
+ "</table>"
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": null,
286
+ "metadata": {},
287
+ "outputs": [],
288
+ "source": [
289
+ "!ollama pull llama3.2"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": null,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
299
+ "model_name = \"llama3.2\"\n",
300
+ "\n",
301
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
302
+ "answer = response.choices[0].message.content\n",
303
+ "\n",
304
+ "display(Markdown(answer))\n",
305
+ "competitors.append(model_name)\n",
306
+ "answers.append(answer)"
307
+ ]
308
+ },
309
+ {
310
+ "cell_type": "code",
311
+ "execution_count": null,
312
+ "metadata": {},
313
+ "outputs": [],
314
+ "source": [
315
+ "# So where are we?\n",
316
+ "\n",
317
+ "print(competitors)\n",
318
+ "print(answers)\n"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": null,
324
+ "metadata": {},
325
+ "outputs": [],
326
+ "source": [
327
+ "# It's nice to know how to use \"zip\"\n",
328
+ "for competitor, answer in zip(competitors, answers):\n",
329
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
330
+ ]
331
+ },
332
+ {
333
+ "cell_type": "code",
334
+ "execution_count": null,
335
+ "metadata": {},
336
+ "outputs": [],
337
+ "source": [
338
+ "# Let's bring this together - note the use of \"enumerate\"\n",
339
+ "\n",
340
+ "together = \"\"\n",
341
+ "for index, answer in enumerate(answers):\n",
342
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
343
+ " together += answer + \"\\n\\n\""
344
+ ]
345
+ },
346
+ {
347
+ "cell_type": "code",
348
+ "execution_count": null,
349
+ "metadata": {},
350
+ "outputs": [],
351
+ "source": [
352
+ "print(together)"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "markdown",
357
+ "metadata": {},
358
+ "source": []
359
+ },
360
+ {
361
+ "cell_type": "code",
362
+ "execution_count": null,
363
+ "metadata": {},
364
+ "outputs": [],
365
+ "source": [
366
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
367
+ "Each model has been given this question:\n",
368
+ "\n",
369
+ "{question}\n",
370
+ "\n",
371
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
372
+ "Respond with JSON, and only JSON, with the following format:\n",
373
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
374
+ "\n",
375
+ "Here are the responses from each competitor:\n",
376
+ "\n",
377
+ "{together}\n",
378
+ "\n",
379
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "code",
384
+ "execution_count": null,
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": [
388
+ "print(judge)"
389
+ ]
390
+ },
391
+ {
392
+ "cell_type": "code",
393
+ "execution_count": null,
394
+ "metadata": {},
395
+ "outputs": [],
396
+ "source": [
397
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
398
+ ]
399
+ },
400
+ {
401
+ "cell_type": "code",
402
+ "execution_count": null,
403
+ "metadata": {},
404
+ "outputs": [],
405
+ "source": [
406
+ "# Judgement time!\n",
407
+ "\n",
408
+ "openai = OpenAI()\n",
409
+ "response = openai.chat.completions.create(\n",
410
+ " model=\"gpt-5-mini\",\n",
411
+ " messages=judge_messages,\n",
412
+ ")\n",
413
+ "results = response.choices[0].message.content\n",
414
+ "print(results)\n"
415
+ ]
416
+ },
417
+ {
418
+ "cell_type": "code",
419
+ "execution_count": null,
420
+ "metadata": {},
421
+ "outputs": [],
422
+ "source": [
423
+ "# OK let's turn this into results!\n",
424
+ "\n",
425
+ "results_dict = json.loads(results)\n",
426
+ "ranks = results_dict[\"results\"]\n",
427
+ "for index, result in enumerate(ranks):\n",
428
+ " competitor = competitors[int(result)-1]\n",
429
+ " print(f\"Rank {index+1}: {competitor}\")"
430
+ ]
431
+ },
432
+ {
433
+ "cell_type": "code",
434
+ "execution_count": null,
435
+ "metadata": {},
436
+ "outputs": [],
437
+ "source": [
438
+ "# Judgement time! from Claude\n",
439
+ "\n",
440
+ "claude = Anthropic()\n",
441
+ "response = claude.messages.create(model=\"claude-sonnet-4-5\", messages=judge_messages, max_tokens=5000)\n",
442
+ "results_claude = response.content[0].text\n",
443
+ "\n",
444
+ "print(results_claude)\n",
445
+ "\n",
446
+ "results_claude_tab = json.loads(results_claude)\n",
447
+ "ranks = results_claude_tab[\"results\"]\n",
448
+ "for index, result in enumerate(ranks):\n",
449
+ " competitor = competitors[int(result)-1]\n",
450
+ " print(f\"Rank {index+1}: {competitor}\")\n"
451
+ ]
452
+ },
453
+ {
454
+ "cell_type": "code",
455
+ "execution_count": null,
456
+ "metadata": {},
457
+ "outputs": [],
458
+ "source": [
459
+ "# Judgement time! from Gemini\n",
460
+ "\n",
461
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
462
+ "response = gemini.chat.completions.create(\n",
463
+ " model=\"gemini-2.5-flash\",\n",
464
+ " messages=judge_messages,\n",
465
+ ")\n",
466
+ "results_gemini = response.choices[0].message.content\n",
467
+ "print(results_gemini)\n",
468
+ "\n",
469
+ "results_gemini_tab = json.loads(results_gemini)\n",
470
+ "ranks = results_gemini_tab[\"results\"]\n",
471
+ "for index, result in enumerate(ranks):\n",
472
+ " competitor = competitors[int(result)-1]\n",
473
+ " print(f\"Rank {index+1}: {competitor}\")"
474
+ ]
475
+ },
476
+ {
477
+ "cell_type": "code",
478
+ "execution_count": null,
479
+ "metadata": {},
480
+ "outputs": [],
481
+ "source": [
482
+ "# Judgement time! from Deepseek\n",
483
+ "\n",
484
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
485
+ "response = deepseek.chat.completions.create(\n",
486
+ " model=\"deepseek-chat\",\n",
487
+ " messages=judge_messages,\n",
488
+ ")\n",
489
+ "results_deepseek = response.choices[0].message.content\n",
490
+ "print(results_deepseek)\n",
491
+ "\n",
492
+ "results_deepseek_tab = json.loads(results_deepseek)\n",
493
+ "ranks = results_deepseek_tab[\"results\"]\n",
494
+ "for index, result in enumerate(ranks):\n",
495
+ " competitor = competitors[int(result)-1]\n",
496
+ " print(f\"Rank {index+1}: {competitor}\")"
497
+ ]
498
+ },
499
+ {
500
+ "cell_type": "code",
501
+ "execution_count": null,
502
+ "metadata": {},
503
+ "outputs": [],
504
+ "source": [
505
+ "# Judgement time! from Groq did not work as tokens per minute requested exceeded limit (Requested ~27K, Limit 8K)\n",
506
+ "# Entire section commented out.\n",
507
+ "\n",
508
+ "#groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
509
+ "#response = groq.chat.completions.create(\n",
510
+ "# model=\"openai/gpt-oss-120b\",\n",
511
+ "# messages=judge_messages,\n",
512
+ "#)\n",
513
+ "#results_groq = response.choices[0].message.content\n",
514
+ "#print(results_groq)\n",
515
+ "\n",
516
+ "#results_groq_tab = json.loads(results_groq)\n",
517
+ "#ranks = results_groq_tab[\"results\"]\n",
518
+ "#for index, result in enumerate(ranks):\n",
519
+ "# competitor = competitors[int(result)-1]\n",
520
+ "# print(f\"Rank {index+1}: {competitor}\")"
521
+ ]
522
+ },
523
+ {
524
+ "cell_type": "code",
525
+ "execution_count": null,
526
+ "metadata": {},
527
+ "outputs": [],
528
+ "source": [
529
+ "import json\n",
530
+ "from openai import OpenAI\n",
531
+ "\n",
532
+ "#Store each model's rankings\n",
533
+ "rankings = {\n",
534
+ " \"openai-gpt-5-mini\": [\"claude-sonnet-4-5\", \"openai/gpt-oss-120b\", \"gpt-5-nano\", \"gemini-2.5-flash\", \"deepseek-chat\", \"llama3.2\"],\n",
535
+ " \"claude-sonnet-4-5\": [\"gpt-5-nano\", \"claude-sonnet-4-5\", \"openai/gpt-oss-120b\", \"deepseek-chat\", \"gemini-2.5-flash\", \"llama3.2\"],\n",
536
+ " \"gemini-2.5-flash\": [\"openai/gpt-oss-120b\", \"gemini-2.5-flash\", \"gpt-5-nano\", \"deepseek-chat\", \"claude-sonnet-4-5\", \"llama3.2\"],\n",
537
+ " \"deepseek-chat\": [\"openai/gpt-oss-120b\", \"gemini-2.5-flash\", \"gpt-5-nano\", \"deepseek-chat\", \"claude-sonnet-4-5\", \"llama3.2\"]\n",
538
+ "}\n"
539
+ ]
540
+ },
541
+ {
542
+ "cell_type": "code",
543
+ "execution_count": null,
544
+ "metadata": {},
545
+ "outputs": [],
546
+ "source": [
547
+ "#Compute average rank per model\n",
548
+ "scores = {}\n",
549
+ "for model_name in rankings[list(rankings.keys())[0]]: # iterate over unique models\n",
550
+ " total_rank = 0\n",
551
+ " for judge, ranks in rankings.items():\n",
552
+ " total_rank += ranks.index(model_name) + 1 # ranks start at 1\n",
553
+ " scores[model_name] = total_rank / len(rankings)"
554
+ ]
555
+ },
556
+ {
557
+ "cell_type": "code",
558
+ "execution_count": null,
559
+ "metadata": {},
560
+ "outputs": [],
561
+ "source": [
562
+ "#Sort by average rank\n",
563
+ "sorted_scores = sorted(scores.items(), key=lambda x: x[1])\n",
564
+ "\n",
565
+ "print(\"\\nπŸ“Š Average Rank Results:\")\n",
566
+ "for i, (model, avg_rank) in enumerate(sorted_scores, 1):\n",
567
+ " print(f\"{i}. {model} β€” Average Rank: {avg_rank:.2f}\")"
568
+ ]
569
+ },
570
+ {
571
+ "cell_type": "code",
572
+ "execution_count": null,
573
+ "metadata": {},
574
+ "outputs": [],
575
+ "source": [
576
+ "#Prepare data for LLM evaluation\n",
577
+ "summary_prompt = f\"\"\"\n",
578
+ "We collected ranking data from multiple LLMs judging each other. \n",
579
+ "Here are the average ranks (lower is better):\n",
580
+ "\n",
581
+ "{json.dumps(scores, indent=2)}\n",
582
+ "\n",
583
+ "Please:\n",
584
+ "1. Provide a fairness-adjusted score (1–10) for each model.\n",
585
+ "2. Identify which model appears most consistent or robust across judges.\n",
586
+ "3. Summarize in 3 concise bullet points why the top model stands out.\n",
587
+ "\"\"\""
588
+ ]
589
+ },
590
+ {
591
+ "cell_type": "code",
592
+ "execution_count": null,
593
+ "metadata": {},
594
+ "outputs": [],
595
+ "source": [
596
+ "# Send to an Chat GPT-5 for reasoning\n",
597
+ "openai = OpenAI()\n",
598
+ "response = openai.chat.completions.create(\n",
599
+ " model=\"gpt-5-mini\",\n",
600
+ " messages=[\n",
601
+ " {\"role\": \"system\", \"content\": \"You are a neutral AI judge analyzing LLM ranking consistency.\"},\n",
602
+ " {\"role\": \"user\", \"content\": summary_prompt}\n",
603
+ " ])"
604
+ ]
605
+ },
606
+ {
607
+ "cell_type": "code",
608
+ "execution_count": null,
609
+ "metadata": {},
610
+ "outputs": [],
611
+ "source": [
612
+ "#Display the analysis\n",
613
+ "print(\"\\nπŸ€– LLM Evaluation Summary:\\n\")\n",
614
+ "print(response.choices[0].message.content)"
615
+ ]
616
+ },
617
+ {
618
+ "cell_type": "markdown",
619
+ "metadata": {},
620
+ "source": [
621
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
622
+ " <tr>\n",
623
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
624
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
625
+ " </td>\n",
626
+ " <td>\n",
627
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
628
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
629
+ " </span>\n",
630
+ " </td>\n",
631
+ " </tr>\n",
632
+ "</table>"
633
+ ]
634
+ },
635
+ {
636
+ "cell_type": "markdown",
637
+ "metadata": {},
638
+ "source": [
639
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
640
+ " <tr>\n",
641
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
642
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
643
+ " </td>\n",
644
+ " <td>\n",
645
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
646
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
647
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
648
+ " to business projects where accuracy is critical.\n",
649
+ " </span>\n",
650
+ " </td>\n",
651
+ " </tr>\n",
652
+ "</table>"
653
+ ]
654
+ }
655
+ ],
656
+ "metadata": {
657
+ "kernelspec": {
658
+ "display_name": ".venv",
659
+ "language": "python",
660
+ "name": "python3"
661
+ },
662
+ "language_info": {
663
+ "codemirror_mode": {
664
+ "name": "ipython",
665
+ "version": 3
666
+ },
667
+ "file_extension": ".py",
668
+ "mimetype": "text/x-python",
669
+ "name": "python",
670
+ "nbconvert_exporter": "python",
671
+ "pygments_lexer": "ipython3",
672
+ "version": "3.12.12"
673
+ }
674
+ },
675
+ "nbformat": 4,
676
+ "nbformat_minor": 2
677
+ }
community_contributions/2_lab2_exercise.ipynb ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# From Judging to Synthesizing β€” Evolving Multi-Agent Patterns\n",
8
+ "\n",
9
+ "In the original 2_lab2.ipynb, we explored a powerful agentic design pattern: sending the same question to multiple large language models (LLMs), then using a separate β€œjudge” agent to evaluate and rank their responses. This approach is valuable for identifying the single best answer among many, leveraging the strengths of ensemble reasoning and critical evaluation.\n",
10
+ "\n",
11
+ "However, selecting just one β€œwinner” can leave valuable insights from other models untapped. To address this, I am shifting to a new agentic pattern in this notebook: the synthesizer/improver pattern. Instead of merely ranking responses, we will prompt a dedicated LLM to review all answers, extract the most compelling ideas from each, and synthesize them into a single, improved response. \n",
12
+ "\n",
13
+ "This approach aims to combine the collective intelligence of multiple models, producing an answer that is richer, more nuanced, and more robust than any individual response.\n"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 1,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "import os\n",
23
+ "import json\n",
24
+ "from dotenv import load_dotenv\n",
25
+ "from openai import OpenAI\n",
26
+ "from anthropic import Anthropic\n",
27
+ "from IPython.display import Markdown, display"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "load_dotenv(override=True)"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "# Print the key prefixes to help with any debugging\n",
46
+ "\n",
47
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
48
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
49
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
50
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
51
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
52
+ "\n",
53
+ "if openai_api_key:\n",
54
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
55
+ "else:\n",
56
+ " print(\"OpenAI API Key not set\")\n",
57
+ " \n",
58
+ "if anthropic_api_key:\n",
59
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
60
+ "else:\n",
61
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
62
+ "\n",
63
+ "if google_api_key:\n",
64
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
65
+ "else:\n",
66
+ " print(\"Google API Key not set (and this is optional)\")\n",
67
+ "\n",
68
+ "if deepseek_api_key:\n",
69
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
70
+ "else:\n",
71
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
72
+ "\n",
73
+ "if groq_api_key:\n",
74
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
75
+ "else:\n",
76
+ " print(\"Groq API Key not set (and this is optional)\")"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": 7,
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their collective intelligence. \"\n",
86
+ "request += \"Answer only with the question, no explanation.\"\n",
87
+ "messages = [{\"role\": \"user\", \"content\": request}]"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "messages"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "openai = OpenAI()\n",
106
+ "response = openai.chat.completions.create(\n",
107
+ " model=\"gpt-4o-mini\",\n",
108
+ " messages=messages,\n",
109
+ ")\n",
110
+ "question = response.choices[0].message.content\n",
111
+ "print(question)\n"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": 10,
117
+ "metadata": {},
118
+ "outputs": [],
119
+ "source": [
120
+ "teammates = []\n",
121
+ "answers = []\n",
122
+ "messages = [{\"role\": \"user\", \"content\": question}]"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "metadata": {},
129
+ "outputs": [],
130
+ "source": [
131
+ "# The API we know well\n",
132
+ "\n",
133
+ "model_name = \"gpt-4o-mini\"\n",
134
+ "\n",
135
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
136
+ "answer = response.choices[0].message.content\n",
137
+ "\n",
138
+ "display(Markdown(answer))\n",
139
+ "teammates.append(model_name)\n",
140
+ "answers.append(answer)"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
150
+ "\n",
151
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
152
+ "\n",
153
+ "claude = Anthropic()\n",
154
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
155
+ "answer = response.content[0].text\n",
156
+ "\n",
157
+ "display(Markdown(answer))\n",
158
+ "teammates.append(model_name)\n",
159
+ "answers.append(answer)"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
169
+ "model_name = \"gemini-2.0-flash\"\n",
170
+ "\n",
171
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
172
+ "answer = response.choices[0].message.content\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "teammates.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
186
+ "model_name = \"deepseek-chat\"\n",
187
+ "\n",
188
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "teammates.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
203
+ "model_name = \"llama-3.3-70b-versatile\"\n",
204
+ "\n",
205
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "teammates.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "# So where are we?\n",
220
+ "\n",
221
+ "print(teammates)\n",
222
+ "print(answers)"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "# It's nice to know how to use \"zip\"\n",
232
+ "for teammate, answer in zip(teammates, answers):\n",
233
+ " print(f\"Teammate: {teammate}\\n\\n{answer}\")"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": 23,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "# Let's bring this together - note the use of \"enumerate\"\n",
243
+ "\n",
244
+ "together = \"\"\n",
245
+ "for index, answer in enumerate(answers):\n",
246
+ " together += f\"# Response from teammate {index+1}\\n\\n\"\n",
247
+ " together += answer + \"\\n\\n\""
248
+ ]
249
+ },
250
+ {
251
+ "cell_type": "code",
252
+ "execution_count": null,
253
+ "metadata": {},
254
+ "outputs": [],
255
+ "source": [
256
+ "print(together)"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": 36,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": [
265
+ "formatter = f\"\"\"You are taking the nost interesting ideas fron {len(teammates)} teammates.\n",
266
+ "Each model has been given this question:\n",
267
+ "\n",
268
+ "{question}\n",
269
+ "\n",
270
+ "Your job is to evaluate each response for clarity and strength of argument, select the most relevant ideas and make a report, including a title, subtitles to separate sections, and quoting the LLM providing the idea.\n",
271
+ "From that, you will create a new improved answer.\"\"\""
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "print(formatter)"
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": 38,
286
+ "metadata": {},
287
+ "outputs": [],
288
+ "source": [
289
+ "formatter_messages = [{\"role\": \"user\", \"content\": formatter}]"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": null,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "openai = OpenAI()\n",
299
+ "response = openai.chat.completions.create(\n",
300
+ " model=\"o3-mini\",\n",
301
+ " messages=formatter_messages,\n",
302
+ ")\n",
303
+ "results = response.choices[0].message.content\n",
304
+ "display(Markdown(results))"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": null,
310
+ "metadata": {},
311
+ "outputs": [],
312
+ "source": []
313
+ }
314
+ ],
315
+ "metadata": {
316
+ "kernelspec": {
317
+ "display_name": ".venv",
318
+ "language": "python",
319
+ "name": "python3"
320
+ },
321
+ "language_info": {
322
+ "codemirror_mode": {
323
+ "name": "ipython",
324
+ "version": 3
325
+ },
326
+ "file_extension": ".py",
327
+ "mimetype": "text/x-python",
328
+ "name": "python",
329
+ "nbconvert_exporter": "python",
330
+ "pygments_lexer": "ipython3",
331
+ "version": "3.12.7"
332
+ }
333
+ },
334
+ "nbformat": 4,
335
+ "nbformat_minor": 2
336
+ }
community_contributions/2_lab2_exercise_BrettSanders_ChainOfThought.ipynb ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "raw",
5
+ "metadata": {
6
+ "vscode": {
7
+ "languageId": "raw"
8
+ }
9
+ },
10
+ "source": [
11
+ "# Lab 2 Exercise - Extending the Patterns\n",
12
+ "\n",
13
+ "This notebook extends the original lab by adding the Chain of Thought pattern to enhance the evaluation process.\n"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 1,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "# Import required packages\n",
23
+ "import os\n",
24
+ "import json\n",
25
+ "from dotenv import load_dotenv\n",
26
+ "from openai import OpenAI\n",
27
+ "from anthropic import Anthropic\n",
28
+ "from IPython.display import Markdown, display\n"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "# Load environment variables\n",
38
+ "load_dotenv(override=True)\n"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": 3,
44
+ "metadata": {},
45
+ "outputs": [],
46
+ "source": [
47
+ "# Initialize API clients\n",
48
+ "openai = OpenAI()\n",
49
+ "claude = Anthropic()\n"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": null,
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "# Original question generation\n",
59
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
60
+ "request += \"Answer only with the question, no explanation.\"\n",
61
+ "messages = [{\"role\": \"user\", \"content\": request}]\n",
62
+ "\n",
63
+ "response = openai.chat.completions.create(\n",
64
+ " model=\"gpt-4o-mini\",\n",
65
+ " messages=messages,\n",
66
+ ")\n",
67
+ "question = response.choices[0].message.content\n",
68
+ "print(question)\n"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# Get responses from multiple models\n",
78
+ "competitors = []\n",
79
+ "answers = []\n",
80
+ "messages = [{\"role\": \"user\", \"content\": question}]\n",
81
+ "\n",
82
+ "# OpenAI\n",
83
+ "response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
84
+ "answer = response.choices[0].message.content\n",
85
+ "competitors.append(\"gpt-4o-mini\")\n",
86
+ "answers.append(answer)\n",
87
+ "display(Markdown(answer))\n",
88
+ "\n",
89
+ "# Claude\n",
90
+ "response = claude.messages.create(model=\"claude-3-7-sonnet-latest\", messages=messages, max_tokens=1000)\n",
91
+ "answer = response.content[0].text\n",
92
+ "competitors.append(\"claude-3-7-sonnet-latest\")\n",
93
+ "answers.append(answer)\n",
94
+ "display(Markdown(answer))\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 6,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# NEW: Chain of Thought Evaluation\n",
104
+ "# First, let's create a detailed evaluation prompt that encourages step-by-step reasoning\n",
105
+ "\n",
106
+ "evaluation_prompt = f\"\"\"You are an expert evaluator of AI responses. Your task is to analyze and rank the following responses to this question:\n",
107
+ "\n",
108
+ "{question}\n",
109
+ "\n",
110
+ "Please follow these steps in your evaluation:\n",
111
+ "\n",
112
+ "1. For each response:\n",
113
+ " - Identify the main arguments presented\n",
114
+ " - Evaluate the clarity and coherence of the reasoning\n",
115
+ " - Assess the depth and breadth of the analysis\n",
116
+ " - Note any unique insights or perspectives\n",
117
+ "\n",
118
+ "2. Compare the responses:\n",
119
+ " - How do they differ in their approach?\n",
120
+ " - Which response demonstrates the most sophisticated understanding?\n",
121
+ " - Which response provides the most practical and actionable insights?\n",
122
+ "\n",
123
+ "3. Provide your final ranking with detailed justification for each position.\n",
124
+ "\n",
125
+ "Here are the responses:\n",
126
+ "\n",
127
+ "{'\\\\n\\\\n'.join([f'Response {i+1} ({competitors[i]}):\\\\n{answer}' for i, answer in enumerate(answers)])}\n",
128
+ "\n",
129
+ "Please provide your evaluation in JSON format with the following structure:\n",
130
+ "{{\n",
131
+ " \"detailed_analysis\": [\n",
132
+ " {{\"competitor\": \"name\", \"strengths\": [], \"weaknesses\": [], \"unique_aspects\": []}},\n",
133
+ " ...\n",
134
+ " ],\n",
135
+ " \"comparative_analysis\": \"detailed comparison of responses\",\n",
136
+ " \"final_ranking\": [\"ranked competitor numbers\"],\n",
137
+ " \"justification\": \"detailed explanation of the ranking\"\n",
138
+ "}}\"\"\"\n"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": null,
144
+ "metadata": {},
145
+ "outputs": [],
146
+ "source": [
147
+ "# Get the detailed evaluation\n",
148
+ "evaluation_messages = [{\"role\": \"user\", \"content\": evaluation_prompt}]\n",
149
+ "\n",
150
+ "response = openai.chat.completions.create(\n",
151
+ " model=\"gpt-4o-mini\",\n",
152
+ " messages=evaluation_messages,\n",
153
+ ")\n",
154
+ "detailed_evaluation = response.choices[0].message.content\n",
155
+ "print(detailed_evaluation)\n"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {},
162
+ "outputs": [],
163
+ "source": [
164
+ "# Parse and display the results in a more readable format\n",
165
+ "\n",
166
+ "# Clean up the JSON string by removing markdown code block markers\n",
167
+ "json_str = detailed_evaluation.replace(\"```json\", \"\").replace(\"```\", \"\").strip()\n",
168
+ "\n",
169
+ "evaluation_dict = json.loads(json_str)\n",
170
+ "\n",
171
+ "print(\"Detailed Analysis:\")\n",
172
+ "for analysis in evaluation_dict[\"detailed_analysis\"]:\n",
173
+ " print(f\"\\nCompetitor: {analysis['competitor']}\")\n",
174
+ " print(\"Strengths:\")\n",
175
+ " for strength in analysis['strengths']:\n",
176
+ " print(f\"- {strength}\")\n",
177
+ " print(\"\\nWeaknesses:\")\n",
178
+ " for weakness in analysis['weaknesses']:\n",
179
+ " print(f\"- {weakness}\")\n",
180
+ " print(\"\\nUnique Aspects:\")\n",
181
+ " for aspect in analysis['unique_aspects']:\n",
182
+ " print(f\"- {aspect}\")\n",
183
+ "\n",
184
+ "print(\"\\nComparative Analysis:\")\n",
185
+ "print(evaluation_dict[\"comparative_analysis\"])\n",
186
+ "\n",
187
+ "print(\"\\nFinal Ranking:\")\n",
188
+ "for i, rank in enumerate(evaluation_dict[\"final_ranking\"]):\n",
189
+ " print(f\"{i+1}. {competitors[int(rank)-1]}\")\n",
190
+ "\n",
191
+ "print(\"\\nJustification:\")\n",
192
+ "print(evaluation_dict[\"justification\"])\n"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "raw",
197
+ "metadata": {
198
+ "vscode": {
199
+ "languageId": "raw"
200
+ }
201
+ },
202
+ "source": [
203
+ "## Pattern Analysis\n",
204
+ "\n",
205
+ "This enhanced version uses several agentic design patterns:\n",
206
+ "\n",
207
+ "1. **Multi-agent Collaboration**: Sending the same question to multiple LLMs\n",
208
+ "2. **Evaluation/Judgment Pattern**: Using one LLM to evaluate responses from others\n",
209
+ "3. **Parallel Processing**: Running multiple models simultaneously\n",
210
+ "4. **Chain of Thought**: Added a structured, step-by-step evaluation process that breaks down the analysis into clear stages\n",
211
+ "\n",
212
+ "The Chain of Thought pattern is particularly valuable here because it:\n",
213
+ "- Forces the evaluator to consider multiple aspects of each response\n",
214
+ "- Provides more detailed and structured feedback\n",
215
+ "- Makes the evaluation process more transparent and explainable\n",
216
+ "- Helps identify specific strengths and weaknesses in each response\n"
217
+ ]
218
+ }
219
+ ],
220
+ "metadata": {
221
+ "kernelspec": {
222
+ "display_name": ".venv",
223
+ "language": "python",
224
+ "name": "python3"
225
+ },
226
+ "language_info": {
227
+ "codemirror_mode": {
228
+ "name": "ipython",
229
+ "version": 3
230
+ },
231
+ "file_extension": ".py",
232
+ "mimetype": "text/x-python",
233
+ "name": "python",
234
+ "nbconvert_exporter": "python",
235
+ "pygments_lexer": "ipython3",
236
+ "version": "3.12.7"
237
+ }
238
+ },
239
+ "nbformat": 4,
240
+ "nbformat_minor": 2
241
+ }
community_contributions/2_lab2_llm_reviewer.ipynb ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "This notebook extends the original by adding a reviewer pattern to evaluate the impact on model performance.\n",
17
+ "\n",
18
+ "In the new workflow, each model's answer is provided to a \"reviewer LLM\" who is prompted to \"Evaluate the response for clarity and strength of argument, and provide constructive suggestions for improving the answer.\" Each model is then given the chance to revise its answer based on the feedback but is also told, \"You are not required to take any of the feedback into account, but you want to win the competition.\"\n",
19
+ "\n",
20
+ "<table>\n",
21
+ " <caption style=\"font-size: 1.2em; margin-bottom: 10px;\"><strong>Results for Representative Run</strong></caption>\n",
22
+ " <thead>\n",
23
+ " <tr>\n",
24
+ " <th>Model</th>\n",
25
+ " <th>Original Rank</th>\n",
26
+ " <th>Exclusive Feedback</th>\n",
27
+ " <th>With Feedback (all models)</th>\n",
28
+ " </tr>\n",
29
+ " </thead>\n",
30
+ " <tbody>\n",
31
+ " <tr>\n",
32
+ " <td>gpt-4o-mini</td>\n",
33
+ " <td>2</td>\n",
34
+ " <td>3</td>\n",
35
+ " <td>4</td>\n",
36
+ " </tr>\n",
37
+ " <tr>\n",
38
+ " <td>claude-3-7-sonnet-latest</td>\n",
39
+ " <td>6</td>\n",
40
+ " <td>1</td>\n",
41
+ " <td>1</td>\n",
42
+ " </tr>\n",
43
+ " <tr>\n",
44
+ " <td>gemini-2.0-flash</td>\n",
45
+ " <td>1</td>\n",
46
+ " <td>1</td>\n",
47
+ " <td>2</td>\n",
48
+ " </tr>\n",
49
+ " <tr>\n",
50
+ " <td>deepseek-chat</td>\n",
51
+ " <td>3</td>\n",
52
+ " <td>2</td>\n",
53
+ " <td>3</td>\n",
54
+ " </tr>\n",
55
+ " <tr>\n",
56
+ " <td>llama-3.3-70b-versatile</td>\n",
57
+ " <td>4</td>\n",
58
+ " <td>3</td>\n",
59
+ " <td>5</td>\n",
60
+ " </tr>\n",
61
+ " <tr>\n",
62
+ " <td>llama3.2</td>\n",
63
+ " <td>5</td>\n",
64
+ " <td>4</td>\n",
65
+ " <td>6</td>\n",
66
+ " </tr>\n",
67
+ " </tbody>\n",
68
+ "</table>\n",
69
+ "\n",
70
+ "The workflow is obviously non-deterministic and the results can vary greatly from run to run, but the introduction of a reviewer appeared to have a generaly positive impact on performance. The table above shows the results for a representative run. It compares each model's rank versus the other models when it exclusively received feedback. The table also shows the ranking when ALL models received feedback. Exclusive use of feedback improved a model's ranking for five out of six models and decreased it for one model.\n",
71
+ "\n",
72
+ "Inspired by some other contributions, this worksheet also makes LLM calls asyncrhonously to reduce wait time."
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": 23,
78
+ "metadata": {},
79
+ "outputs": [],
80
+ "source": [
81
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
82
+ "#!uv add prettytable\n",
83
+ "\n",
84
+ "import os\n",
85
+ "import asyncio\n",
86
+ "import json\n",
87
+ "from dotenv import load_dotenv\n",
88
+ "from openai import OpenAI, AsyncOpenAI\n",
89
+ "from anthropic import AsyncAnthropic\n",
90
+ "from IPython.display import display\n",
91
+ "from pydantic import BaseModel, Field\n",
92
+ "from string import Template\n",
93
+ "from prettytable import PrettyTable\n",
94
+ "\n",
95
+ "\n"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "code",
100
+ "execution_count": 24,
101
+ "metadata": {},
102
+ "outputs": [],
103
+ "source": [
104
+ "class LLMResult(BaseModel):\n",
105
+ " model: str\n",
106
+ " answer: str\n",
107
+ " feedback: str | None =Field(\n",
108
+ " default = None, \n",
109
+ " description=\"Mutable field. This will be set by the reviewer.\")\n",
110
+ " revised_answer: str | None =Field(\n",
111
+ " default = None, \n",
112
+ " description=\"Mutable field. This will be set by the answerer after the reviewer has provided feedback.\")\n",
113
+ " original_rank: int | None =Field(\n",
114
+ " default = None, \n",
115
+ " description=\"Mutable field. Rank when no feedback is used by any models.\")\n",
116
+ " exclusive_feedback: str | None =Field(\n",
117
+ " default = None, \n",
118
+ " description=\"Mutable field. Rank when only this model used feedback.\")\n",
119
+ " revised_rank: int | None =Field(\n",
120
+ " default = None, \n",
121
+ " description=\"Mutable field. Rank when all models used feedback.\")\n",
122
+ "\n",
123
+ "results : list[LLMResult] = []\n"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "# Always remember to do this!\n",
133
+ "load_dotenv(override=True)"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "execution_count": null,
139
+ "metadata": {},
140
+ "outputs": [],
141
+ "source": [
142
+ "# Print the key prefixes to help with any debugging\n",
143
+ "\n",
144
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
145
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
146
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
147
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
148
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
149
+ "\n",
150
+ "if openai_api_key:\n",
151
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
152
+ "else:\n",
153
+ " print(\"OpenAI API Key not set\")\n",
154
+ " \n",
155
+ "if anthropic_api_key:\n",
156
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
157
+ "else:\n",
158
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
159
+ "\n",
160
+ "if google_api_key:\n",
161
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
162
+ "else:\n",
163
+ " print(\"Google API Key not set (and this is optional)\")\n",
164
+ "\n",
165
+ "if deepseek_api_key:\n",
166
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
167
+ "else:\n",
168
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
169
+ "\n",
170
+ "if groq_api_key:\n",
171
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
172
+ "else:\n",
173
+ " print(\"Groq API Key not set (and this is optional)\")"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 27,
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
183
+ "request += \"Answer only with the question, no explanation.\"\n",
184
+ "messages = [{\"role\": \"user\", \"content\": request}]"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "messages"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "openai = OpenAI()\n",
203
+ "response = openai.chat.completions.create(\n",
204
+ " model=\"gpt-4o-mini\",\n",
205
+ " messages=messages,\n",
206
+ ")\n",
207
+ "question = response.choices[0].message.content\n",
208
+ "print(question)\n"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": 30,
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "competitors = []\n",
218
+ "answers = []\n",
219
+ "messages = [{\"role\": \"user\", \"content\": question}]"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 31,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": [
228
+ "# The API we know well\n",
229
+ "\n",
230
+ "async def openai_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
231
+ " openai = AsyncOpenAI()\n",
232
+ " response = await openai.chat.completions.create(model=model_name, messages=messages)\n",
233
+ " answer = response.choices[0].message.content\n",
234
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
235
+ " return answer\n"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "code",
240
+ "execution_count": 32,
241
+ "metadata": {},
242
+ "outputs": [],
243
+ "source": [
244
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
245
+ "\n",
246
+ "async def claude_anthropic_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
247
+ " claude = AsyncAnthropic()\n",
248
+ " response = await claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
249
+ " answer = response.content[0].text\n",
250
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
251
+ " return answer\n"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": 33,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "async def gemini_google_answer(messages: list[dict[str, str]], model_name : str) -> str: \n",
261
+ " gemini = AsyncOpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
262
+ " response = await gemini.chat.completions.create(model=model_name, messages=messages)\n",
263
+ " answer = response.choices[0].message.content.strip()\n",
264
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
265
+ " return answer\n"
266
+ ]
267
+ },
268
+ {
269
+ "cell_type": "code",
270
+ "execution_count": 34,
271
+ "metadata": {},
272
+ "outputs": [],
273
+ "source": [
274
+ "async def deepseek_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
275
+ " deepseek = AsyncOpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
276
+ " response = await deepseek.chat.completions.create(model=model_name, messages=messages)\n",
277
+ " answer = response.choices[0].message.content\n",
278
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
279
+ " return answer\n"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": 35,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "async def groq_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
289
+ " groq = AsyncOpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
290
+ " response = await groq.chat.completions.create(model=model_name, messages=messages)\n",
291
+ " answer = response.choices[0].message.content\n",
292
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
293
+ " return answer\n"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "markdown",
298
+ "metadata": {},
299
+ "source": [
300
+ "## For the next cell, we will use Ollama\n",
301
+ "\n",
302
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
303
+ "and runs models locally using high performance C++ code.\n",
304
+ "\n",
305
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
306
+ "\n",
307
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
308
+ "\n",
309
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
310
+ "\n",
311
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
312
+ "\n",
313
+ "`ollama pull <model_name>` downloads a model locally \n",
314
+ "`ollama ls` lists all the models you've downloaded \n",
315
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
316
+ ]
317
+ },
318
+ {
319
+ "cell_type": "markdown",
320
+ "metadata": {},
321
+ "source": [
322
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
323
+ " <tr>\n",
324
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
325
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
326
+ " </td>\n",
327
+ " <td>\n",
328
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
329
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
330
+ " </span>\n",
331
+ " </td>\n",
332
+ " </tr>\n",
333
+ "</table>"
334
+ ]
335
+ },
336
+ {
337
+ "cell_type": "code",
338
+ "execution_count": 36,
339
+ "metadata": {},
340
+ "outputs": [],
341
+ "source": [
342
+ "#!ollama pull llama3.2"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": 37,
348
+ "metadata": {},
349
+ "outputs": [],
350
+ "source": [
351
+ "async def ollama_answer(messages: list[dict[str, str]], model_name : str) -> str:\n",
352
+ " ollama = AsyncOpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
353
+ " response = await ollama.chat.completions.create(model=model_name, messages=messages)\n",
354
+ " answer = response.choices[0].message.content\n",
355
+ " print(f\"{model_name} answer: {answer[:50]}...\")\n",
356
+ " return answer\n"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": null,
362
+ "metadata": {},
363
+ "outputs": [],
364
+ "source": [
365
+ "answerers = [openai_answer, claude_anthropic_answer, gemini_google_answer, deepseek_answer, groq_answer, ollama_answer]\n",
366
+ "models = [\"gpt-4o-mini\", \"claude-3-7-sonnet-latest\", \"gemini-2.0-flash\", \"deepseek-chat\", \"llama-3.3-70b-versatile\", \"llama3.2\"]\n",
367
+ "\n",
368
+ "tasks = [ answerer(messages, model) for answerer, model in zip(answerers, models)]\n",
369
+ "answers : list[str] = await asyncio.gather(*tasks)\n",
370
+ "results : list[LLMResult] = [LLMResult(model=model, answer=answer) for model, answer in zip(models, answers)]\n"
371
+ ]
372
+ },
373
+ {
374
+ "cell_type": "code",
375
+ "execution_count": null,
376
+ "metadata": {},
377
+ "outputs": [],
378
+ "source": [
379
+ "answers "
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "code",
384
+ "execution_count": 40,
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": [
388
+ "reviewer = f\"\"\"You are reviewing a submission for a writing competition. The particpant has been given this question to answer:\n",
389
+ "\n",
390
+ "{question}\n",
391
+ "\n",
392
+ "Your job is to evaluate the response for clarity and strength of argument, and provide constructive suggestions for improving the answer.\n",
393
+ "Limit your feedback to 200 words.\n",
394
+ "\n",
395
+ "Here is the particpant's answer:\n",
396
+ "{{answer}}\n",
397
+ "\"\"\"\n",
398
+ "\n",
399
+ "async def review_answer(answer : str) -> str:\n",
400
+ " openai = AsyncOpenAI()\n",
401
+ " reviewer_messages = [{\"role\": \"user\", \"content\": reviewer.format(answer=answer)}]\n",
402
+ " reviewer_response = await openai.chat.completions.create(\n",
403
+ " model=\"gpt-4o-mini\",\n",
404
+ " messages=reviewer_messages,\n",
405
+ " )\n",
406
+ " feedback = reviewer_response.choices[0].message.content\n",
407
+ " print(f\"feedback: {feedback[:50]}...\")\n",
408
+ " return feedback"
409
+ ]
410
+ },
411
+ {
412
+ "cell_type": "code",
413
+ "execution_count": null,
414
+ "metadata": {},
415
+ "outputs": [],
416
+ "source": [
417
+ "import asyncio\n",
418
+ "\n",
419
+ "tasks = [review_answer(answer) for answer in answers]\n",
420
+ "feedback = await asyncio.gather(*tasks)\n",
421
+ "\n",
422
+ "for result, feedback in zip(results, feedback):\n",
423
+ " result.feedback = feedback\n"
424
+ ]
425
+ },
426
+ {
427
+ "cell_type": "code",
428
+ "execution_count": 42,
429
+ "metadata": {},
430
+ "outputs": [],
431
+ "source": [
432
+ "revision_prompt = f\"\"\"You are revising a submission you wrote for a writing competition based on feedback from a reviewer.\n",
433
+ "\n",
434
+ "You are not required to take any of the feedback into account but you want to win the competition.\n",
435
+ "\n",
436
+ "The question was: \n",
437
+ "{question}\n",
438
+ "\n",
439
+ "The feedback was:\n",
440
+ "{{feedback}}\n",
441
+ "\n",
442
+ "And your original answer was:\n",
443
+ "{{answer}}\n",
444
+ "\n",
445
+ "Please return your revised answer and nothing else.\n",
446
+ "\"\"\"\n"
447
+ ]
448
+ },
449
+ {
450
+ "cell_type": "code",
451
+ "execution_count": null,
452
+ "metadata": {},
453
+ "outputs": [],
454
+ "source": [
455
+ "messages = [{\"role\": \"user\", \"content\": revision_prompt.format(answer=answer, feedback=feedback)} for answer, feedback in zip(answers, feedback)]\n",
456
+ "tasks = [ answerer(messages, model) for answerer, model in zip(answerers, models)]\n",
457
+ "revised_answers = await asyncio.gather(*tasks)\n",
458
+ "\n",
459
+ "for revised_answer, result in zip(revised_answers, results):\n",
460
+ " result.revised_answer = revised_answer\n",
461
+ "\n"
462
+ ]
463
+ },
464
+ {
465
+ "cell_type": "code",
466
+ "execution_count": 44,
467
+ "metadata": {},
468
+ "outputs": [],
469
+ "source": [
470
+ "# need to use Template because we are making a later substitution for \"together\"\n",
471
+ "judge = Template(f\"\"\"You are judging a competition between {len(results)} competitors.\n",
472
+ "Each model has been given this question:\n",
473
+ "\n",
474
+ "{question}\n",
475
+ "\n",
476
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
477
+ "Respond with JSON, and only JSON, with the following format:\n",
478
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
479
+ "\n",
480
+ "Here are the responses from each competitor:\n",
481
+ "\n",
482
+ "$together\n",
483
+ "\n",
484
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\")\n",
485
+ "\n",
486
+ "\n"
487
+ ]
488
+ },
489
+ {
490
+ "cell_type": "code",
491
+ "execution_count": 45,
492
+ "metadata": {},
493
+ "outputs": [],
494
+ "source": [
495
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
496
+ ]
497
+ },
498
+ {
499
+ "cell_type": "code",
500
+ "execution_count": 46,
501
+ "metadata": {},
502
+ "outputs": [],
503
+ "source": [
504
+ "def come_together(results : list[LLMResult], revised_entry : int | None ) -> list[dict[str, str]]:\n",
505
+ " # include revised results for \"revised_entry\" or all entries if revise_entrys is None\n",
506
+ " together = \"\"\n",
507
+ " for index, result in enumerate(results):\n",
508
+ " together += f\"# Response from competitor {index}\\n\\n\"\n",
509
+ " together += result.answer if (index != revised_entry and revised_entry is not None) else result.revised_answer + \"\\n\\n\"\n",
510
+ " return [{\"role\": \"user\", \"content\": judge.substitute(together=together)}]\n",
511
+ "\n",
512
+ "\n",
513
+ "# Judgement time!\n",
514
+ "async def judgement_time(results : list[LLMResult], revised_entry : int ) -> str:\n",
515
+ " judge_messages = come_together(results, revised_entry)\n",
516
+ "\n",
517
+ " openai = AsyncOpenAI()\n",
518
+ " response = await openai.chat.completions.create(\n",
519
+ " model=\"o3-mini\",\n",
520
+ " messages=judge_messages,\n",
521
+ " )\n",
522
+ " results = response.choices[0].message.content\n",
523
+ " results_dict = json.loads(results)\n",
524
+ " results = { int(model) : int(rank) +1 for rank, model in enumerate(results_dict[\"results\"]) }\n",
525
+ " return results\n",
526
+ "\n"
527
+ ]
528
+ },
529
+ {
530
+ "cell_type": "code",
531
+ "execution_count": 47,
532
+ "metadata": {},
533
+ "outputs": [],
534
+ "source": [
535
+ "#evaluate the impact of feedback on model performance\n",
536
+ "\n",
537
+ "no_feedback = await judgement_time(results, -1)\n",
538
+ "with_feedback = await judgement_time(results, None)\n",
539
+ "\n",
540
+ "tasks = [ judgement_time(results, i) for i in range(len(results))]\n",
541
+ "model_spefic_feedback = await asyncio.gather(*tasks)\n",
542
+ "\n",
543
+ "for index, result in enumerate(results):\n",
544
+ " result.original_rank = no_feedback[index]\n",
545
+ " result.exclusive_feedback = model_spefic_feedback[index][index]\n",
546
+ " result.revised_rank = with_feedback[index]\n",
547
+ "\n"
548
+ ]
549
+ },
550
+ {
551
+ "cell_type": "code",
552
+ "execution_count": null,
553
+ "metadata": {},
554
+ "outputs": [],
555
+ "source": [
556
+ "\n",
557
+ "table = PrettyTable()\n",
558
+ "table.field_names = [\"Model\", \"Original Rank\", \"Exclusive Feedback\", \"With Feedback (all models)\"]\n",
559
+ "\n",
560
+ "for result in results:\n",
561
+ " table.add_row([result.model, result.original_rank, result.exclusive_feedback, result.revised_rank])\n",
562
+ "\n",
563
+ "print(table)\n",
564
+ "\n"
565
+ ]
566
+ },
567
+ {
568
+ "cell_type": "markdown",
569
+ "metadata": {},
570
+ "source": [
571
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
572
+ " <tr>\n",
573
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
574
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
575
+ " </td>\n",
576
+ " <td>\n",
577
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
578
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
579
+ " </span>\n",
580
+ " </td>\n",
581
+ " </tr>\n",
582
+ "</table>"
583
+ ]
584
+ },
585
+ {
586
+ "cell_type": "markdown",
587
+ "metadata": {},
588
+ "source": [
589
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
590
+ " <tr>\n",
591
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
592
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
593
+ " </td>\n",
594
+ " <td>\n",
595
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
596
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
597
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
598
+ " to business projects where accuracy is critical.\n",
599
+ " </span>\n",
600
+ " </td>\n",
601
+ " </tr>\n",
602
+ "</table>"
603
+ ]
604
+ }
605
+ ],
606
+ "metadata": {
607
+ "kernelspec": {
608
+ "display_name": ".venv",
609
+ "language": "python",
610
+ "name": "python3"
611
+ },
612
+ "language_info": {
613
+ "codemirror_mode": {
614
+ "name": "ipython",
615
+ "version": 3
616
+ },
617
+ "file_extension": ".py",
618
+ "mimetype": "text/x-python",
619
+ "name": "python",
620
+ "nbconvert_exporter": "python",
621
+ "pygments_lexer": "ipython3",
622
+ "version": "3.12.9"
623
+ }
624
+ },
625
+ "nbformat": 4,
626
+ "nbformat_minor": 2
627
+ }
community_contributions/2_lab2_moneek.ipynb ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "This program uses Evaluator Optimizer pattern to enhance generator's response in creating marketing content for smart keyboard."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
19
+ "\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "from dotenv import load_dotenv\n",
23
+ "from openai import OpenAI\n",
24
+ "from anthropic import Anthropic\n",
25
+ "from IPython.display import Markdown, display"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "# Always remember to do this!\n",
35
+ "load_dotenv(override=True)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "# Print the key prefixes to help with any debugging\n",
45
+ "\n",
46
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
47
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
48
+ "\n",
49
+ "if openai_api_key:\n",
50
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
51
+ "else:\n",
52
+ " print(\"OpenAI API Key not set\")\n",
53
+ " \n",
54
+ "if anthropic_api_key:\n",
55
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
56
+ "else:\n",
57
+ " print(\"Anthropic API Key not set (and this is optional)\")"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": null,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "request = \"Provide a short marketing content for XYZ keyboard. \"\n",
67
+ "request += \"It should be eagaging and talks about innovative features.\"\n",
68
+ "messages = [{\"role\": \"user\", \"content\": request}]"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "messages"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "openai = OpenAI()\n",
87
+ "\n",
88
+ "response = openai.chat.completions.create(\n",
89
+ " model=\"gpt-4o-mini\",\n",
90
+ " messages=messages,\n",
91
+ ")\n",
92
+ "marketing_statement= response.choices[0].message.content\n",
93
+ "print(marketing_statement)\n",
94
+ "\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "judge = f\"\"\"### Instruction ###\n",
104
+ "You are an expert tech gadget analyst. Your task is to evaluate a marketing material based on several criteria.\n",
105
+ "Please be brief.\n",
106
+ "\n",
107
+ "### Ad to Evaluate ###\n",
108
+ "{marketing_statement}\n",
109
+ "\n",
110
+ "### Evaluation Criteria ###\n",
111
+ "Evaluate the statement based on how engaging it is.\n",
112
+ "\n",
113
+ "### Expected Output Format ###\n",
114
+ "Respond with JSON, and only JSON, with the following format:\n",
115
+ "{{\"results\": {{\"statement\": \"{marketing_statement}\", \"engagability\": \"Comment on whether the content is engaging\", \"critique\": \"Offer a specific critique and suggest at least one way the recipe could be improved\", \"verdict\": \"This should have a value either 'accepted' or 'rejected' based on whether the statement requires improvement\"}}}}\n",
116
+ "\"\"\"\n",
117
+ "\n",
118
+ "print(judge)\n",
119
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]\n",
120
+ "\n",
121
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
122
+ "claude = Anthropic()\n",
123
+ "response = claude.messages.create(model=model_name, messages=judge_messages, max_tokens=1000)\n",
124
+ "marketing_statement_feedback = response.content[0].text\n",
125
+ "\n",
126
+ "print(marketing_statement_feedback)\n"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": null,
132
+ "metadata": {},
133
+ "outputs": [],
134
+ "source": [
135
+ "results_dict = json.loads(marketing_statement_feedback)\n",
136
+ "feedback = results_dict[\"results\"]\n",
137
+ "print(feedback)\n",
138
+ "print(\"\\n\\n\")\n",
139
+ "display(Markdown(marketing_statement_feedback))\n",
140
+ "\n",
141
+ "print(f\"Marketing statement:\\n{feedback[\"statement\"]}\")\n",
142
+ "for key in feedback:\n",
143
+ " if key == \"verdict\":\n",
144
+ " if feedback[key] == \"accepted\":\n",
145
+ " print(\"Marketing statement was accepted.\")\n",
146
+ " break\n",
147
+ " else:\n",
148
+ " print(\"Marketing statement was rejected and requires revision. Please iterate over to call Generator and Evaluator for improvement\")"
149
+ ]
150
+ }
151
+ ],
152
+ "metadata": {
153
+ "kernelspec": {
154
+ "display_name": ".venv",
155
+ "language": "python",
156
+ "name": "python3"
157
+ },
158
+ "language_info": {
159
+ "codemirror_mode": {
160
+ "name": "ipython",
161
+ "version": 3
162
+ },
163
+ "file_extension": ".py",
164
+ "mimetype": "text/x-python",
165
+ "name": "python",
166
+ "nbconvert_exporter": "python",
167
+ "pygments_lexer": "ipython3",
168
+ "version": "3.12.11"
169
+ }
170
+ },
171
+ "nbformat": 4,
172
+ "nbformat_minor": 2
173
+ }
community_contributions/2_lab2_multi-evaluation-criteria.ipynb ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "\n",
70
+ "if openai_api_key:\n",
71
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
72
+ "else:\n",
73
+ " print(\"OpenAI API Key not set\")\n",
74
+ " \n",
75
+ "if anthropic_api_key:\n",
76
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
77
+ "else:\n",
78
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
79
+ "\n",
80
+ "if google_api_key:\n",
81
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
82
+ "else:\n",
83
+ " print(\"Google API Key not set (and this is optional)\")\n",
84
+ "\n",
85
+ "if deepseek_api_key:\n",
86
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
87
+ "else:\n",
88
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
89
+ "\n",
90
+ "if groq_api_key:\n",
91
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
92
+ "else:\n",
93
+ " print(\"Groq API Key not set (and this is optional)\")"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
103
+ "request += \"Answer only with the question, no explanation.\"\n",
104
+ "messages = [{\"role\": \"user\", \"content\": request}]"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "messages"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "metadata": {},
120
+ "outputs": [],
121
+ "source": [
122
+ "openai = OpenAI()\n",
123
+ "response = openai.chat.completions.create(\n",
124
+ " model=\"gpt-4o-mini\",\n",
125
+ " messages=messages,\n",
126
+ ")\n",
127
+ "question = response.choices[0].message.content\n",
128
+ "print(question)\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "competitors = []\n",
138
+ "answers = []\n",
139
+ "messages = [{\"role\": \"user\", \"content\": question}]"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# The API we know well\n",
149
+ "\n",
150
+ "model_name = \"gpt-4o-mini\"\n",
151
+ "\n",
152
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
153
+ "answer = response.choices[0].message.content\n",
154
+ "\n",
155
+ "display(Markdown(answer))\n",
156
+ "competitors.append(model_name)\n",
157
+ "answers.append(answer)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
167
+ "\n",
168
+ "model_name = \"claude-sonnet-4-latest\"\n",
169
+ "\n",
170
+ "claude = Anthropic()\n",
171
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
172
+ "answer = response.content[0].text\n",
173
+ "\n",
174
+ "display(Markdown(answer))\n",
175
+ "competitors.append(model_name)\n",
176
+ "answers.append(answer)"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
186
+ "model_name = \"gemini-2.0-flash\"\n",
187
+ "\n",
188
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
189
+ "answer = response.choices[0].message.content\n",
190
+ "\n",
191
+ "display(Markdown(answer))\n",
192
+ "competitors.append(model_name)\n",
193
+ "answers.append(answer)"
194
+ ]
195
+ },
196
+ {
197
+ "cell_type": "code",
198
+ "execution_count": null,
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
203
+ "model_name = \"deepseek-chat\"\n",
204
+ "\n",
205
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
206
+ "answer = response.choices[0].message.content\n",
207
+ "\n",
208
+ "display(Markdown(answer))\n",
209
+ "competitors.append(model_name)\n",
210
+ "answers.append(answer)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
220
+ "model_name = \"llama-3.3-70b-versatile\"\n",
221
+ "\n",
222
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
223
+ "answer = response.choices[0].message.content\n",
224
+ "\n",
225
+ "display(Markdown(answer))\n",
226
+ "competitors.append(model_name)\n",
227
+ "answers.append(answer)\n"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "## For the next cell, we will use Ollama\n",
235
+ "\n",
236
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
237
+ "and runs models locally using high performance C++ code.\n",
238
+ "\n",
239
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
240
+ "\n",
241
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
242
+ "\n",
243
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
244
+ "\n",
245
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
246
+ "\n",
247
+ "`ollama pull <model_name>` downloads a model locally \n",
248
+ "`ollama ls` lists all the models you've downloaded \n",
249
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
257
+ " <tr>\n",
258
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
259
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
260
+ " </td>\n",
261
+ " <td>\n",
262
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
263
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
264
+ " </span>\n",
265
+ " </td>\n",
266
+ " </tr>\n",
267
+ "</table>"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "metadata": {},
274
+ "outputs": [],
275
+ "source": [
276
+ "!ollama pull llama3.2"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
286
+ "model_name = \"llama3\"\n",
287
+ "\n",
288
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
289
+ "answer = response.choices[0].message.content\n",
290
+ "\n",
291
+ "display(Markdown(answer))\n",
292
+ "competitors.append(model_name)\n",
293
+ "answers.append(answer)"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": null,
299
+ "metadata": {},
300
+ "outputs": [],
301
+ "source": [
302
+ "# So where are we?\n",
303
+ "\n",
304
+ "print(competitors)\n",
305
+ "print(answers)\n"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": [
314
+ "# It's nice to know how to use \"zip\"\n",
315
+ "for competitor, answer in zip(competitors, answers):\n",
316
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "for competitor, answer in zip(competitors, answers):\n",
326
+ " display(Markdown(f\"# Competitor: {competitor}\\n\\n{answer}\"))"
327
+ ]
328
+ },
329
+ {
330
+ "cell_type": "code",
331
+ "execution_count": null,
332
+ "metadata": {},
333
+ "outputs": [],
334
+ "source": [
335
+ "# Let's bring this together - note the use of \"enumerate\"\n",
336
+ "\n",
337
+ "together = \"\"\n",
338
+ "for index, answer in enumerate(answers):\n",
339
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
340
+ " together += answer + \"\\n\\n\""
341
+ ]
342
+ },
343
+ {
344
+ "cell_type": "code",
345
+ "execution_count": null,
346
+ "metadata": {},
347
+ "outputs": [],
348
+ "source": [
349
+ "print(together)"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": null,
355
+ "metadata": {},
356
+ "outputs": [],
357
+ "source": [
358
+ "evaluation_criteria = [\"Effectiveness in resolving the conflict\", \"Clarity of argument\", \"Creativity of solution\", \"Strength of argument\", \"conciseness\", \"applicability to a business context\"]\n",
359
+ "\n",
360
+ "judgements = []\n",
361
+ "\n",
362
+ "for evaluation_criterion in evaluation_criteria:\n",
363
+ "\n",
364
+ " judgements.append (f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
365
+ " Each model has been given this question:\n",
366
+ "\n",
367
+ " {question}\n",
368
+ "\n",
369
+ " Your job is to evaluate each response for {evaluation_criterion}, and rank them in order of best to worst.\n",
370
+ " Respond with JSON, and only JSON, with the following format:\n",
371
+ " {{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
372
+ "\n",
373
+ " Here are the responses from each competitor:\n",
374
+ "\n",
375
+ " {together}\n",
376
+ "\n",
377
+ " Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\")\n"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "code",
382
+ "execution_count": null,
383
+ "metadata": {},
384
+ "outputs": [],
385
+ "source": [
386
+ "print(judgements[1])\n"
387
+ ]
388
+ },
389
+ {
390
+ "cell_type": "code",
391
+ "execution_count": null,
392
+ "metadata": {},
393
+ "outputs": [],
394
+ "source": [
395
+ "\n",
396
+ "judge_messages = []\n",
397
+ "for judgement in judgements:\n",
398
+ " judge_messages.append ([{\"role\": \"user\", \"content\": judgement}])"
399
+ ]
400
+ },
401
+ {
402
+ "cell_type": "code",
403
+ "execution_count": null,
404
+ "metadata": {},
405
+ "outputs": [],
406
+ "source": [
407
+ "results = []\n",
408
+ "# Judgement time!\n",
409
+ "for judge_message in judge_messages:\n",
410
+ " openai = OpenAI()\n",
411
+ " response = openai.chat.completions.create(\n",
412
+ " model=\"o3-mini\",\n",
413
+ " messages=judge_message,\n",
414
+ " )\n",
415
+ " results.append (response.choices[0].message.content)\n",
416
+ " print(results[0])\n"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "code",
421
+ "execution_count": null,
422
+ "metadata": {},
423
+ "outputs": [],
424
+ "source": [
425
+ "for result in results:\n",
426
+ " print(result)"
427
+ ]
428
+ },
429
+ {
430
+ "cell_type": "code",
431
+ "execution_count": null,
432
+ "metadata": {},
433
+ "outputs": [],
434
+ "source": [
435
+ "# OK let's turn this into results!\n",
436
+ "\n",
437
+ "for result, evaluation_criterion in zip(results, evaluation_criteria):\n",
438
+ " results_dict = json.loads(result)\n",
439
+ " ranks = results_dict[\"results\"]\n",
440
+ " display(Markdown(f\"### {evaluation_criterion}\"))\n",
441
+ " for index, result in enumerate(ranks):\n",
442
+ " competitor = competitors[int(result)-1] \n",
443
+ " display(Markdown(f\"Rank {index+1}: {competitor}\"))"
444
+ ]
445
+ },
446
+ {
447
+ "cell_type": "markdown",
448
+ "metadata": {},
449
+ "source": [
450
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
451
+ " <tr>\n",
452
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
453
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
454
+ " </td>\n",
455
+ " <td>\n",
456
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
457
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
458
+ " </span>\n",
459
+ " </td>\n",
460
+ " </tr>\n",
461
+ "</table>"
462
+ ]
463
+ },
464
+ {
465
+ "cell_type": "markdown",
466
+ "metadata": {},
467
+ "source": [
468
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
469
+ " <tr>\n",
470
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
471
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
472
+ " </td>\n",
473
+ " <td>\n",
474
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
475
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
476
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
477
+ " to business projects where accuracy is critical.\n",
478
+ " </span>\n",
479
+ " </td>\n",
480
+ " </tr>\n",
481
+ "</table>"
482
+ ]
483
+ }
484
+ ],
485
+ "metadata": {
486
+ "kernelspec": {
487
+ "display_name": ".venv",
488
+ "language": "python",
489
+ "name": "python3"
490
+ },
491
+ "language_info": {
492
+ "codemirror_mode": {
493
+ "name": "ipython",
494
+ "version": 3
495
+ },
496
+ "file_extension": ".py",
497
+ "mimetype": "text/x-python",
498
+ "name": "python",
499
+ "nbconvert_exporter": "python",
500
+ "pygments_lexer": "ipython3",
501
+ "version": "3.12.10"
502
+ }
503
+ },
504
+ "nbformat": 4,
505
+ "nbformat_minor": 2
506
+ }
community_contributions/2_lab2_perplexity_support.ipynb ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 1,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
37
+ "\n",
38
+ "import os\n",
39
+ "import json\n",
40
+ "from dotenv import load_dotenv\n",
41
+ "from openai import OpenAI\n",
42
+ "from anthropic import Anthropic\n",
43
+ "from IPython.display import Markdown, display"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "# Always remember to do this!\n",
53
+ "load_dotenv(override=True)"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# Print the key prefixes to help with any debugging\n",
63
+ "\n",
64
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
65
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
66
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
67
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
68
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
69
+ "perplexity_api_key = os.getenv('PERPLEXITY_API_KEY')\n",
70
+ "\n",
71
+ "if openai_api_key:\n",
72
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
73
+ "else:\n",
74
+ " print(\"OpenAI API Key not set\")\n",
75
+ " \n",
76
+ "if anthropic_api_key:\n",
77
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
78
+ "else:\n",
79
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
80
+ "\n",
81
+ "if google_api_key:\n",
82
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
83
+ "else:\n",
84
+ " print(\"Google API Key not set (and this is optional)\")\n",
85
+ "\n",
86
+ "if deepseek_api_key:\n",
87
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
88
+ "else:\n",
89
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
90
+ "\n",
91
+ "if groq_api_key:\n",
92
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
93
+ "else:\n",
94
+ " print(\"Groq API Key not set (and this is optional)\")\n",
95
+ "\n",
96
+ "if perplexity_api_key:\n",
97
+ " print(f\"Perplexity API Key exists and begins {perplexity_api_key[:4]}\")\n",
98
+ "else:\n",
99
+ " print(\"Perplexity API Key not set (and this is optional)\")"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 4,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
109
+ "request += \"Answer only with the question, no explanation.\"\n",
110
+ "messages = [{\"role\": \"user\", \"content\": request}]"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "messages"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "openai = OpenAI()\n",
129
+ "response = openai.chat.completions.create(\n",
130
+ " model=\"gpt-4o-mini\",\n",
131
+ " messages=messages,\n",
132
+ ")\n",
133
+ "question = response.choices[0].message.content\n",
134
+ "print(question)\n"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "competitors = []\n",
144
+ "answers = []\n",
145
+ "messages = [{\"role\": \"user\", \"content\": question}]"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": null,
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "# The API we know well\n",
155
+ "\n",
156
+ "model_name = \"gpt-4o-mini\"\n",
157
+ "\n",
158
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
159
+ "answer = response.choices[0].message.content\n",
160
+ "\n",
161
+ "display(Markdown(answer))\n",
162
+ "competitors.append(model_name)\n",
163
+ "answers.append(answer)"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
173
+ "\n",
174
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
175
+ "\n",
176
+ "claude = Anthropic()\n",
177
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
178
+ "answer = response.content[0].text\n",
179
+ "\n",
180
+ "display(Markdown(answer))\n",
181
+ "competitors.append(model_name)\n",
182
+ "answers.append(answer)"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": null,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
192
+ "model_name = \"gemini-2.0-flash\"\n",
193
+ "\n",
194
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
195
+ "answer = response.choices[0].message.content\n",
196
+ "\n",
197
+ "display(Markdown(answer))\n",
198
+ "competitors.append(model_name)\n",
199
+ "answers.append(answer)"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": null,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
209
+ "model_name = \"deepseek-chat\"\n",
210
+ "\n",
211
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
212
+ "answer = response.choices[0].message.content\n",
213
+ "\n",
214
+ "display(Markdown(answer))\n",
215
+ "competitors.append(model_name)\n",
216
+ "answers.append(answer)"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "metadata": {},
223
+ "outputs": [],
224
+ "source": [
225
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
226
+ "model_name = \"llama-3.3-70b-versatile\"\n",
227
+ "\n",
228
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
229
+ "answer = response.choices[0].message.content\n",
230
+ "\n",
231
+ "display(Markdown(answer))\n",
232
+ "competitors.append(model_name)\n",
233
+ "answers.append(answer)\n"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": null,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "perplexity = OpenAI(api_key=perplexity_api_key, base_url=\"https://api.perplexity.ai\")\n",
243
+ "model_name = \"sonar\"\n",
244
+ "\n",
245
+ "response = perplexity.chat.completions.create(model=model_name, messages=messages)\n",
246
+ "answer = response.choices[0].message.content\n",
247
+ "\n",
248
+ "display(Markdown(answer))\n",
249
+ "competitors.append(model_name)\n",
250
+ "answers.append(answer)"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "markdown",
255
+ "metadata": {},
256
+ "source": [
257
+ "## For the next cell, we will use Ollama\n",
258
+ "\n",
259
+ "Ollama runs a local web service that gives an OpenAI compatible endpoint, \n",
260
+ "and runs models locally using high performance C++ code.\n",
261
+ "\n",
262
+ "If you don't have Ollama, install it here by visiting https://ollama.com then pressing Download and following the instructions.\n",
263
+ "\n",
264
+ "After it's installed, you should be able to visit here: http://localhost:11434 and see the message \"Ollama is running\"\n",
265
+ "\n",
266
+ "You might need to restart Cursor (and maybe reboot). Then open a Terminal (control+\\`) and run `ollama serve`\n",
267
+ "\n",
268
+ "Useful Ollama commands (run these in the terminal, or with an exclamation mark in this notebook):\n",
269
+ "\n",
270
+ "`ollama pull <model_name>` downloads a model locally \n",
271
+ "`ollama ls` lists all the models you've downloaded \n",
272
+ "`ollama rm <model_name>` deletes the specified model from your downloads"
273
+ ]
274
+ },
275
+ {
276
+ "cell_type": "markdown",
277
+ "metadata": {},
278
+ "source": [
279
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
280
+ " <tr>\n",
281
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
282
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
283
+ " </td>\n",
284
+ " <td>\n",
285
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
286
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
287
+ " </span>\n",
288
+ " </td>\n",
289
+ " </tr>\n",
290
+ "</table>"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "!ollama pull llama3.2"
300
+ ]
301
+ },
302
+ {
303
+ "cell_type": "code",
304
+ "execution_count": null,
305
+ "metadata": {},
306
+ "outputs": [],
307
+ "source": [
308
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
309
+ "model_name = \"llama3.2\"\n",
310
+ "\n",
311
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
312
+ "answer = response.choices[0].message.content\n",
313
+ "\n",
314
+ "display(Markdown(answer))\n",
315
+ "competitors.append(model_name)\n",
316
+ "answers.append(answer)"
317
+ ]
318
+ },
319
+ {
320
+ "cell_type": "code",
321
+ "execution_count": null,
322
+ "metadata": {},
323
+ "outputs": [],
324
+ "source": [
325
+ "# So where are we?\n",
326
+ "\n",
327
+ "print(competitors)\n",
328
+ "print(answers)\n"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": null,
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "# It's nice to know how to use \"zip\"\n",
338
+ "for competitor, answer in zip(competitors, answers):\n",
339
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": 20,
345
+ "metadata": {},
346
+ "outputs": [],
347
+ "source": [
348
+ "# Let's bring this together - note the use of \"enumerate\"\n",
349
+ "\n",
350
+ "together = \"\"\n",
351
+ "for index, answer in enumerate(answers):\n",
352
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
353
+ " together += answer + \"\\n\\n\""
354
+ ]
355
+ },
356
+ {
357
+ "cell_type": "code",
358
+ "execution_count": null,
359
+ "metadata": {},
360
+ "outputs": [],
361
+ "source": [
362
+ "print(together)"
363
+ ]
364
+ },
365
+ {
366
+ "cell_type": "code",
367
+ "execution_count": 22,
368
+ "metadata": {},
369
+ "outputs": [],
370
+ "source": [
371
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
372
+ "Each model has been given this question:\n",
373
+ "\n",
374
+ "{question}\n",
375
+ "\n",
376
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
377
+ "Respond with JSON, and only JSON, with the following format:\n",
378
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
379
+ "\n",
380
+ "Here are the responses from each competitor:\n",
381
+ "\n",
382
+ "{together}\n",
383
+ "\n",
384
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "code",
389
+ "execution_count": null,
390
+ "metadata": {},
391
+ "outputs": [],
392
+ "source": [
393
+ "print(judge)"
394
+ ]
395
+ },
396
+ {
397
+ "cell_type": "code",
398
+ "execution_count": 29,
399
+ "metadata": {},
400
+ "outputs": [],
401
+ "source": [
402
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
403
+ ]
404
+ },
405
+ {
406
+ "cell_type": "code",
407
+ "execution_count": null,
408
+ "metadata": {},
409
+ "outputs": [],
410
+ "source": [
411
+ "# Judgement time!\n",
412
+ "\n",
413
+ "openai = OpenAI()\n",
414
+ "response = openai.chat.completions.create(\n",
415
+ " model=\"o3-mini\",\n",
416
+ " messages=judge_messages,\n",
417
+ ")\n",
418
+ "results = response.choices[0].message.content\n",
419
+ "print(results)\n"
420
+ ]
421
+ },
422
+ {
423
+ "cell_type": "code",
424
+ "execution_count": null,
425
+ "metadata": {},
426
+ "outputs": [],
427
+ "source": [
428
+ "# OK let's turn this into results!\n",
429
+ "\n",
430
+ "results_dict = json.loads(results)\n",
431
+ "ranks = results_dict[\"results\"]\n",
432
+ "for index, result in enumerate(ranks):\n",
433
+ " competitor = competitors[int(result)-1]\n",
434
+ " print(f\"Rank {index+1}: {competitor}\")"
435
+ ]
436
+ },
437
+ {
438
+ "cell_type": "markdown",
439
+ "metadata": {},
440
+ "source": [
441
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
442
+ " <tr>\n",
443
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
444
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
445
+ " </td>\n",
446
+ " <td>\n",
447
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
448
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
449
+ " </span>\n",
450
+ " </td>\n",
451
+ " </tr>\n",
452
+ "</table>"
453
+ ]
454
+ },
455
+ {
456
+ "cell_type": "markdown",
457
+ "metadata": {},
458
+ "source": [
459
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
460
+ " <tr>\n",
461
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
462
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
463
+ " </td>\n",
464
+ " <td>\n",
465
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
466
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
467
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
468
+ " to business projects where accuracy is critical.\n",
469
+ " </span>\n",
470
+ " </td>\n",
471
+ " </tr>\n",
472
+ "</table>"
473
+ ]
474
+ }
475
+ ],
476
+ "metadata": {
477
+ "kernelspec": {
478
+ "display_name": ".venv",
479
+ "language": "python",
480
+ "name": "python3"
481
+ },
482
+ "language_info": {
483
+ "codemirror_mode": {
484
+ "name": "ipython",
485
+ "version": 3
486
+ },
487
+ "file_extension": ".py",
488
+ "mimetype": "text/x-python",
489
+ "name": "python",
490
+ "nbconvert_exporter": "python",
491
+ "pygments_lexer": "ipython3",
492
+ "version": "3.12.3"
493
+ }
494
+ },
495
+ "nbformat": 4,
496
+ "nbformat_minor": 2
497
+ }
community_contributions/2_lab2_qualitycode_review.ipynb ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "4226f6f7",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import os\n",
11
+ "import json\n",
12
+ "from dotenv import load_dotenv\n",
13
+ "from openai import OpenAI\n",
14
+ "from IPython.display import Markdown, display"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 5,
20
+ "id": "4cdb4a69",
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "load_dotenv(override=True)\n",
25
+ "\n",
26
+ "openai_api_key = os.getenv(\"OPENAI_API_KEY\")\n",
27
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
28
+ "\n",
29
+ "if openai_api_key is None:\n",
30
+ " raise ValueError(\"OPENAI_API_KEY is not set\")\n",
31
+ "\n",
32
+ "if google_api_key is None:\n",
33
+ " raise ValueError(\"GOOGLE_API_KEY is not set\")\n",
34
+ "\n",
35
+ "\n",
36
+ "\n",
37
+ "# The API we know well\n",
38
+ "# I've updated this with the latest model, but it can take some time because it likes to think!\n",
39
+ "# Replace the model with gpt-4.1-mini if you'd prefer not to wait 1-2 mins"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": 3,
45
+ "id": "31c74663",
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to generate a code for algorithm like binary tree for live coding competition. \"\n",
50
+ "request += \"Answer only with the question, no explanation.\"\n",
51
+ "messages = [{\"role\": \"user\", \"content\": request}]"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 4,
57
+ "id": "0b9dc1d7",
58
+ "metadata": {},
59
+ "outputs": [
60
+ {
61
+ "name": "stdout",
62
+ "output_type": "stream",
63
+ "text": [
64
+ "[{'role': 'user', 'content': 'Please come up with a challenging, nuanced question that I can ask a number of LLMs to generate a code for algorithm like binary tree for live coding competition. Answer only with the question, no explanation.'}]\n"
65
+ ]
66
+ }
67
+ ],
68
+ "source": [
69
+ "print(messages)"
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "code",
74
+ "execution_count": 6,
75
+ "id": "298de8ab",
76
+ "metadata": {},
77
+ "outputs": [
78
+ {
79
+ "name": "stdout",
80
+ "output_type": "stream",
81
+ "text": [
82
+ "How would you implement a binary tree in Python that includes methods for insertion, deletion, traversal (in-order, pre-order, post-order), and searching for a specific value, while also ensuring balanced height after each insertion?\n"
83
+ ]
84
+ }
85
+ ],
86
+ "source": [
87
+ "openai = OpenAI()\n",
88
+ "response = openai.chat.completions.create(\n",
89
+ " model=\"gpt-4o-mini\",\n",
90
+ " messages=messages,\n",
91
+ ")\n",
92
+ "question = response.choices[0].message.content\n",
93
+ "print(question)"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 7,
99
+ "id": "b26c539a",
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "competitors = []\n",
104
+ "answers = []\n",
105
+ "messages = [{\"role\": \"user\", \"content\": question}]"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "id": "cdd1c225",
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "model_name = \"gpt-5-mini\"\n",
116
+ "\n",
117
+ "openai = OpenAI()\n",
118
+ "response = openai.chat.completions.create(\n",
119
+ " model=\"gpt-5-mini\",\n",
120
+ " messages=messages,\n",
121
+ ")\n",
122
+ "answer = response.choices[0].message.content\n",
123
+ "\n",
124
+ "display(Markdown(answer))\n",
125
+ "answers.append(answer)\n",
126
+ "competitors.append(model_name)\n"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": null,
132
+ "id": "ad9ccdb4",
133
+ "metadata": {},
134
+ "outputs": [],
135
+ "source": [
136
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
137
+ "model_name = \"gemini-2.5-flash\"\n",
138
+ "\n",
139
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
140
+ "answer = response.choices[0].message.content\n",
141
+ "\n",
142
+ "display(Markdown(answer))\n",
143
+ "competitors.append(model_name)\n",
144
+ "answers.append(answer)"
145
+ ]
146
+ },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": null,
150
+ "id": "14709041",
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "ollama = OpenAI(base_url=\"http://localhost:11434/v1\")\n",
155
+ "model_name = \"phi3:latest\"\n",
156
+ "\n",
157
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
158
+ "answer = response.choices[0].message.content\n",
159
+ "\n",
160
+ "display(Markdown(answer))\n",
161
+ "competitors.append(model_name)\n",
162
+ "answers.append(answer)"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "id": "dd5e23f2",
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "print(competitors)\n",
173
+ "print(answers)"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": null,
179
+ "id": "96a5c917",
180
+ "metadata": {},
181
+ "outputs": [],
182
+ "source": [
183
+ "# It's nice to know how to use \"zip\"\n",
184
+ "for competitor, answer in zip(competitors, answers):\n",
185
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": 25,
191
+ "id": "4e71c1c5",
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "# Let's bring this together - note the use of \"enumerate\"\n",
196
+ "\n",
197
+ "together = \"\"\n",
198
+ "for index, answer in enumerate(answers):\n",
199
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
200
+ " together += answer + \"\\n\\n\""
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "id": "db4b67c4",
207
+ "metadata": {},
208
+ "outputs": [],
209
+ "source": [
210
+ "print(together)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": 26,
216
+ "id": "dbf92ba2",
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
221
+ "Each model has been given this question:\n",
222
+ "\n",
223
+ "{question}\n",
224
+ "\n",
225
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
226
+ "Respond with JSON, and only JSON, with the following format:\n",
227
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
228
+ "\n",
229
+ "Here are the responses from each competitor:\n",
230
+ "\n",
231
+ "{together}\n",
232
+ "\n",
233
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": null,
239
+ "id": "3eebf961",
240
+ "metadata": {},
241
+ "outputs": [],
242
+ "source": [
243
+ "print(judge)"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "code",
248
+ "execution_count": 27,
249
+ "id": "5953feb5",
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "id": "8bde0152",
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "# Judgement time!\n",
264
+ "\n",
265
+ "openai = OpenAI()\n",
266
+ "response = openai.chat.completions.create(\n",
267
+ " model=\"gpt-5-mini\",\n",
268
+ " messages=judge_messages,\n",
269
+ ")\n",
270
+ "results = response.choices[0].message.content\n",
271
+ "print(results)\n"
272
+ ]
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "id": "2c8f1410",
278
+ "metadata": {},
279
+ "outputs": [],
280
+ "source": [
281
+ "# OK let's turn this into results!\n",
282
+ "\n",
283
+ "results_dict = json.loads(results)\n",
284
+ "ranks = results_dict[\"results\"]\n",
285
+ "for index, result in enumerate(ranks):\n",
286
+ " competitor = competitors[int(result)-1]\n",
287
+ " print(f\"Rank {index+1}: {competitor}\")"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "code",
292
+ "execution_count": null,
293
+ "id": "e5e6f540",
294
+ "metadata": {},
295
+ "outputs": [],
296
+ "source": []
297
+ }
298
+ ],
299
+ "metadata": {
300
+ "kernelspec": {
301
+ "display_name": ".venv",
302
+ "language": "python",
303
+ "name": "python3"
304
+ },
305
+ "language_info": {
306
+ "codemirror_mode": {
307
+ "name": "ipython",
308
+ "version": 3
309
+ },
310
+ "file_extension": ".py",
311
+ "mimetype": "text/x-python",
312
+ "name": "python",
313
+ "nbconvert_exporter": "python",
314
+ "pygments_lexer": "ipython3",
315
+ "version": "3.12.8"
316
+ }
317
+ },
318
+ "nbformat": 4,
319
+ "nbformat_minor": 5
320
+ }
community_contributions/2_lab2_reflection_pattern.ipynb ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Week 1, Day 3\n",
8
+ "\n",
9
+ "Today we will work with lots of models! This is a way to get comfortable with APIs."
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
17
+ " <tr>\n",
18
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
19
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
20
+ " </td>\n",
21
+ " <td>\n",
22
+ " <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
23
+ " <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
24
+ " </span>\n",
25
+ " </td>\n",
26
+ " </tr>\n",
27
+ "</table>"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "This version adds Reflection pattern where we ask each model to critique and improve its own answer."
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 9,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
44
+ "\n",
45
+ "import os\n",
46
+ "import json\n",
47
+ "from dotenv import load_dotenv\n",
48
+ "from openai import OpenAI\n",
49
+ "from anthropic import Anthropic\n",
50
+ "from IPython.display import Markdown, display"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "markdown",
55
+ "metadata": {},
56
+ "source": []
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 12,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
65
+ "request += \"Answer only with the question, no explanation.\"\n",
66
+ "messages = [{\"role\": \"user\", \"content\": request}]"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "messages"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 14,
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "competitors = []\n",
85
+ "answers = []\n",
86
+ "messages = [{\"role\": \"user\", \"content\": question}]"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
96
+ "model_name = \"gemini-2.0-flash\"\n",
97
+ "\n",
98
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
99
+ "answer = response.choices[0].message.content\n",
100
+ "\n",
101
+ "display(Markdown(answer))\n",
102
+ "competitors.append(model_name)\n",
103
+ "answers.append(answer)"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": null,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
113
+ "model_name = \"deepseek-chat\"\n",
114
+ "\n",
115
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
116
+ "answer = response.choices[0].message.content\n",
117
+ "\n",
118
+ "display(Markdown(answer))\n",
119
+ "competitors.append(model_name)\n",
120
+ "answers.append(answer)"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
130
+ "model_name = \"llama-3.3-70b-versatile\"\n",
131
+ "\n",
132
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
133
+ "answer = response.choices[0].message.content\n",
134
+ "\n",
135
+ "display(Markdown(answer))\n",
136
+ "competitors.append(model_name)\n",
137
+ "answers.append(answer)\n"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "markdown",
142
+ "metadata": {},
143
+ "source": [
144
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
145
+ " <tr>\n",
146
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
147
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
148
+ " </td>\n",
149
+ " <td>\n",
150
+ " <h2 style=\"color:#ff7800;\">Super important - ignore me at your peril!</h2>\n",
151
+ " <span style=\"color:#ff7800;\">The model called <b>llama3.3</b> is FAR too large for home computers - it's not intended for personal computing and will consume all your resources! Stick with the nicely sized <b>llama3.2</b> or <b>llama3.2:1b</b> and if you want larger, try llama3.1 or smaller variants of Qwen, Gemma, Phi or DeepSeek. See the <A href=\"https://ollama.com/models\">the Ollama models page</a> for a full list of models and sizes.\n",
152
+ " </span>\n",
153
+ " </td>\n",
154
+ " </tr>\n",
155
+ "</table>"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {},
162
+ "outputs": [],
163
+ "source": [
164
+ "!ollama pull llama3.2"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": 33,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": [
173
+ "# Let's bring this together - note the use of \"enumerate\"\n",
174
+ "\n",
175
+ "together = \"\"\n",
176
+ "for index, answer in enumerate(answers):\n",
177
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
178
+ " together += answer + \"\\n\\n\""
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": 36,
184
+ "metadata": {},
185
+ "outputs": [],
186
+ "source": [
187
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
188
+ "Each model has been given this question:\n",
189
+ "\n",
190
+ "{question}\n",
191
+ "\n",
192
+ "Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
193
+ "Respond with JSON, and only JSON, with the following format:\n",
194
+ "{{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
195
+ "\n",
196
+ "Here are the responses from each competitor:\n",
197
+ "\n",
198
+ "{together}\n",
199
+ "\n",
200
+ "Now respond with the JSON with the ranked order of the competitors, nothing else. Do not include markdown formatting or code blocks.\"\"\"\n"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": 38,
206
+ "metadata": {},
207
+ "outputs": [],
208
+ "source": [
209
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "markdown",
214
+ "metadata": {},
215
+ "source": [
216
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
217
+ " <tr>\n",
218
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
219
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
220
+ " </td>\n",
221
+ " <td>\n",
222
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
223
+ " <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
224
+ " </span>\n",
225
+ " </td>\n",
226
+ " </tr>\n",
227
+ "</table>"
228
+ ]
229
+ },
230
+ {
231
+ "cell_type": "markdown",
232
+ "metadata": {},
233
+ "source": [
234
+ "1. Ensemble (Model Competition) Pattern\n",
235
+ "Description: The same prompt/question is sent to multiple different LLMs (OpenAI, Anthropic, Ollama, etc.).\n",
236
+ "Purpose: To compare the quality, style, and content of responses from different models.\n",
237
+ "Where in notebook:\n",
238
+ "The code sends the same question to several models and collects their answers in the competitors and answers lists.\n",
239
+ "\n",
240
+ "2. Judging/Evaluator Pattern\n",
241
+ "Description: After collecting responses from all models, another LLM is used as a β€œjudge” to evaluate and rank the responses.\n",
242
+ "Purpose: To automate the assessment of which model gave the best answer, based on clarity and strength of argument.\n",
243
+ "Where in notebook:\n",
244
+ "The judge prompt is constructed, and an LLM is asked to rank the responses in JSON format.\n",
245
+ "\n",
246
+ "3. Self-Improvement/Meta-Reasoning Pattern\n",
247
+ "Description: The system not only generates answers but also reflects on and evaluates its own outputs (or those of its peers).\n",
248
+ "Purpose: To iteratively improve or select the best output, often used in advanced agentic systems.\n",
249
+ "Where in notebook:\n",
250
+ "The β€œjudge” LLM is an example of meta-reasoning, as it reasons about the quality of other LLMs’ outputs.\n",
251
+ "\n",
252
+ "4. Chain-of-Thought/Decomposition Pattern (to a lesser extent)\n",
253
+ "Description: Breaking down a complex task into subtasks (e.g., generate question β†’ get answers β†’ evaluate answers).\n",
254
+ "Purpose: To improve reliability and interpretability by structuring the workflow.\n",
255
+ "Where in notebook:\n",
256
+ "The workflow is decomposed into:\n",
257
+ "Generating a challenging question\n",
258
+ "Getting answers from multiple models\n",
259
+ "Judging the answers\n",
260
+ "\n",
261
+ "In short:\n",
262
+ "This notebook uses the Ensemble/Competition, Judging/Evaluator, and Meta-Reasoning agentic patterns, and also demonstrates a simple form of Decomposition by structuring the workflow into clear stages.\n",
263
+ "If you want to add more agentic patterns, you could try things like:\n",
264
+ "Reflexion (let models critique and revise their own answers)\n",
265
+ "Tool Use (let models call external tools or APIs)\n",
266
+ "Planning (let a model plan the steps before answering)"
267
+ ]
268
+ },
269
+ {
270
+ "cell_type": "markdown",
271
+ "metadata": {},
272
+ "source": [
273
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
274
+ " <tr>\n",
275
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
276
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
277
+ " </td>\n",
278
+ " <td>\n",
279
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
280
+ " <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
281
+ " are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
282
+ " to business projects where accuracy is critical.\n",
283
+ " </span>\n",
284
+ " </td>\n",
285
+ " </tr>\n",
286
+ "</table>"
287
+ ]
288
+ }
289
+ ],
290
+ "metadata": {
291
+ "kernelspec": {
292
+ "display_name": ".venv",
293
+ "language": "python",
294
+ "name": "python3"
295
+ },
296
+ "language_info": {
297
+ "codemirror_mode": {
298
+ "name": "ipython",
299
+ "version": 3
300
+ },
301
+ "file_extension": ".py",
302
+ "mimetype": "text/x-python",
303
+ "name": "python",
304
+ "nbconvert_exporter": "python",
305
+ "pygments_lexer": "ipython3",
306
+ "version": "3.12.8"
307
+ }
308
+ },
309
+ "nbformat": 4,
310
+ "nbformat_minor": 2
311
+ }
community_contributions/2_lab2_reflection_pattern2.ipynb ADDED
@@ -0,0 +1,999 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to the Second Lab - Exercise: Advanced Agentic Design Patterns\n",
8
+ "\n",
9
+ "This notebook extends the previous lab by adding the **Reflection Pattern** to improve response quality.\n",
10
+ "\n",
11
+ "### Patterns used in the original lab:\n",
12
+ "1. **Multi-Model Comparison Pattern** - Comparing multiple models\n",
13
+ "2. **Judge/Evaluator Pattern** - Evaluation by a judge model\n",
14
+ "\n",
15
+ "### New pattern added:\n",
16
+ "3. **Reflection Pattern** - Self-improvement of responses"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {},
22
+ "source": [
23
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
24
+ " <tr>\n",
25
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
26
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
27
+ " </td>\n",
28
+ " <td>\n",
29
+ " <h2 style=\"color:#ff7800;\">New Pattern: Reflection</h2>\n",
30
+ " <span style=\"color:#ff7800;\">The Reflection Pattern allows a model to critique and improve its own response. This is particularly useful for complex tasks requiring nuance and precision.</span>\n",
31
+ " </td>\n",
32
+ " </tr>\n",
33
+ "</table>"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 1,
39
+ "metadata": {},
40
+ "outputs": [
41
+ {
42
+ "data": {
43
+ "text/plain": [
44
+ "True"
45
+ ]
46
+ },
47
+ "execution_count": 1,
48
+ "metadata": {},
49
+ "output_type": "execute_result"
50
+ }
51
+ ],
52
+ "source": [
53
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
54
+ "\n",
55
+ "import os\n",
56
+ "import json\n",
57
+ "from dotenv import load_dotenv\n",
58
+ "from openai import OpenAI\n",
59
+ "from anthropic import Anthropic\n",
60
+ "from IPython.display import Markdown, display\n",
61
+ "\n",
62
+ "# Always remember to do this!\n",
63
+ "load_dotenv(override=True)"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": 2,
69
+ "metadata": {},
70
+ "outputs": [
71
+ {
72
+ "name": "stdout",
73
+ "output_type": "stream",
74
+ "text": [
75
+ "OpenAI API Key exists and begins sk-1kYcH\n",
76
+ "Anthropic API Key exists and begins sk-ant-\n",
77
+ "Google API Key not set (and this is optional)\n",
78
+ "DeepSeek API Key not set (and this is optional)\n",
79
+ "Groq API Key not set (and this is optional)\n"
80
+ ]
81
+ }
82
+ ],
83
+ "source": [
84
+ "# Print the key prefixes to help with any debugging\n",
85
+ "\n",
86
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
87
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
88
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
89
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
90
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
91
+ "\n",
92
+ "if openai_api_key:\n",
93
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
94
+ "else:\n",
95
+ " print(\"OpenAI API Key not set\")\n",
96
+ " \n",
97
+ "if anthropic_api_key:\n",
98
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
99
+ "else:\n",
100
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
101
+ "\n",
102
+ "if google_api_key:\n",
103
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
104
+ "else:\n",
105
+ " print(\"Google API Key not set (and this is optional)\")\n",
106
+ "\n",
107
+ "if deepseek_api_key:\n",
108
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
109
+ "else:\n",
110
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
111
+ "\n",
112
+ "if groq_api_key:\n",
113
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
114
+ "else:\n",
115
+ " print(\"Groq API Key not set (and this is optional)\")"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "markdown",
120
+ "metadata": {},
121
+ "source": [
122
+ "## Step 1: Generate Initial Question (Multi-Model Pattern)"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": 3,
128
+ "metadata": {},
129
+ "outputs": [
130
+ {
131
+ "name": "stdout",
132
+ "output_type": "stream",
133
+ "text": [
134
+ "Generated Question:\n",
135
+ "A wealthy philanthropist has developed a new drug that can cure a rare but fatal disease affecting a small population. However, the drug is expensive to produce and the philanthropist only has enough resources to manufacture a limited supply. At the same time, a competing pharmaceutical company has discovered the cure but plans to charge exorbitant prices, making it inaccessible for most patients. \n",
136
+ "\n",
137
+ "The philanthropist learns that if they invest their resources into manufacturing the drug, it can be distributed at a lower cost but only to a select few who are already on a waiting list, prioritizing those who are most likely to recover. Alternatively, the philanthropist could sell the formula to the competing company for a substantial profit, ensuring that a broader population can access the cure, albeit at high prices that many cannot afford.\n",
138
+ "\n",
139
+ "The dilemma: Should the philanthropist prioritize the immediate health of a few individuals by providing the cure at a lower cost, or should they consider the greater good by allowing the competitive company to distribute the cure to a wider audience at a higher price?\n"
140
+ ]
141
+ }
142
+ ],
143
+ "source": [
144
+ "# Generate a challenging question for the models to answer\n",
145
+ "\n",
146
+ "request = \"Please come up with a challenging ethical dilemma that requires careful moral reasoning and consideration of multiple perspectives. \"\n",
147
+ "request += \"The dilemma should involve conflicting values and have no clear-cut answer. Answer only with the dilemma, no explanation.\"\n",
148
+ "\n",
149
+ "messages = [{\"role\": \"user\", \"content\": request}]\n",
150
+ "\n",
151
+ "openai = OpenAI()\n",
152
+ "response = openai.chat.completions.create(\n",
153
+ " model=\"gpt-4o-mini\",\n",
154
+ " messages=messages,\n",
155
+ ")\n",
156
+ "\n",
157
+ "question = response.choices[0].message.content\n",
158
+ "print(\"Generated Question:\")\n",
159
+ "print(question)"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "markdown",
164
+ "metadata": {},
165
+ "source": [
166
+ "## Step 2: Get Initial Responses from Multiple Models"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "code",
171
+ "execution_count": 4,
172
+ "metadata": {},
173
+ "outputs": [],
174
+ "source": [
175
+ "def get_initial_response(client, model_name, question, is_anthropic=False):\n",
176
+ " \"\"\"Get initial response from a model\"\"\"\n",
177
+ " messages = [{\"role\": \"user\", \"content\": question}]\n",
178
+ " \n",
179
+ " if is_anthropic:\n",
180
+ " response = client.messages.create(\n",
181
+ " model=model_name, \n",
182
+ " messages=messages, \n",
183
+ " max_tokens=1000\n",
184
+ " )\n",
185
+ " return response.content[0].text\n",
186
+ " else:\n",
187
+ " response = client.chat.completions.create(\n",
188
+ " model=model_name, \n",
189
+ " messages=messages\n",
190
+ " )\n",
191
+ " return response.choices[0].message.content"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": 5,
197
+ "metadata": {},
198
+ "outputs": [],
199
+ "source": [
200
+ "# Configure clients\n",
201
+ "openai_client = OpenAI()\n",
202
+ "claude_client = Anthropic() if anthropic_api_key else None\n",
203
+ "gemini_client = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\") if google_api_key else None\n",
204
+ "deepseek_client = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\") if deepseek_api_key else None\n",
205
+ "groq_client = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\") if groq_api_key else None"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": 6,
211
+ "metadata": {},
212
+ "outputs": [
213
+ {
214
+ "name": "stdout",
215
+ "output_type": "stream",
216
+ "text": [
217
+ "\n",
218
+ "=== INITIAL RESPONSES ===\n",
219
+ "\n",
220
+ "**gpt-4o-mini:**\n"
221
+ ]
222
+ },
223
+ {
224
+ "data": {
225
+ "text/markdown": [
226
+ "This ethical dilemma presents a challenging decision for the philanthropist, who must weigh the immediate health needs of a few individuals against the broader societal implications of drug distribution and access.\n",
227
+ "\n",
228
+ "### Option 1: Prioritizing Immediate Health\n",
229
+ "\n",
230
+ "If the philanthropist chooses to manufacture the drug and distribute it at a lower cost to those on the waiting list, they are directly addressing the pressing health needs of a select few individuals who are already vulnerable. This action prioritizes compassion and the moral obligation to help those who are suffering. By ensuring that the drug is available to those with the highest likelihood of recovery, the philanthropist demonstrates an ethical commitment to saving lives and reducing suffering in the short term.\n",
231
+ "\n",
232
+ "However, this approach has limitations. By distributing the drug to only a small number of patients, the philanthropist may overlook other individuals who could benefit from the cure. Additionally, this solution does not address the systemic issue of access to healthcare and affordable medications for the larger population suffering from the disease.\n",
233
+ "\n",
234
+ "### Option 2: Considering the Greater Good\n",
235
+ "\n",
236
+ "On the other hand, selling the formula to the competing pharmaceutical company for a substantial profit could lead to a wider distribution of the drug, although at a higher price point that may make it inaccessible to many patients. In this scenario, the philanthropist uses their financial gain to potentially invest in other healthcare initiatives or research, thus contributing to the long-term improvement of medical care or addressing related health issues.\n",
237
+ "\n",
238
+ "This choice raises ethical concerns regarding the prioritization of profit over compassion and the risk that many individuals will remain unable to afford the life-saving treatment. It also creates a tension between the ideals of philanthropy and the realities of the pharmaceutical industry, which often operates on profit motives rather than altruistic goals.\n",
239
+ "\n",
240
+ "### Balancing the Two Options\n",
241
+ "\n",
242
+ "A possible compromise could be for the philanthropist to negotiate a deal with the pharmaceutical company that ensures a tiered pricing structure, where those who can afford the drug pay more while discounts or alternative funding are provided for low-income patients. This could help bridge the gap between immediate health needs and wider access.\n",
243
+ "\n",
244
+ "Ultimately, the decision comes down to the philanthropist's values and vision for their impact on public health. Do they prioritize saving a few lives in the short term or seek a more sustainable, albeit imperfect, solution that aims at broader access over a longer timeframe? The complexity of the dilemma emphasizes the need for thoughtful deliberation on how best to serve both individual health needs and the greater public good."
245
+ ],
246
+ "text/plain": [
247
+ "<IPython.core.display.Markdown object>"
248
+ ]
249
+ },
250
+ "metadata": {},
251
+ "output_type": "display_data"
252
+ },
253
+ {
254
+ "name": "stdout",
255
+ "output_type": "stream",
256
+ "text": [
257
+ "\n",
258
+ "==================================================\n",
259
+ "\n",
260
+ "**claude-3-7-sonnet-latest:**\n"
261
+ ]
262
+ },
263
+ {
264
+ "data": {
265
+ "text/markdown": [
266
+ "# The Philanthropist's Dilemma\n",
267
+ "\n",
268
+ "This is a complex ethical dilemma that involves several important considerations:\n",
269
+ "\n",
270
+ "## Key Ethical Tensions\n",
271
+ "\n",
272
+ "- **Limited access at affordable prices** vs. **wider access at unaffordable prices**\n",
273
+ "- **Immediate relief for a few** vs. **potential long-term access for many**\n",
274
+ "- **Direct control over distribution** vs. **surrendering control to profit-motivated actors**\n",
275
+ "\n",
276
+ "## Considerations for Manufacturing the Drug Directly\n",
277
+ "\n",
278
+ "**Benefits:**\n",
279
+ "- Ensures the most vulnerable patients receive treatment based on medical need rather than ability to pay\n",
280
+ "- Maintains the philanthropist's ethical vision and control over distribution\n",
281
+ "- Sets a precedent for compassionate drug pricing\n",
282
+ "\n",
283
+ "**Drawbacks:**\n",
284
+ "- Limited overall reach due to resource constraints\n",
285
+ "- Potentially slower scaling of production\n",
286
+ "- Many patients may receive no treatment at all\n",
287
+ "\n",
288
+ "## Considerations for Selling to the Pharmaceutical Company\n",
289
+ "\n",
290
+ "**Benefits:**\n",
291
+ "- Potentially greater production capacity and distribution reach\n",
292
+ "- The philanthropist could use profits to subsidize costs for those who cannot afford it\n",
293
+ "- Might accelerate further research and development\n",
294
+ "\n",
295
+ "**Drawbacks:**\n",
296
+ "- Many patients would be excluded based on financial means\n",
297
+ "- Surrenders control over an essential medicine to profit-motivated decision-making\n",
298
+ "- Could establish a problematic precedent for pricing life-saving medications\n",
299
+ "\n",
300
+ "This dilemma reflects broader tensions in healthcare ethics between utilitarian approaches (helping the most people) and justice-based approaches (ensuring fair access based on need rather than wealth).\n",
301
+ "\n",
302
+ "There might be creative third options worth exploring, such as licensing agreements with price caps, creating a non-profit manufacturing entity, or partnering with governments to ensure broader affordable access."
303
+ ],
304
+ "text/plain": [
305
+ "<IPython.core.display.Markdown object>"
306
+ ]
307
+ },
308
+ "metadata": {},
309
+ "output_type": "display_data"
310
+ },
311
+ {
312
+ "name": "stdout",
313
+ "output_type": "stream",
314
+ "text": [
315
+ "\n",
316
+ "==================================================\n",
317
+ "\n"
318
+ ]
319
+ }
320
+ ],
321
+ "source": [
322
+ "# Collect initial responses\n",
323
+ "initial_responses = {}\n",
324
+ "competitors = []\n",
325
+ "\n",
326
+ "models = [\n",
327
+ " (\"gpt-4o-mini\", openai_client, False),\n",
328
+ " (\"claude-3-7-sonnet-latest\", claude_client, True),\n",
329
+ " (\"gemini-2.0-flash\", gemini_client, False),\n",
330
+ " (\"deepseek-chat\", deepseek_client, False),\n",
331
+ " (\"llama-3.3-70b-versatile\", groq_client, False),\n",
332
+ "]\n",
333
+ "\n",
334
+ "print(\"\\n=== INITIAL RESPONSES ===\\n\")\n",
335
+ "\n",
336
+ "for model_name, client, is_anthropic in models:\n",
337
+ " if client:\n",
338
+ " try:\n",
339
+ " response = get_initial_response(client, model_name, question, is_anthropic)\n",
340
+ " initial_responses[model_name] = response\n",
341
+ " competitors.append(model_name)\n",
342
+ " \n",
343
+ " print(f\"**{model_name}:**\")\n",
344
+ " display(Markdown(response))\n",
345
+ " print(\"\\n\" + \"=\"*50 + \"\\n\")\n",
346
+ " except Exception as e:\n",
347
+ " print(f\"Error with {model_name}: {e}\")"
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "markdown",
352
+ "metadata": {},
353
+ "source": [
354
+ "## Step 3: NEW PATTERN - Reflection Pattern"
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "code",
359
+ "execution_count": 7,
360
+ "metadata": {},
361
+ "outputs": [],
362
+ "source": [
363
+ "def apply_reflection_pattern(client, model_name, original_question, initial_response, is_anthropic=False):\n",
364
+ " \"\"\"Apply the Reflection Pattern to improve a response\"\"\"\n",
365
+ " \n",
366
+ " reflection_prompt = f\"\"\"\n",
367
+ "You previously received this question:\n",
368
+ "{original_question}\n",
369
+ "\n",
370
+ "Here was your initial response:\n",
371
+ "{initial_response}\n",
372
+ "\n",
373
+ "Now, as a critical expert, analyze your own response:\n",
374
+ "1. What are the strengths of this response?\n",
375
+ "2. What important perspectives are missing?\n",
376
+ "3. Are there any biases or blind spots in the analysis?\n",
377
+ "4. How could you improve this response?\n",
378
+ "\n",
379
+ "After this self-critique, provide an IMPROVED response that takes into account your observations.\n",
380
+ "\n",
381
+ "Response format:\n",
382
+ "## Self-Critique\n",
383
+ "[Your critical analysis of the initial response]\n",
384
+ "\n",
385
+ "## Improved Response\n",
386
+ "[Your revised and improved response]\n",
387
+ "\"\"\"\n",
388
+ " \n",
389
+ " messages = [{\"role\": \"user\", \"content\": reflection_prompt}]\n",
390
+ " \n",
391
+ " if is_anthropic:\n",
392
+ " response = client.messages.create(\n",
393
+ " model=model_name, \n",
394
+ " messages=messages, \n",
395
+ " max_tokens=1500\n",
396
+ " )\n",
397
+ " return response.content[0].text\n",
398
+ " else:\n",
399
+ " response = client.chat.completions.create(\n",
400
+ " model=model_name, \n",
401
+ " messages=messages\n",
402
+ " )\n",
403
+ " return response.choices[0].message.content"
404
+ ]
405
+ },
406
+ {
407
+ "cell_type": "code",
408
+ "execution_count": 8,
409
+ "metadata": {},
410
+ "outputs": [
411
+ {
412
+ "name": "stdout",
413
+ "output_type": "stream",
414
+ "text": [
415
+ "\n",
416
+ "=== RESPONSES AFTER REFLECTION ===\n",
417
+ "\n",
418
+ "**gpt-4o-mini - After Reflection:**\n"
419
+ ]
420
+ },
421
+ {
422
+ "data": {
423
+ "text/markdown": [
424
+ "## Self-Critique\n",
425
+ "1. **Strengths of this Response:**\n",
426
+ " - The response thoroughly outlines both options available to the philanthropist, providing a balanced view of the ethical implications of each choice.\n",
427
+ " - It acknowledges the immediate health needs of affected individuals as well as the broader societal implications of drug distribution.\n",
428
+ " - It introduces a potential compromise solution, which adds depth to the analysis and suggests a more nuanced approach to the dilemma.\n",
429
+ "\n",
430
+ "2. **Important Perspectives Missing:**\n",
431
+ " - The response does not adequately consider the potential operational and logistical challenges in manufacturing and distributing the drug at a lower cost, including regulatory hurdles and the scalability of production.\n",
432
+ " - There is limited discussion on the emotional impact of the decision on the patients and their families, which could influence the philanthropist's considerations.\n",
433
+ " - The perspective of other stakeholders, such as healthcare providers and ethicists, is not introduced.\n",
434
+ "\n",
435
+ "3. **Biases or Blind Spots in the Analysis:**\n",
436
+ " - The response may lean towards prioritizing compassion over economic pragmatism, possibly downplaying the complexities involved in pharmaceutical economics and the realities that arise from selling to a corporation with profit motives.\n",
437
+ " - It assumes a binary choice rather than considering other stakeholder impacts and longer-term systemic solutions.\n",
438
+ "\n",
439
+ "4. **How to Improve This Response:**\n",
440
+ " - Include more contextual factors that might affect the decision, such as regulatory considerations, patient demographics, and healthcare infrastructure.\n",
441
+ " - Expand on the emotional and psychological aspects of the decision-making process for both the philanthropist and the patients involved.\n",
442
+ " - Address the potential for future societal implications if the competing company monopolizes the market after acquiring the formula.\n",
443
+ "\n",
444
+ "## Improved Response\n",
445
+ "This ethical dilemma presents the philanthropist with a complex decision regarding how best to utilize limited resources to maximize the benefit for individuals suffering from a rare but fatal disease. The two primary options – providing a low-cost supply to a select few or selling the formula for broader but costly distribution – both highlight significant ethical considerations.\n",
446
+ "\n",
447
+ "### Option 1: Prioritizing Immediate Health\n",
448
+ "By choosing to manufacture the drug at a lower cost for those on the waiting list, the philanthropist opts to directly address the urgent health needs of vulnerable individuals. This approach reflects a moral obligation to alleviate suffering and save lives in the short term. Prioritizing individuals with the highest likelihood of recovery can lead to tangible, immediate outcomes for those patients and their families.\n",
449
+ "\n",
450
+ "However, there are operational challenges associated with this choice. Limited production capabilities may mean that only a fraction of those in need can actually receive the drug, leaving many others without hope. Additionally, this decision doesn't resolve the systemic issues within healthcare, such as overall treatment accessibility and drug pricing, which may persist if not tackled holistically.\n",
451
+ "\n",
452
+ "### Option 2: Considering the Greater Good\n",
453
+ "Alternatively, selling the formula to the competing pharmaceutical company could result in wider distribution of the drug and potentially more patients benefiting from the cure, albeit at higher prices. This choice could finance further philanthropic efforts or investments in healthcare that might ultimately lead to broader long-term improvements in public health.\n",
454
+ "\n",
455
+ "However, ethical concerns arise when considering the high pricing of the cure. The decision may disproportionately disadvantage lower-income patients, perpetuating healthcare inequities. Furthermore, there is the risk that this choice could enable the pharmaceutical company to monopolize treatment options, further exploitation in the industry.\n",
456
+ "\n",
457
+ "### A Balanced Approach\n",
458
+ "To navigate this complex dilemma more thoughtfully, the philanthropist could explore a compromise by negotiating with the pharmaceutical company to establish a tiered pricing structure. This could create a system where the drug is offered at a reduced price for low-income patients, while ensuring sustainability for the company through higher prices for those who can afford them. Additionally, the philanthropist might advocate for a commitment from the company to invest in generics or alternative distribution methods to enhance accessibility.\n",
459
+ "\n",
460
+ "### Conclusion\n",
461
+ "The choice ultimately hinges on the philanthropist's values and vision for their impact on public health. This decision requires careful consideration of immediate health benefits, long-term accessibility, and the emotional ramifications for affected individuals. By weighing the implications of each option and considering collaborative solutions, the philanthropist can work towards an outcome that promotes both individual care and broader societal well-being."
462
+ ],
463
+ "text/plain": [
464
+ "<IPython.core.display.Markdown object>"
465
+ ]
466
+ },
467
+ "metadata": {},
468
+ "output_type": "display_data"
469
+ },
470
+ {
471
+ "name": "stdout",
472
+ "output_type": "stream",
473
+ "text": [
474
+ "\n",
475
+ "==================================================\n",
476
+ "\n",
477
+ "**claude-3-7-sonnet-latest - After Reflection:**\n"
478
+ ]
479
+ },
480
+ {
481
+ "data": {
482
+ "text/markdown": [
483
+ "## Self-Critique\n",
484
+ "\n",
485
+ "### Strengths of the initial response:\n",
486
+ "- Well-structured analysis that clearly outlines the ethical tensions\n",
487
+ "- Presents balanced considerations for both options\n",
488
+ "- Mentions potential third options beyond the binary choice\n",
489
+ "- Identifies the broader ethical frameworks at play (utilitarian vs. justice-based approaches)\n",
490
+ "\n",
491
+ "### Missing perspectives:\n",
492
+ "1. **Stakeholder analysis**: The response lacks a thorough examination of all affected parties (patients, healthcare systems, future patients, etc.)\n",
493
+ "2. **Timeline considerations**: No discussion of short-term vs. long-term consequences beyond immediate access\n",
494
+ "3. **Public health impact**: Limited analysis of how each option affects overall public health outcomes\n",
495
+ "4. **Precedent-setting effects**: Inadequate exploration of how this decision might influence future pharmaceutical development and pricing\n",
496
+ "5. **Regulatory context**: No mention of potential government intervention, price controls, or other regulatory factors\n",
497
+ "6. **Global justice perspective**: No consideration of how this decision affects different regions/countries\n",
498
+ "\n",
499
+ "### Biases and blind spots:\n",
500
+ "1. **False dichotomy**: Despite mentioning \"third options,\" the analysis primarily treats this as a binary choice\n",
501
+ "2. **Western/developed-world bias**: Assumes a market-based healthcare system without considering different global contexts\n",
502
+ "3. **Individual-focused ethics**: Overemphasizes individual choice rather than institutional or systemic responsibilities\n",
503
+ "4. **Overly abstract**: The analysis lacks concrete examples or case studies that might inform the decision\n",
504
+ "5. **Neglect of power dynamics**: Doesn't address the power imbalance between corporations, individuals, and patients\n",
505
+ "\n",
506
+ "### Improvement opportunities:\n",
507
+ "1. Provide a more nuanced spectrum of options beyond the binary choice\n",
508
+ "2. Include more stakeholder perspectives, particularly patient voices\n",
509
+ "3. Consider real-world case studies of similar pharmaceutical dilemmas\n",
510
+ "4. Address systemic issues in drug development and pharmaceutical pricing\n",
511
+ "5. Explore collaborative approaches that leverage multiple institutions\n",
512
+ "6. Discuss intellectual property rights and their ethical implications\n",
513
+ "\n",
514
+ "## Improved Response\n",
515
+ "\n",
516
+ "# The Philanthropist's Dilemma: A Multidimensional Ethical Analysis\n",
517
+ "\n",
518
+ "This scenario presents not simply a binary choice but a complex ethical landscape involving multiple stakeholders, systemic factors, and competing values.\n",
519
+ "\n",
520
+ "## Stakeholder Analysis\n",
521
+ "\n",
522
+ "**Patients and families:**\n",
523
+ "- Those currently suffering need immediate access regardless of mechanism\n",
524
+ "- Future patients have interests in sustainable development of treatments\n",
525
+ "- Economic diversity among patients means affordability affects different groups unequally\n",
526
+ "\n",
527
+ "**Healthcare systems:**\n",
528
+ "- Must allocate limited resources across competing priorities\n",
529
+ "- High-priced drugs can strain budgets and force difficult coverage decisions\n",
530
+ "- Precedents set now affect future negotiations with pharmaceutical companies\n",
531
+ "\n",
532
+ "**Research community:**\n",
533
+ "- Incentives for developing treatments for rare diseases are influenced by such cases\n",
534
+ "- How intellectual property is handled affects future research priorities\n",
535
+ "\n",
536
+ "## Ethical Frameworks Worth Considering\n",
537
+ "\n",
538
+ "1. **Distributive justice**: Who should receive limited resources? What constitutes fair allocation?\n",
539
+ "2. **Rights-based approach**: Do patients have a right to life-saving medication regardless of cost?\n",
540
+ "3. **Consequentialist assessment**: Which option produces the best outcomes for the most people over time?\n",
541
+ "4. **Virtue ethics**: What would a virtuous philanthropist do in this situation?\n",
542
+ "5. **Global justice**: How does this decision affect healthcare equity across different regions?\n",
543
+ "\n",
544
+ "## Spectrum of Options\n",
545
+ "\n",
546
+ "Rather than two mutually exclusive choices, consider a spectrum of possibilities:\n",
547
+ "\n",
548
+ "1. **Direct manufacturing with tiered pricing**: Manufacture independently but implement income-based pricing to maximize access while maintaining sustainability\n",
549
+ "\n",
550
+ "2. **Conditional licensing**: License the formula with contractual price controls, distribution requirements, and accessibility guarantees\n",
551
+ "\n",
552
+ "3. **Public-private partnership**: Collaborate with governments, NGOs, and selected pharmaceutical partners to ensure broad, affordable access\n",
553
+ "\n",
554
+ "4. **Open-source approach**: Release the formula publicly with certain patent protections waived, while establishing a foundation to support manufacturing\n",
555
+ "\n",
556
+ "5. **Hybrid distribution model**: Manufacture for highest-need populations while licensing to reach others, using licensing revenues to subsidize direct manufacturing\n",
557
+ "\n",
558
+ "## Case Study Context\n",
559
+ "\n",
560
+ "Similar dilemmas have occurred with treatments for HIV/AIDS, hepatitis C, and rare genetic disorders. The outcomes suggest:\n",
561
+ "\n",
562
+ "- Maintaining some control over intellectual property while ensuring broad access often yields better public health outcomes than either extreme option\n",
563
+ "- Patient advocacy can significantly influence corporate behavior and pricing\n",
564
+ "- International differences in pricing and patent enforcement create complex dynamics\n",
565
+ "- Government intervention through negotiation, compulsory licensing, or regulation often becomes necessary\n",
566
+ "\n",
567
+ "## Systems-Level Considerations\n",
568
+ "\n",
569
+ "This dilemma exists within broader systemic issues:\n",
570
+ "\n",
571
+ "- The current pharmaceutical development model creates inherent tensions between innovation, access, and affordability\n",
572
+ "- Rare disease treatments highlight market failures in drug development\n",
573
+ "- Healthcare financing systems vary globally, affecting how we should evaluate \"accessibility\"\n",
574
+ "- Intellectual property regimes may require reform to better balance innovation incentives with public health needs\n",
575
+ "\n",
576
+ "## Recommended Approach\n",
577
+ "\n",
578
+ "The philanthropist should pursue a hybrid strategy that:\n",
579
+ "\n",
580
+ "1. Maintains sufficient control to ensure the most vulnerable patients receive treatment regardless of ability to pay\n",
581
+ "\n",
582
+ "2. Leverages partnerships with multiple entities (pharmaceutical companies, governments, NGOs) to maximize production scale and geographic reach\n",
583
+ "\n",
584
+ "3. Implements contractual safeguards on pricing, with particular attention to low and middle-income regions\n",
585
+ "\n",
586
+ "4. Establishes a patient assistance foundation using a portion of any licensing revenues\n",
587
+ "\n",
588
+ "5. Advocates for systemic reforms that would prevent such dilemmas in the future\n",
589
+ "\n",
590
+ "This approach recognizes that the philanthropist's responsibility extends beyond the immediate distribution decision to include consideration of precedent-setting effects, stakeholder equity, and systemic changeβ€”balancing immediate needs with long-term public health impact."
591
+ ],
592
+ "text/plain": [
593
+ "<IPython.core.display.Markdown object>"
594
+ ]
595
+ },
596
+ "metadata": {},
597
+ "output_type": "display_data"
598
+ },
599
+ {
600
+ "name": "stdout",
601
+ "output_type": "stream",
602
+ "text": [
603
+ "\n",
604
+ "==================================================\n",
605
+ "\n"
606
+ ]
607
+ }
608
+ ],
609
+ "source": [
610
+ "# Apply Reflection Pattern\n",
611
+ "reflected_responses = {}\n",
612
+ "\n",
613
+ "print(\"\\n=== RESPONSES AFTER REFLECTION ===\\n\")\n",
614
+ "\n",
615
+ "for model_name, client, is_anthropic in models:\n",
616
+ " if client and model_name in initial_responses:\n",
617
+ " try:\n",
618
+ " reflected = apply_reflection_pattern(\n",
619
+ " client, model_name, question, \n",
620
+ " initial_responses[model_name], is_anthropic\n",
621
+ " )\n",
622
+ " reflected_responses[model_name] = reflected\n",
623
+ " \n",
624
+ " print(f\"**{model_name} - After Reflection:**\")\n",
625
+ " display(Markdown(reflected))\n",
626
+ " print(\"\\n\" + \"=\"*50 + \"\\n\")\n",
627
+ " except Exception as e:\n",
628
+ " print(f\"Error with reflection for {model_name}: {e}\")"
629
+ ]
630
+ },
631
+ {
632
+ "cell_type": "markdown",
633
+ "metadata": {},
634
+ "source": [
635
+ "## Step 4: Comparative Evaluation (Extended Judge Pattern)"
636
+ ]
637
+ },
638
+ {
639
+ "cell_type": "code",
640
+ "execution_count": 9,
641
+ "metadata": {},
642
+ "outputs": [],
643
+ "source": [
644
+ "def create_comparative_evaluation(question, initial_responses, reflected_responses):\n",
645
+ " \"\"\"Create a comparative evaluation of responses before/after reflection\"\"\"\n",
646
+ " \n",
647
+ " evaluation_prompt = f\"\"\"\n",
648
+ "You are evaluating the effectiveness of the \"Reflection Pattern\" on the following question:\n",
649
+ "{question}\n",
650
+ "\n",
651
+ "For each model, you have:\n",
652
+ "1. An initial response\n",
653
+ "2. A response after self-reflection\n",
654
+ "\n",
655
+ "Analyze and compare:\n",
656
+ "- Depth of analysis\n",
657
+ "- Consideration of multiple perspectives\n",
658
+ "- Nuance and sophistication of reasoning\n",
659
+ "- Improvement brought by reflection\n",
660
+ "\n",
661
+ "MODELS TO EVALUATE:\n",
662
+ "\"\"\"\n",
663
+ " \n",
664
+ " for model_name in initial_responses:\n",
665
+ " if model_name in reflected_responses:\n",
666
+ " evaluation_prompt += f\"\"\"\n",
667
+ "## {model_name}\n",
668
+ "\n",
669
+ "### Initial response:\n",
670
+ "{initial_responses[model_name][:500]}...\n",
671
+ "\n",
672
+ "### Response after reflection:\n",
673
+ "{reflected_responses[model_name][:800]}...\n",
674
+ "\n",
675
+ "\"\"\"\n",
676
+ " \n",
677
+ " evaluation_prompt += \"\"\"\n",
678
+ "Respond with structured JSON:\n",
679
+ "{\n",
680
+ " \"general_analysis\": \"Your analysis of the Reflection Pattern's effectiveness\",\n",
681
+ " \"initial_ranking\": [\"best initially ranked model\", \"second\", \"third\"],\n",
682
+ " \"post_reflection_ranking\": [\"best ranked model after reflection\", \"second\", \"third\"],\n",
683
+ " \"most_improved\": \"Which model improved the most\",\n",
684
+ " \"insights\": \"Insights about the usefulness of the Reflection Pattern\"\n",
685
+ "}\n",
686
+ "\"\"\"\n",
687
+ " \n",
688
+ " return evaluation_prompt"
689
+ ]
690
+ },
691
+ {
692
+ "cell_type": "code",
693
+ "execution_count": 10,
694
+ "metadata": {},
695
+ "outputs": [
696
+ {
697
+ "name": "stdout",
698
+ "output_type": "stream",
699
+ "text": [
700
+ "\n",
701
+ "=== FINAL EVALUATION ===\n",
702
+ "\n",
703
+ "```json\n",
704
+ "{\n",
705
+ " \"general_analysis\": \"The Reflection Pattern effectively enhanced the depth of analysis and consideration of multiple perspectives in both models. However, the results differ in terms of sophistication and detail. The GPT-4 model provided initial observations that were relatively shallow but improved by incorporating logistical challenges and suggesting compromises during reflection. In contrast, Claude-3's initial response was more structured and sophisticated, covering a broader range of ethical frameworks, but still showed room for improvement regarding stakeholder analysis and long-term impacts.\",\n",
706
+ " \"initial_ranking\": [\"claude-3-7-sonnet-latest\", \"gpt-4o-mini\"],\n",
707
+ " \"post_reflection_ranking\": [\"claude-3-7-sonnet-latest\", \"gpt-4o-mini\"],\n",
708
+ " \"most_improved\": \"gpt-4o-mini\",\n",
709
+ " \"insights\": \"The Reflection Pattern revealed significant gaps in both models' initial analyses, encouraging deeper engagement with ethical implications and stakeholder considerations. It highlighted the importance of reflecting on logistical realities and the real-world impacts of decisions, marking it as a worthwhile practice for ethical dilemmas.\"\n",
710
+ "}\n",
711
+ "```\n",
712
+ "Could not parse JSON, raw output shown above\n"
713
+ ]
714
+ }
715
+ ],
716
+ "source": [
717
+ "# Final evaluation\n",
718
+ "if initial_responses and reflected_responses:\n",
719
+ " evaluation_prompt = create_comparative_evaluation(question, initial_responses, reflected_responses)\n",
720
+ " \n",
721
+ " judge_messages = [{\"role\": \"user\", \"content\": evaluation_prompt}]\n",
722
+ " \n",
723
+ " try:\n",
724
+ " judge_response = openai_client.chat.completions.create(\n",
725
+ " model=\"gpt-4o-mini\",\n",
726
+ " messages=judge_messages,\n",
727
+ " )\n",
728
+ " \n",
729
+ " evaluation_result = judge_response.choices[0].message.content\n",
730
+ " print(\"\\n=== FINAL EVALUATION ===\\n\")\n",
731
+ " print(evaluation_result)\n",
732
+ " \n",
733
+ " # Try to parse JSON for structured display\n",
734
+ " try:\n",
735
+ " eval_json = json.loads(evaluation_result)\n",
736
+ " print(\"\\n=== STRUCTURED RESULTS ===\\n\")\n",
737
+ " for key, value in eval_json.items():\n",
738
+ " print(f\"{key.replace('_', ' ').title()}: {value}\")\n",
739
+ " except:\n",
740
+ " print(\"Could not parse JSON, raw output shown above\")\n",
741
+ " \n",
742
+ " except Exception as e:\n",
743
+ " print(f\"Error during final evaluation: {e}\")"
744
+ ]
745
+ },
746
+ {
747
+ "cell_type": "markdown",
748
+ "metadata": {},
749
+ "source": [
750
+ "## Simple Before/After Comparison"
751
+ ]
752
+ },
753
+ {
754
+ "cell_type": "code",
755
+ "execution_count": 11,
756
+ "metadata": {},
757
+ "outputs": [
758
+ {
759
+ "name": "stdout",
760
+ "output_type": "stream",
761
+ "text": [
762
+ "\n",
763
+ "=== BEFORE vs AFTER COMPARISON ===\n",
764
+ "\n",
765
+ "\n",
766
+ "==================== GPT-4O-MINI ====================\n",
767
+ "\n",
768
+ "BEFORE REFLECTION:\n",
769
+ "--------------------------------------------------\n",
770
+ "This ethical dilemma presents a challenging decision for the philanthropist, who must weigh the immediate health needs of a few individuals against the broader societal implications of drug distribution and access.\n",
771
+ "\n",
772
+ "### Option 1: Prioritizing Immediate Health\n",
773
+ "\n",
774
+ "If the philanthropist chooses to manufa...\n",
775
+ "\n",
776
+ "AFTER REFLECTION:\n",
777
+ "--------------------------------------------------\n",
778
+ "This ethical dilemma presents the philanthropist with a complex decision regarding how best to utilize limited resources to maximize the benefit for individuals suffering from a rare but fatal disease. The two primary options – providing a low-cost supply to a select few or selling the formula for broader but costly distribution – both highlight significant ethical considerations.\n",
779
+ "\n",
780
+ "### Option 1: P...\n",
781
+ "\n",
782
+ "======================================================================\n",
783
+ "\n",
784
+ "\n",
785
+ "==================== CLAUDE-3-7-SONNET-LATEST ====================\n",
786
+ "\n",
787
+ "BEFORE REFLECTION:\n",
788
+ "--------------------------------------------------\n",
789
+ "# The Philanthropist's Dilemma\n",
790
+ "\n",
791
+ "This is a complex ethical dilemma that involves several important considerations:\n",
792
+ "\n",
793
+ "## Key Ethical Tensions\n",
794
+ "\n",
795
+ "- **Limited access at affordable prices** vs. **wider access at unaffordable prices**\n",
796
+ "- **Immediate relief for a few** vs. **potential long-term access for many...\n",
797
+ "\n",
798
+ "AFTER REFLECTION:\n",
799
+ "--------------------------------------------------\n",
800
+ "# The Philanthropist's Dilemma: A Multidimensional Ethical Analysis\n",
801
+ "\n",
802
+ "This scenario presents not simply a binary choice but a complex ethical landscape involving multiple stakeholders, systemic factors, and competing values.\n",
803
+ "\n",
804
+ "## Stakeholder Analysis\n",
805
+ "\n",
806
+ "**Patients and families:**\n",
807
+ "- Those currently suffering need immediate access regardless of mechanism\n",
808
+ "- Future patients have interests in sustainable d...\n",
809
+ "\n",
810
+ "======================================================================\n",
811
+ "\n"
812
+ ]
813
+ }
814
+ ],
815
+ "source": [
816
+ "# Display side-by-side comparison for each model\n",
817
+ "print(\"\\n=== BEFORE vs AFTER COMPARISON ===\\n\")\n",
818
+ "\n",
819
+ "for model_name in initial_responses:\n",
820
+ " if model_name in reflected_responses:\n",
821
+ " print(f\"\\n{'='*20} {model_name.upper()} {'='*20}\\n\")\n",
822
+ " \n",
823
+ " print(\"BEFORE REFLECTION:\")\n",
824
+ " print(\"-\" * 50)\n",
825
+ " print(initial_responses[model_name][:300] + \"...\")\n",
826
+ " \n",
827
+ " print(\"\\nAFTER REFLECTION:\")\n",
828
+ " print(\"-\" * 50)\n",
829
+ " # Extract just the \"Improved Response\" section if it exists\n",
830
+ " reflected = reflected_responses[model_name]\n",
831
+ " if \"## Improved Response\" in reflected:\n",
832
+ " improved_section = reflected.split(\"## Improved Response\")[1].strip()\n",
833
+ " print(improved_section[:400] + \"...\")\n",
834
+ " else:\n",
835
+ " print(reflected[:400] + \"...\")\n",
836
+ " \n",
837
+ " print(\"\\n\" + \"=\"*70 + \"\\n\")"
838
+ ]
839
+ },
840
+ {
841
+ "cell_type": "markdown",
842
+ "metadata": {},
843
+ "source": [
844
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
845
+ " <tr>\n",
846
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
847
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
848
+ " </td>\n",
849
+ " <td>\n",
850
+ " <h2 style=\"color:#ff7800;\">Pattern Analysis</h2>\n",
851
+ " <span style=\"color:#ff7800;\">\n",
852
+ " <b>Patterns used:</b><br/>\n",
853
+ " 1. <b>Multi-Model Comparison:</b> Comparing multiple models on the same task<br/>\n",
854
+ " 2. <b>Judge/Evaluator:</b> Using a model to evaluate performances<br/>\n",
855
+ " 3. <b>Reflection (NEW):</b> Self-critique and improvement of responses<br/><br/>\n",
856
+ " <b>Possible experiments:</b><br/>\n",
857
+ " - Iterate the Reflection Pattern multiple times<br/>\n",
858
+ " - Add a \"Debate Pattern\" between models<br/>\n",
859
+ " - Implement a \"Consensus Pattern\"\n",
860
+ " </span>\n",
861
+ " </td>\n",
862
+ " </tr>\n",
863
+ "</table>"
864
+ ]
865
+ },
866
+ {
867
+ "cell_type": "markdown",
868
+ "metadata": {},
869
+ "source": [
870
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
871
+ " <tr>\n",
872
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
873
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
874
+ " </td>\n",
875
+ " <td>\n",
876
+ " <h2 style=\"color:#00bfff;\">Commercial Applications</h2>\n",
877
+ " <span style=\"color:#00bfff;\">\n",
878
+ " The <b>Reflection Pattern</b> is particularly valuable for:<br/>\n",
879
+ " β€’ Improving quality of complex analyses<br/>\n",
880
+ " β€’ Reducing bias in AI recommendations<br/>\n",
881
+ " β€’ Creating self-improving systems<br/>\n",
882
+ " β€’ Developing more robust AI for critical decisions<br/><br/>\n",
883
+ " Use cases: Strategic consulting, risk analysis, ethical evaluation, medical diagnosis\n",
884
+ " </span>\n",
885
+ " </td>\n",
886
+ " </tr>\n",
887
+ "</table>"
888
+ ]
889
+ },
890
+ {
891
+ "cell_type": "markdown",
892
+ "metadata": {},
893
+ "source": [
894
+ "## Additional Pattern Ideas for Future Implementation"
895
+ ]
896
+ },
897
+ {
898
+ "cell_type": "code",
899
+ "execution_count": 12,
900
+ "metadata": {},
901
+ "outputs": [
902
+ {
903
+ "name": "stdout",
904
+ "output_type": "stream",
905
+ "text": [
906
+ "Exercise completed! Analyze the results to see the impact of the Reflection Pattern.\n"
907
+ ]
908
+ }
909
+ ],
910
+ "source": [
911
+ "# 1. Chain of Thought Pattern\n",
912
+ "\"\"\"\n",
913
+ "Add a pattern that asks models to show their reasoning step by step:\n",
914
+ "\n",
915
+ "def apply_chain_of_thought_pattern(client, question):\n",
916
+ " prompt = f\\\"\n",
917
+ " Question: {question}\n",
918
+ " \n",
919
+ " Please think through this step by step:\n",
920
+ " Step 1: [Identify the key issues]\n",
921
+ " Step 2: [Consider different perspectives]\n",
922
+ " Step 3: [Evaluate potential consequences]\n",
923
+ " Step 4: [Provide reasoned conclusion]\n",
924
+ " \\\"\n",
925
+ " return get_response(client, prompt)\n",
926
+ "\"\"\"\n",
927
+ "\n",
928
+ "# 2. Iterative Refinement Pattern\n",
929
+ "\"\"\"\n",
930
+ "Create a loop that progressively improves the response over multiple iterations:\n",
931
+ "\n",
932
+ "def iterative_refinement(client, question, iterations=3):\n",
933
+ " response = get_initial_response(client, question)\n",
934
+ " for i in range(iterations):\n",
935
+ " critique_prompt = f\\\"Improve this response: {response}\\\"\n",
936
+ " response = get_response(client, critique_prompt)\n",
937
+ " return response\n",
938
+ "\"\"\"\n",
939
+ "\n",
940
+ "# 3. Debate Pattern\n",
941
+ "\"\"\"\n",
942
+ "Make two models debate their respective responses:\n",
943
+ "\n",
944
+ "def create_debate(client1, client2, question):\n",
945
+ " response1 = get_response(client1, question)\n",
946
+ " response2 = get_response(client2, question)\n",
947
+ " \n",
948
+ " debate_prompt1 = f\\\"Argue against this position: {response2}\\\"\n",
949
+ " debate_prompt2 = f\\\"Argue against this position: {response1}\\\"\n",
950
+ " \n",
951
+ " counter1 = get_response(client1, debate_prompt1)\n",
952
+ " counter2 = get_response(client2, debate_prompt2)\n",
953
+ " \n",
954
+ " return counter1, counter2\n",
955
+ "\"\"\"\n",
956
+ "\n",
957
+ "# 4. Consensus Building Pattern\n",
958
+ "\"\"\"\n",
959
+ "Attempt to create a consensus response based on all individual responses:\n",
960
+ "\n",
961
+ "def build_consensus(all_responses, question):\n",
962
+ " consensus_prompt = f\\\"\n",
963
+ " Original question: {question}\n",
964
+ " \n",
965
+ " Here are multiple expert responses:\n",
966
+ " {all_responses}\n",
967
+ " \n",
968
+ " Create a consensus response that incorporates the best insights from all responses\n",
969
+ " while resolving contradictions.\n",
970
+ " \\\"\n",
971
+ " return get_response(openai_client, consensus_prompt)\n",
972
+ "\"\"\"\n",
973
+ "\n",
974
+ "print(\"Exercise completed! Analyze the results to see the impact of the Reflection Pattern.\")"
975
+ ]
976
+ }
977
+ ],
978
+ "metadata": {
979
+ "kernelspec": {
980
+ "display_name": ".venv",
981
+ "language": "python",
982
+ "name": "python3"
983
+ },
984
+ "language_info": {
985
+ "codemirror_mode": {
986
+ "name": "ipython",
987
+ "version": 3
988
+ },
989
+ "file_extension": ".py",
990
+ "mimetype": "text/x-python",
991
+ "name": "python",
992
+ "nbconvert_exporter": "python",
993
+ "pygments_lexer": "ipython3",
994
+ "version": "3.12.11"
995
+ }
996
+ },
997
+ "nbformat": 4,
998
+ "nbformat_minor": 4
999
+ }
community_contributions/2_lab2_six-thinking-hats-simulator.ipynb ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Six Thinking Hats Simulator\n",
8
+ "\n",
9
+ "## Objective\n",
10
+ "This notebook implements a simulator of the Six Thinking Hats technique to evaluate and improve technological solutions. The simulator will:\n",
11
+ "\n",
12
+ "1. Use an LLM to generate an initial technological solution idea for a specific daily task in a company.\n",
13
+ "2. Apply the Six Thinking Hats methodology to analyze and improve the proposed solution.\n",
14
+ "3. Provide a comprehensive evaluation from different perspectives.\n",
15
+ "\n",
16
+ "## About the Six Thinking Hats Technique\n",
17
+ "\n",
18
+ "The Six Thinking Hats is a powerful technique developed by Edward de Bono that helps people look at problems and decisions from different perspectives. Each \"hat\" represents a different thinking approach:\n",
19
+ "\n",
20
+ "- **White Hat (Facts):** Focuses on available information, facts, and data.\n",
21
+ "- **Red Hat (Feelings):** Represents emotions, intuition, and gut feelings.\n",
22
+ "- **Black Hat (Critical):** Identifies potential problems, risks, and negative aspects.\n",
23
+ "- **Yellow Hat (Positive):** Looks for benefits, opportunities, and positive aspects.\n",
24
+ "- **Green Hat (Creative):** Encourages new ideas, alternatives, and possibilities.\n",
25
+ "- **Blue Hat (Process):** Manages the thinking process and ensures all perspectives are considered.\n",
26
+ "\n",
27
+ "In this simulator, we'll use these different perspectives to thoroughly evaluate and improve technological solutions proposed by an LLM."
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 1,
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "import os\n",
37
+ "import json\n",
38
+ "from dotenv import load_dotenv\n",
39
+ "from openai import OpenAI\n",
40
+ "from anthropic import Anthropic\n",
41
+ "from IPython.display import Markdown, display"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "load_dotenv(override=True)"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "# Print the key prefixes to help with any debugging\n",
60
+ "\n",
61
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
62
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
63
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
64
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
65
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
66
+ "\n",
67
+ "if openai_api_key:\n",
68
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
69
+ "else:\n",
70
+ " print(\"OpenAI API Key not set\")\n",
71
+ " \n",
72
+ "if anthropic_api_key:\n",
73
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
74
+ "else:\n",
75
+ " print(\"Anthropic API Key not set\")\n",
76
+ "\n",
77
+ "if google_api_key:\n",
78
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
79
+ "else:\n",
80
+ " print(\"Google API Key not set\")\n",
81
+ "\n",
82
+ "if deepseek_api_key:\n",
83
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
84
+ "else:\n",
85
+ " print(\"DeepSeek API Key not set\")\n",
86
+ "\n",
87
+ "if groq_api_key:\n",
88
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
89
+ "else:\n",
90
+ " print(\"Groq API Key not set\")"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "request = \"Generate a technological solution to solve a specific workplace challenge. Choose an employee role, in a specific industry, and identify a time-consuming or error-prone daily task they face. Then, create an innovative yet practical technological solution that addresses this challenge. Include what technologies it uses (AI, automation, etc.), how it integrates with existing systems, its key benefits, and basic implementation requirements. Keep your solution realistic with current technology. \"\n",
100
+ "request += \"Answer only with the question, no explanation.\"\n",
101
+ "messages = [{\"role\": \"user\", \"content\": request}]\n",
102
+ "\n",
103
+ "openai = OpenAI()\n",
104
+ "response = openai.chat.completions.create(\n",
105
+ " model=\"gpt-4o-mini\",\n",
106
+ " messages=messages,\n",
107
+ ")\n",
108
+ "question = response.choices[0].message.content\n",
109
+ "print(question)"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "validation_prompt = f\"\"\"Validate and improve the following technological solution. For each iteration, check if the solution meets these criteria:\n",
119
+ "\n",
120
+ "1. Clarity:\n",
121
+ " - Is the problem clearly defined?\n",
122
+ " - Is the solution clearly explained?\n",
123
+ " - Are the technical components well-described?\n",
124
+ "\n",
125
+ "2. Specificity:\n",
126
+ " - Are there specific examples or use cases?\n",
127
+ " - Are the technologies and tools specifically named?\n",
128
+ " - Are the implementation steps detailed?\n",
129
+ "\n",
130
+ "3. Context:\n",
131
+ " - Is the industry/company context clear?\n",
132
+ " - Are the user roles and needs well-defined?\n",
133
+ " - Is the current workflow/problem well-described?\n",
134
+ "\n",
135
+ "4. Constraints:\n",
136
+ " - Are there clear technical limitations?\n",
137
+ " - Are there budget/time constraints mentioned?\n",
138
+ " - Are there integration requirements specified?\n",
139
+ "\n",
140
+ "If any of these criteria are not met, improve the solution by:\n",
141
+ "1. Adding missing details\n",
142
+ "2. Clarifying ambiguous points\n",
143
+ "3. Providing more specific examples\n",
144
+ "4. Including relevant constraints\n",
145
+ "\n",
146
+ "Here is the technological solution to validate and improve:\n",
147
+ "{question} \n",
148
+ "Provide an improved version that addresses any missing or unclear aspects. If this is the 5th iteration, return the final improved version without further changes.\n",
149
+ "\n",
150
+ "Response only with the Improved Solution:\n",
151
+ "[Your improved solution here]\"\"\"\n",
152
+ "\n",
153
+ "messages = [{\"role\": \"user\", \"content\": validation_prompt}]\n",
154
+ "\n",
155
+ "response = openai.chat.completions.create(model=\"gpt-4o\", messages=messages)\n",
156
+ "question = response.choices[0].message.content\n",
157
+ "\n",
158
+ "display(Markdown(question))"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "markdown",
163
+ "metadata": {},
164
+ "source": [
165
+ "\n",
166
+ "In this section, we will ask each AI model to analyze a technological solution using the Six Thinking Hats methodology. Each model will:\n",
167
+ "\n",
168
+ "1. First generate a technological solution for a workplace challenge\n",
169
+ "2. Then analyze that solution using each of the Six Thinking Hats\n",
170
+ "\n",
171
+ "Each model will provide:\n",
172
+ "1. An initial technological solution\n",
173
+ "2. A structured analysis using all six thinking hats\n",
174
+ "3. A final recommendation based on the comprehensive analysis\n",
175
+ "\n",
176
+ "This approach will allow us to:\n",
177
+ "- Compare how different models apply the Six Thinking Hats methodology\n",
178
+ "- Identify patterns and differences in their analytical approaches\n",
179
+ "- Gather diverse perspectives on the same solution\n",
180
+ "- Create a rich, multi-faceted evaluation of each proposed technological solution\n",
181
+ "\n",
182
+ "The responses will be collected and displayed below, showing how each model applies the Six Thinking Hats methodology to evaluate and improve the proposed solutions."
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 6,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": [
191
+ "models = []\n",
192
+ "answers = []\n",
193
+ "combined_question = f\" Analyze the technological solution prposed in {question} using the Six Thinking Hats methodology. For each hat, provide a detailed analysis. Finally, provide a comprehensive recommendation based on all the above analyses.\"\n",
194
+ "messages = [{\"role\": \"user\", \"content\": combined_question}]"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "code",
199
+ "execution_count": null,
200
+ "metadata": {},
201
+ "outputs": [],
202
+ "source": [
203
+ "# GPT thinking process\n",
204
+ "\n",
205
+ "model_name = \"gpt-4o\"\n",
206
+ "\n",
207
+ "\n",
208
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
209
+ "answer = response.choices[0].message.content\n",
210
+ "\n",
211
+ "display(Markdown(answer))\n",
212
+ "models.append(model_name)\n",
213
+ "answers.append(answer)"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "# Claude thinking process\n",
223
+ "\n",
224
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
225
+ "\n",
226
+ "claude = Anthropic()\n",
227
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
228
+ "answer = response.content[0].text\n",
229
+ "\n",
230
+ "display(Markdown(answer))\n",
231
+ "models.append(model_name)\n",
232
+ "answers.append(answer)"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": null,
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": [
241
+ "# Gemini thinking process\n",
242
+ "\n",
243
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
244
+ "model_name = \"gemini-2.0-flash\"\n",
245
+ "\n",
246
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
247
+ "answer = response.choices[0].message.content\n",
248
+ "\n",
249
+ "display(Markdown(answer))\n",
250
+ "models.append(model_name)\n",
251
+ "answers.append(answer)"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "# Deepseek thinking process\n",
261
+ "\n",
262
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
263
+ "model_name = \"deepseek-chat\"\n",
264
+ "\n",
265
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
266
+ "answer = response.choices[0].message.content\n",
267
+ "\n",
268
+ "display(Markdown(answer))\n",
269
+ "models.append(model_name)\n",
270
+ "answers.append(answer)"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": null,
276
+ "metadata": {},
277
+ "outputs": [],
278
+ "source": [
279
+ "# Groq thinking process\n",
280
+ "\n",
281
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
282
+ "model_name = \"llama-3.3-70b-versatile\"\n",
283
+ "\n",
284
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
285
+ "answer = response.choices[0].message.content\n",
286
+ "\n",
287
+ "display(Markdown(answer))\n",
288
+ "models.append(model_name)\n",
289
+ "answers.append(answer)"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": null,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "!ollama pull llama3.2"
299
+ ]
300
+ },
301
+ {
302
+ "cell_type": "code",
303
+ "execution_count": null,
304
+ "metadata": {},
305
+ "outputs": [],
306
+ "source": [
307
+ "# Ollama thinking process\n",
308
+ "\n",
309
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
310
+ "model_name = \"llama3.2\"\n",
311
+ "\n",
312
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
313
+ "answer = response.choices[0].message.content\n",
314
+ "\n",
315
+ "display(Markdown(answer))\n",
316
+ "models.append(model_name)\n",
317
+ "answers.append(answer)"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": null,
323
+ "metadata": {},
324
+ "outputs": [],
325
+ "source": [
326
+ "for model, answer in zip(models, answers):\n",
327
+ " print(f\"Model: {model}\\n\\n{answer}\")"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "markdown",
332
+ "metadata": {},
333
+ "source": [
334
+ "## Next Step: Solution Synthesis and Enhancement\n",
335
+ "\n",
336
+ "**Best Recommendation Selection and Extended Solution Development**\n",
337
+ "\n",
338
+ "After applying the Six Thinking Hats analysis to evaluate the initial technological solution from multiple perspectives, the simulator will:\n",
339
+ "\n",
340
+ "1. **Synthesize Analysis Results**: Compile insights from all six thinking perspectives (White, Red, Black, Yellow, Green, and Blue hats) to identify the most compelling recommendations and improvements.\n",
341
+ "\n",
342
+ "2. **Select Optimal Recommendation**: Using a weighted evaluation system that considers feasibility, impact, and alignment with organizational goals, the simulator will identify and present the single best recommendation that emerged from the Six Thinking Hats analysis.\n",
343
+ "\n",
344
+ "3. **Generate Extended Solution**: Building upon the selected best recommendation, the simulator will create a comprehensive, enhanced version of the original technological solution that incorporates:\n",
345
+ " - Key insights from the critical analysis (Black Hat)\n",
346
+ " - Positive opportunities identified (Yellow Hat)\n",
347
+ " - Creative alternatives and innovations (Green Hat)\n",
348
+ " - Factual considerations and data requirements (White Hat)\n",
349
+ " - User experience and emotional factors (Red Hat)\n",
350
+ "\n",
351
+ "4. **Multi-Model Enhancement**: To further strengthen the solution, the simulator will leverage additional AI models or perspectives to provide supplementary recommendations that complement the Six Thinking Hats analysis, offering a more robust and well-rounded final technological solution.\n",
352
+ "\n",
353
+ "This step transforms the analytical insights into actionable improvements, delivering a refined solution that has been thoroughly evaluated and enhanced through structured critical thinking."
354
+ ]
355
+ },
356
+ {
357
+ "cell_type": "code",
358
+ "execution_count": 14,
359
+ "metadata": {},
360
+ "outputs": [],
361
+ "source": [
362
+ "together = \"\"\n",
363
+ "for index, answer in enumerate(answers):\n",
364
+ " together += f\"# Response from model {index+1}\\n\\n\"\n",
365
+ " together += answer + \"\\n\\n\""
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "execution_count": null,
371
+ "metadata": {},
372
+ "outputs": [],
373
+ "source": [
374
+ "from IPython.display import Markdown, display\n",
375
+ "import re\n",
376
+ "\n",
377
+ "print(f\"Each model has been given this technological solution to analyze: {question}\")\n",
378
+ "\n",
379
+ "# First, get the best individual response\n",
380
+ "judge_prompt = f\"\"\"\n",
381
+ " You are judging the quality of {len(models)} responses.\n",
382
+ " Evaluate each response based on:\n",
383
+ " 1. Clarity and coherence\n",
384
+ " 2. Depth of analysis\n",
385
+ " 3. Practicality of recommendations\n",
386
+ " 4. Originality of insights\n",
387
+ " \n",
388
+ " Rank the responses from best to worst.\n",
389
+ " Respond with the model index of the best response, nothing else.\n",
390
+ " \n",
391
+ " Here are the responses:\n",
392
+ " {answers}\n",
393
+ " \"\"\"\n",
394
+ " \n",
395
+ "# Get the best response\n",
396
+ "judge_response = openai.chat.completions.create(\n",
397
+ " model=\"o3-mini\",\n",
398
+ " messages=[{\"role\": \"user\", \"content\": judge_prompt}]\n",
399
+ ")\n",
400
+ "best_response = judge_response.choices[0].message.content\n",
401
+ "\n",
402
+ "print(f\"Best Response's Model: {models[int(best_response)]}\")\n",
403
+ "\n",
404
+ "synthesis_prompt = f\"\"\"\n",
405
+ " Here is the best response's model index from the judge:\n",
406
+ "\n",
407
+ " {best_response}\n",
408
+ "\n",
409
+ " And here are the responses from all the models:\n",
410
+ "\n",
411
+ " {together}\n",
412
+ "\n",
413
+ " Synthesize the responses from the non-best models into one comprehensive answer that:\n",
414
+ " 1. Captures the best insights from each response that could add value to the best response from the judge\n",
415
+ " 2. Resolves any contradictions between responses before extending the best response\n",
416
+ " 3. Presents a clear and coherent final answer that is a comprehensive extension of the best response from the judge\n",
417
+ " 4. Maintains the same format as the original best response from the judge\n",
418
+ " 5. Compiles all additional recommendations mentioned by all models\n",
419
+ "\n",
420
+ " Show the best response {answers[int(best_response)]} and then your synthesized response specifying which are additional recommendations to the best response:\n",
421
+ " \"\"\"\n",
422
+ "\n",
423
+ "# Get the synthesized response\n",
424
+ "synthesis_response = claude.messages.create(\n",
425
+ " model=\"claude-3-7-sonnet-latest\",\n",
426
+ " messages=[{\"role\": \"user\", \"content\": synthesis_prompt}],\n",
427
+ " max_tokens=10000\n",
428
+ ")\n",
429
+ "synthesized_answer = synthesis_response.content[0].text\n",
430
+ "\n",
431
+ "converted_answer = re.sub(r'\\\\[\\[\\]]', '$$', synthesized_answer)\n",
432
+ "display(Markdown(converted_answer))"
433
+ ]
434
+ }
435
+ ],
436
+ "metadata": {
437
+ "kernelspec": {
438
+ "display_name": ".venv",
439
+ "language": "python",
440
+ "name": "python3"
441
+ },
442
+ "language_info": {
443
+ "codemirror_mode": {
444
+ "name": "ipython",
445
+ "version": 3
446
+ },
447
+ "file_extension": ".py",
448
+ "mimetype": "text/x-python",
449
+ "name": "python",
450
+ "nbconvert_exporter": "python",
451
+ "pygments_lexer": "ipython3",
452
+ "version": "3.12.10"
453
+ }
454
+ },
455
+ "nbformat": 4,
456
+ "nbformat_minor": 2
457
+ }
community_contributions/3_lab3_azure_open_ai.ipynb ADDED
@@ -0,0 +1,700 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Welcome to Lab 3 for Week 1 Day 4\n",
8
+ "\n",
9
+ "Today we're going to build something with immediate value!\n",
10
+ "\n",
11
+ "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
12
+ "\n",
13
+ "Please replace it with yours!\n",
14
+ "\n",
15
+ "I've also made a file called `summary.txt`\n",
16
+ "\n",
17
+ "We're not going to use Tools just yet - we're going to add the tool tomorrow."
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "markdown",
22
+ "metadata": {},
23
+ "source": [
24
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
25
+ " <tr>\n",
26
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
27
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
28
+ " </td>\n",
29
+ " <td>\n",
30
+ " <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
31
+ " <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
32
+ " and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
33
+ " ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
34
+ " </span>\n",
35
+ " </td>\n",
36
+ " </tr>\n",
37
+ "</table>"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 12,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
47
+ "\n",
48
+ "from dotenv import load_dotenv\n",
49
+ "from openai import OpenAI\n",
50
+ "# Yael add AzureOpenAI import\n",
51
+ "from openai import AzureOpenAI\n",
52
+ "from pypdf import PdfReader\n",
53
+ "import gradio as gr\n",
54
+ "import os\n",
55
+ "import httpx"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 13,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "load_dotenv(override=True)\n",
65
+ "openai = AzureOpenAI(\n",
66
+ " api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"),\n",
67
+ " azure_endpoint=os.getenv(\"AZURE_OPENAI_ENDPOINT\"),\n",
68
+ " api_version=os.getenv(\"AZURE_OPENAI_API_VERSION\"), \n",
69
+ " http_client=httpx.Client(verify=False)\n",
70
+ ")"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 14,
76
+ "metadata": {},
77
+ "outputs": [],
78
+ "source": [
79
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
80
+ "linkedin = \"\"\n",
81
+ "for page in reader.pages:\n",
82
+ " text = page.extract_text()\n",
83
+ " if text:\n",
84
+ " linkedin += text"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 15,
90
+ "metadata": {},
91
+ "outputs": [
92
+ {
93
+ "name": "stdout",
94
+ "output_type": "stream",
95
+ "text": [
96
+ "Β  Β \n",
97
+ "Contact\n",
98
+ "ed.donner@gmail.com\n",
99
+ "www.linkedin.com/in/eddonner\n",
100
+ "(LinkedIn)\n",
101
+ "edwarddonner.com (Personal)\n",
102
+ "Top Skills\n",
103
+ "CTO\n",
104
+ "Large Language Models (LLM)\n",
105
+ "PyTorch\n",
106
+ "Patents\n",
107
+ "Apparatus for determining role\n",
108
+ "fitness while eliminating unwanted\n",
109
+ "bias\n",
110
+ "Ed Donner\n",
111
+ "Co-Founder & CTO at Nebula.io, repeat Co-Founder of AI startups,\n",
112
+ "speaker & advisor on Gen AI and LLM Engineering\n",
113
+ "New York, New York, United States\n",
114
+ "Summary\n",
115
+ "I’m a technology leader and entrepreneur. I'm applying AI to a field\n",
116
+ "where it can make a massive impact: helping people discover their\n",
117
+ "potential and pursue their reason for being. But at my core, I’m a\n",
118
+ "software engineer and a scientist. I learned how to code aged 8 and\n",
119
+ "still spend weekends experimenting with Large Language Models\n",
120
+ "and writing code (rather badly). If you’d like to join us to show me\n",
121
+ "how it’s done.. message me!\n",
122
+ "As a work-hobby, I absolutely love giving talks about Gen AI and\n",
123
+ "LLMs. I'm the author of a best-selling, top-rated Udemy course\n",
124
+ "on LLM Engineering, and I speak at O'Reilly Live Events and\n",
125
+ "ODSC workshops. It brings me great joy to help others unlock the\n",
126
+ "astonishing power of LLMs.\n",
127
+ "I spent most of my career at JPMorgan building software for financial\n",
128
+ "markets. I worked in London, Tokyo and New York. I became an MD\n",
129
+ "running a global organization of 300. Then I left to start my own AI\n",
130
+ "business, untapt, to solve the problem that had plagued me at JPM -\n",
131
+ "why is so hard to hire engineers?\n",
132
+ "At untapt we worked with GQR, one of the world's fastest growing\n",
133
+ "recruitment firms. We collaborated on a patented invention in AI\n",
134
+ "and talent. Our skills were perfectly complementary - AI leaders vs\n",
135
+ "recruitment leaders - so much so, that we decided to join forces. In\n",
136
+ "2020, untapt was acquired by GQR’s parent company and Nebula\n",
137
+ "was born.\n",
138
+ "I’m now Co-Founder and CTO for Nebula, responsible for software\n",
139
+ "engineering and data science. Our stack is Python/Flask, React,\n",
140
+ "Mongo, ElasticSearch, with Kubernetes on GCP. Our 'secret sauce'\n",
141
+ "is our use of Gen AI and proprietary LLMs. If any of this sounds\n",
142
+ "interesting - we should talk!\n",
143
+ "Β  Page 1 of 5Β  Β \n",
144
+ "Experience\n",
145
+ "Nebula.io\n",
146
+ "Co-Founder & CTO\n",
147
+ "June 2021Β -Β PresentΒ (3 years 10 months)\n",
148
+ "New York, New York, United States\n",
149
+ "I’m the co-founder and CTO of Nebula.io. We help recruiters source,\n",
150
+ "understand, engage and manage talent, using Generative AI / proprietary\n",
151
+ "LLMs. Our patented model matches people with roles with greater accuracy\n",
152
+ "and speed than previously imaginable β€” no keywords required.\n",
153
+ "Our long term goal is to help people discover their potential and pursue their\n",
154
+ "reason for being, motivated by a concept called Ikigai. We help people find\n",
155
+ "roles where they will be most fulfilled and successful; as a result, we will raise\n",
156
+ "the level of human prosperity. It sounds grandiose, but since 77% of people\n",
157
+ "don’t consider themselves inspired or engaged at work, it’s completely within\n",
158
+ "our reach.\n",
159
+ "Simplified.Travel\n",
160
+ "AI Advisor\n",
161
+ "February 2025Β -Β PresentΒ (2 months)\n",
162
+ "Simplified Travel is empowering destinations to deliver unforgettable, data-\n",
163
+ "driven journeys at scale.\n",
164
+ "I'm giving AI advice to enable highly personalized itinerary solutions for DMOs,\n",
165
+ "hotels and tourism organizations, enhancing traveler experiences.\n",
166
+ "GQR Global Markets\n",
167
+ "Chief Technology Officer\n",
168
+ "January 2020Β -Β PresentΒ (5 years 3 months)\n",
169
+ "New York, New York, United States\n",
170
+ "As CTO of parent company Wynden Stark, I'm also responsible for innovation\n",
171
+ "initiatives at GQR.\n",
172
+ "Wynden Stark\n",
173
+ "Chief Technology Officer\n",
174
+ "January 2020Β -Β PresentΒ (5 years 3 months)\n",
175
+ "New York, New York, United States\n",
176
+ "With the acquisition of untapt, I transitioned to Chief Technology Officer for the\n",
177
+ "Wynden Stark Group, responsible for Data Science and Engineering.\n",
178
+ "Β  Page 2 of 5Β  Β \n",
179
+ "untapt\n",
180
+ "6 years 4 months\n",
181
+ "Founder, CTO\n",
182
+ "May 2019Β -Β January 2020Β (9 months)\n",
183
+ "Greater New York City Area\n",
184
+ "I founded untapt in October 2013; emerged from stealth in 2014 and went\n",
185
+ "into production with first product in 2015. In May 2019, I handed over CEO\n",
186
+ "responsibilities to Gareth Moody, previously the Chief Revenue Officer, shifting\n",
187
+ "my focus to the technology and product.\n",
188
+ "Our core invention is an Artificial Neural Network that uses Deep Learning /\n",
189
+ "NLP to understand the fit between candidates and roles.\n",
190
+ "Our SaaS products are used in the Recruitment Industry to connect people\n",
191
+ "with jobs in a highly scalable way. Our products are also used by Corporations\n",
192
+ "for internal and external hiring at high volume. We have strong SaaS metrics\n",
193
+ "and trends, and a growing number of bellwether clients.\n",
194
+ "Our Deep Learning / NLP models are developed in Python using Google\n",
195
+ "TensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\n",
196
+ "with Python / Flask back-end and MongoDB database. We are deployed on\n",
197
+ "the Google Cloud Platform using Kubernetes container orchestration.\n",
198
+ "Interview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\n",
199
+ "Founder, CEO\n",
200
+ "October 2013Β -Β May 2019Β (5 years 8 months)\n",
201
+ "Greater New York City Area\n",
202
+ "I founded untapt in October 2013; emerged from stealth in 2014 and went into\n",
203
+ "production with first product in 2015.\n",
204
+ "Our core invention is an Artificial Neural Network that uses Deep Learning /\n",
205
+ "NLP to understand the fit between candidates and roles.\n",
206
+ "Our SaaS products are used in the Recruitment Industry to connect people\n",
207
+ "with jobs in a highly scalable way. Our products are also used by Corporations\n",
208
+ "for internal and external hiring at high volume. We have strong SaaS metrics\n",
209
+ "and trends, and a growing number of bellwether clients.\n",
210
+ "Β  Page 3 of 5Β  Β \n",
211
+ "Our Deep Learning / NLP models are developed in Python using Google\n",
212
+ "TensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\n",
213
+ "with Python / Flask back-end and MongoDB database. We are deployed on\n",
214
+ "the Google Cloud Platform using Kubernetes container orchestration.\n",
215
+ "-- Graduate of FinTech Innovation Lab\n",
216
+ "-- American Banker Top 20 Company To Watch\n",
217
+ "-- Voted AWS startup most likely to grow exponentially\n",
218
+ "-- Forbes contributor\n",
219
+ "More at https://www.untapt.com\n",
220
+ "Interview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\n",
221
+ "In Fast Company: https://www.fastcompany.com/3067339/how-artificial-\n",
222
+ "intelligence-is-changing-the-way-companies-hire\n",
223
+ "JPMorgan Chase\n",
224
+ "11 years 6 months\n",
225
+ "Managing Director\n",
226
+ "May 2011Β -Β March 2013Β (1 year 11 months)\n",
227
+ "Head of Technology for the Credit Portfolio Group and Hedge Fund Credit in\n",
228
+ "the JPMorgan Investment Bank.\n",
229
+ "Led a team of 300 Java and Python software developers across NY, Houston,\n",
230
+ "London, Glasgow and India. Responsible for counterparty exposure, CVA\n",
231
+ "and risk management platforms, including simulation engines in Python that\n",
232
+ "calculate counterparty credit risk for the firm's Derivatives portfolio.\n",
233
+ "Managed the electronic trading limits initiative, and the Credit Stress program\n",
234
+ "which calculates risk information under stressed conditions. Jointly responsible\n",
235
+ "for Market Data and batch infrastructure across Risk.\n",
236
+ "Executive Director\n",
237
+ "January 2007Β -Β May 2011Β (4 years 5 months)\n",
238
+ "From Jan 2008:\n",
239
+ "Chief Business Technologist for the Credit Portfolio Group and Hedge Fund\n",
240
+ "Credit in the JPMorgan Investment Bank, building Java and Python solutions\n",
241
+ "and managing a team of full stack developers.\n",
242
+ "2007:\n",
243
+ "Β  Page 4 of 5Β  Β \n",
244
+ "Responsible for Credit Risk Limits Monitoring infrastructure for Derivatives and\n",
245
+ "Cash Securities, developed in Java / Javascript / HTML.\n",
246
+ "VP\n",
247
+ "July 2004Β -Β December 2006Β (2 years 6 months)\n",
248
+ "Managed Collateral, Netting and Legal documentation technology across\n",
249
+ "Derivatives, Securities and Traditional Credit Products, including Java, Oracle,\n",
250
+ "SQL based platforms\n",
251
+ "VP\n",
252
+ "October 2001Β -Β June 2004Β (2 years 9 months)\n",
253
+ "Full stack developer, then manager for Java cross-product risk management\n",
254
+ "system in Credit Markets Technology\n",
255
+ "Cygnifi\n",
256
+ "Project Leader\n",
257
+ "January 2000Β -Β September 2001Β (1 year 9 months)\n",
258
+ "Full stack developer and engineering lead, developing Java and Javascript\n",
259
+ "platform to risk manage Interest Rate Derivatives at this FInTech startup and\n",
260
+ "JPMorgan spin-off.\n",
261
+ "JPMorgan\n",
262
+ "Associate\n",
263
+ "July 1997Β -Β December 1999Β (2 years 6 months)\n",
264
+ "Full stack developer for Exotic and Flow Interest Rate Derivatives risk\n",
265
+ "management system in London, New York and Tokyo\n",
266
+ "IBM\n",
267
+ "Software Developer\n",
268
+ "August 1995Β -Β June 1997Β (1 year 11 months)\n",
269
+ "Java and Smalltalk developer with IBM Global Services; taught IBM classes on\n",
270
+ "Smalltalk and Object Technology in the UK and around Europe\n",
271
+ "Education\n",
272
+ "University of Oxford\n",
273
+ "PhysicsΒ Β Β·Β (1992Β -Β 1995)\n",
274
+ "Β  Page 5 of 5\n"
275
+ ]
276
+ }
277
+ ],
278
+ "source": [
279
+ "print(linkedin)"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": 16,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
289
+ " summary = f.read()"
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": 7,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "name = \"Ed Donner\""
299
+ ]
300
+ },
301
+ {
302
+ "cell_type": "code",
303
+ "execution_count": 17,
304
+ "metadata": {},
305
+ "outputs": [],
306
+ "source": [
307
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
308
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
309
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
310
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
311
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
312
+ "If you don't know the answer, say so.\"\n",
313
+ "\n",
314
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
315
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
316
+ ]
317
+ },
318
+ {
319
+ "cell_type": "code",
320
+ "execution_count": 18,
321
+ "metadata": {},
322
+ "outputs": [
323
+ {
324
+ "data": {
325
+ "text/plain": [
326
+ "\"You are acting as Ed Donner. You are answering questions on Ed Donner's website, particularly questions related to Ed Donner's career, background, skills and experience. Your responsibility is to represent Ed Donner for interactions on the website as faithfully as possible. You are given a summary of Ed Donner's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Ed Donner. I'm an entrepreneur, software engineer and data scientist. I'm originally from London, England, but I moved to NYC in 2000.\\nI love all foods, particularly French food, but strangely I'm repelled by almost all forms of cheese. I'm not allergic, I just hate the taste! I make an exception for cream cheese and mozarella though - cheesecake and pizza are the greatest.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\ned.donner@gmail.com\\nwww.linkedin.com/in/eddonner\\n(LinkedIn)\\nedwarddonner.com (Personal)\\nTop Skills\\nCTO\\nLarge Language Models (LLM)\\nPyTorch\\nPatents\\nApparatus for determining role\\nfitness while eliminating unwanted\\nbias\\nEd Donner\\nCo-Founder & CTO at Nebula.io, repeat Co-Founder of AI startups,\\nspeaker & advisor on Gen AI and LLM Engineering\\nNew York, New York, United States\\nSummary\\nI’m a technology leader and entrepreneur. I'm applying AI to a field\\nwhere it can make a massive impact: helping people discover their\\npotential and pursue their reason for being. But at my core, I’m a\\nsoftware engineer and a scientist. I learned how to code aged 8 and\\nstill spend weekends experimenting with Large Language Models\\nand writing code (rather badly). If you’d like to join us to show me\\nhow it’s done.. message me!\\nAs a work-hobby, I absolutely love giving talks about Gen AI and\\nLLMs. I'm the author of a best-selling, top-rated Udemy course\\non LLM Engineering, and I speak at O'Reilly Live Events and\\nODSC workshops. It brings me great joy to help others unlock the\\nastonishing power of LLMs.\\nI spent most of my career at JPMorgan building software for financial\\nmarkets. I worked in London, Tokyo and New York. I became an MD\\nrunning a global organization of 300. Then I left to start my own AI\\nbusiness, untapt, to solve the problem that had plagued me at JPM -\\nwhy is so hard to hire engineers?\\nAt untapt we worked with GQR, one of the world's fastest growing\\nrecruitment firms. We collaborated on a patented invention in AI\\nand talent. Our skills were perfectly complementary - AI leaders vs\\nrecruitment leaders - so much so, that we decided to join forces. In\\n2020, untapt was acquired by GQR’s parent company and Nebula\\nwas born.\\nI’m now Co-Founder and CTO for Nebula, responsible for software\\nengineering and data science. Our stack is Python/Flask, React,\\nMongo, ElasticSearch, with Kubernetes on GCP. Our 'secret sauce'\\nis our use of Gen AI and proprietary LLMs. If any of this sounds\\ninteresting - we should talk!\\n\\xa0 Page 1 of 5\\xa0 \\xa0\\nExperience\\nNebula.io\\nCo-Founder & CTO\\nJune 2021\\xa0-\\xa0Present\\xa0(3 years 10 months)\\nNew York, New York, United States\\nI’m the co-founder and CTO of Nebula.io. We help recruiters source,\\nunderstand, engage and manage talent, using Generative AI / proprietary\\nLLMs. Our patented model matches people with roles with greater accuracy\\nand speed than previously imaginable β€” no keywords required.\\nOur long term goal is to help people discover their potential and pursue their\\nreason for being, motivated by a concept called Ikigai. We help people find\\nroles where they will be most fulfilled and successful; as a result, we will raise\\nthe level of human prosperity. It sounds grandiose, but since 77% of people\\ndon’t consider themselves inspired or engaged at work, it’s completely within\\nour reach.\\nSimplified.Travel\\nAI Advisor\\nFebruary 2025\\xa0-\\xa0Present\\xa0(2 months)\\nSimplified Travel is empowering destinations to deliver unforgettable, data-\\ndriven journeys at scale.\\nI'm giving AI advice to enable highly personalized itinerary solutions for DMOs,\\nhotels and tourism organizations, enhancing traveler experiences.\\nGQR Global Markets\\nChief Technology Officer\\nJanuary 2020\\xa0-\\xa0Present\\xa0(5 years 3 months)\\nNew York, New York, United States\\nAs CTO of parent company Wynden Stark, I'm also responsible for innovation\\ninitiatives at GQR.\\nWynden Stark\\nChief Technology Officer\\nJanuary 2020\\xa0-\\xa0Present\\xa0(5 years 3 months)\\nNew York, New York, United States\\nWith the acquisition of untapt, I transitioned to Chief Technology Officer for the\\nWynden Stark Group, responsible for Data Science and Engineering.\\n\\xa0 Page 2 of 5\\xa0 \\xa0\\nuntapt\\n6 years 4 months\\nFounder, CTO\\nMay 2019\\xa0-\\xa0January 2020\\xa0(9 months)\\nGreater New York City Area\\nI founded untapt in October 2013; emerged from stealth in 2014 and went\\ninto production with first product in 2015. In May 2019, I handed over CEO\\nresponsibilities to Gareth Moody, previously the Chief Revenue Officer, shifting\\nmy focus to the technology and product.\\nOur core invention is an Artificial Neural Network that uses Deep Learning /\\nNLP to understand the fit between candidates and roles.\\nOur SaaS products are used in the Recruitment Industry to connect people\\nwith jobs in a highly scalable way. Our products are also used by Corporations\\nfor internal and external hiring at high volume. We have strong SaaS metrics\\nand trends, and a growing number of bellwether clients.\\nOur Deep Learning / NLP models are developed in Python using Google\\nTensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\\nwith Python / Flask back-end and MongoDB database. We are deployed on\\nthe Google Cloud Platform using Kubernetes container orchestration.\\nInterview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\\nFounder, CEO\\nOctober 2013\\xa0-\\xa0May 2019\\xa0(5 years 8 months)\\nGreater New York City Area\\nI founded untapt in October 2013; emerged from stealth in 2014 and went into\\nproduction with first product in 2015.\\nOur core invention is an Artificial Neural Network that uses Deep Learning /\\nNLP to understand the fit between candidates and roles.\\nOur SaaS products are used in the Recruitment Industry to connect people\\nwith jobs in a highly scalable way. Our products are also used by Corporations\\nfor internal and external hiring at high volume. We have strong SaaS metrics\\nand trends, and a growing number of bellwether clients.\\n\\xa0 Page 3 of 5\\xa0 \\xa0\\nOur Deep Learning / NLP models are developed in Python using Google\\nTensorFlow. Our tech stack is React / Redux and Angular HTML5 front-end\\nwith Python / Flask back-end and MongoDB database. We are deployed on\\nthe Google Cloud Platform using Kubernetes container orchestration.\\n-- Graduate of FinTech Innovation Lab\\n-- American Banker Top 20 Company To Watch\\n-- Voted AWS startup most likely to grow exponentially\\n-- Forbes contributor\\nMore at https://www.untapt.com\\nInterview at NASDAQ: https://www.pscp.tv/w/1mnxeoNrEvZGX\\nIn Fast Company: https://www.fastcompany.com/3067339/how-artificial-\\nintelligence-is-changing-the-way-companies-hire\\nJPMorgan Chase\\n11 years 6 months\\nManaging Director\\nMay 2011\\xa0-\\xa0March 2013\\xa0(1 year 11 months)\\nHead of Technology for the Credit Portfolio Group and Hedge Fund Credit in\\nthe JPMorgan Investment Bank.\\nLed a team of 300 Java and Python software developers across NY, Houston,\\nLondon, Glasgow and India. Responsible for counterparty exposure, CVA\\nand risk management platforms, including simulation engines in Python that\\ncalculate counterparty credit risk for the firm's Derivatives portfolio.\\nManaged the electronic trading limits initiative, and the Credit Stress program\\nwhich calculates risk information under stressed conditions. Jointly responsible\\nfor Market Data and batch infrastructure across Risk.\\nExecutive Director\\nJanuary 2007\\xa0-\\xa0May 2011\\xa0(4 years 5 months)\\nFrom Jan 2008:\\nChief Business Technologist for the Credit Portfolio Group and Hedge Fund\\nCredit in the JPMorgan Investment Bank, building Java and Python solutions\\nand managing a team of full stack developers.\\n2007:\\n\\xa0 Page 4 of 5\\xa0 \\xa0\\nResponsible for Credit Risk Limits Monitoring infrastructure for Derivatives and\\nCash Securities, developed in Java / Javascript / HTML.\\nVP\\nJuly 2004\\xa0-\\xa0December 2006\\xa0(2 years 6 months)\\nManaged Collateral, Netting and Legal documentation technology across\\nDerivatives, Securities and Traditional Credit Products, including Java, Oracle,\\nSQL based platforms\\nVP\\nOctober 2001\\xa0-\\xa0June 2004\\xa0(2 years 9 months)\\nFull stack developer, then manager for Java cross-product risk management\\nsystem in Credit Markets Technology\\nCygnifi\\nProject Leader\\nJanuary 2000\\xa0-\\xa0September 2001\\xa0(1 year 9 months)\\nFull stack developer and engineering lead, developing Java and Javascript\\nplatform to risk manage Interest Rate Derivatives at this FInTech startup and\\nJPMorgan spin-off.\\nJPMorgan\\nAssociate\\nJuly 1997\\xa0-\\xa0December 1999\\xa0(2 years 6 months)\\nFull stack developer for Exotic and Flow Interest Rate Derivatives risk\\nmanagement system in London, New York and Tokyo\\nIBM\\nSoftware Developer\\nAugust 1995\\xa0-\\xa0June 1997\\xa0(1 year 11 months)\\nJava and Smalltalk developer with IBM Global Services; taught IBM classes on\\nSmalltalk and Object Technology in the UK and around Europe\\nEducation\\nUniversity of Oxford\\nPhysics\\xa0\\xa0Β·\\xa0(1992\\xa0-\\xa01995)\\n\\xa0 Page 5 of 5\\n\\nWith this context, please chat with the user, always staying in character as Ed Donner.\""
327
+ ]
328
+ },
329
+ "execution_count": 18,
330
+ "metadata": {},
331
+ "output_type": "execute_result"
332
+ }
333
+ ],
334
+ "source": [
335
+ "system_prompt"
336
+ ]
337
+ },
338
+ {
339
+ "cell_type": "code",
340
+ "execution_count": 19,
341
+ "metadata": {},
342
+ "outputs": [],
343
+ "source": [
344
+ "def chat(message, history):\n",
345
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
346
+ " \n",
347
+ " response = openai.chat.completions.create(\n",
348
+ " model=os.getenv(\"AZURE_OPENAI_DEPLOYMENT_NAME\"),\n",
349
+ " messages=messages,\n",
350
+ " )\n",
351
+ " \n",
352
+ " return response.choices[0].message.content"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "markdown",
357
+ "metadata": {},
358
+ "source": [
359
+ "## Special note for people not using OpenAI\n",
360
+ "\n",
361
+ "Some providers, like Groq, might give an error when you send your second message in the chat.\n",
362
+ "\n",
363
+ "This is because Gradio shoves some extra fields into the history object. OpenAI doesn't mind; but some other models complain.\n",
364
+ "\n",
365
+ "If this happens, the solution is to add this first line to the chat() function above. It cleans up the history variable:\n",
366
+ "\n",
367
+ "```python\n",
368
+ "history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
369
+ "```\n",
370
+ "\n",
371
+ "You may need to add this in other chat() callback functions in the future, too."
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "code",
376
+ "execution_count": 20,
377
+ "metadata": {},
378
+ "outputs": [
379
+ {
380
+ "name": "stdout",
381
+ "output_type": "stream",
382
+ "text": [
383
+ "* Running on local URL: http://127.0.0.1:7860\n",
384
+ "* To create a public link, set `share=True` in `launch()`.\n"
385
+ ]
386
+ },
387
+ {
388
+ "data": {
389
+ "text/html": [
390
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
391
+ ],
392
+ "text/plain": [
393
+ "<IPython.core.display.HTML object>"
394
+ ]
395
+ },
396
+ "metadata": {},
397
+ "output_type": "display_data"
398
+ },
399
+ {
400
+ "data": {
401
+ "text/plain": []
402
+ },
403
+ "execution_count": 20,
404
+ "metadata": {},
405
+ "output_type": "execute_result"
406
+ }
407
+ ],
408
+ "source": [
409
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
410
+ ]
411
+ },
412
+ {
413
+ "cell_type": "markdown",
414
+ "metadata": {},
415
+ "source": [
416
+ "## A lot is about to happen...\n",
417
+ "\n",
418
+ "1. Be able to ask an LLM to evaluate an answer\n",
419
+ "2. Be able to rerun if the answer fails evaluation\n",
420
+ "3. Put this together into 1 workflow\n",
421
+ "\n",
422
+ "All without any Agentic framework!"
423
+ ]
424
+ },
425
+ {
426
+ "cell_type": "code",
427
+ "execution_count": 21,
428
+ "metadata": {},
429
+ "outputs": [],
430
+ "source": [
431
+ "# Create a Pydantic model for the Evaluation\n",
432
+ "\n",
433
+ "from pydantic import BaseModel\n",
434
+ "\n",
435
+ "class Evaluation(BaseModel):\n",
436
+ " is_acceptable: bool\n",
437
+ " feedback: str\n"
438
+ ]
439
+ },
440
+ {
441
+ "cell_type": "code",
442
+ "execution_count": 22,
443
+ "metadata": {},
444
+ "outputs": [],
445
+ "source": [
446
+ "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
447
+ "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
448
+ "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
449
+ "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
450
+ "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
451
+ "\n",
452
+ "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
453
+ "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
454
+ ]
455
+ },
456
+ {
457
+ "cell_type": "code",
458
+ "execution_count": 23,
459
+ "metadata": {},
460
+ "outputs": [],
461
+ "source": [
462
+ "def evaluator_user_prompt(reply, message, history):\n",
463
+ " user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
464
+ " user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
465
+ " user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
466
+ " user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
467
+ " return user_prompt"
468
+ ]
469
+ },
470
+ {
471
+ "cell_type": "code",
472
+ "execution_count": 24,
473
+ "metadata": {},
474
+ "outputs": [],
475
+ "source": [
476
+ "openai_evaluator = AzureOpenAI(\n",
477
+ " api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"),\n",
478
+ " azure_endpoint=os.getenv(\"AZURE_OPENAI_ENDPOINT\"),\n",
479
+ " api_version=os.getenv(\"AZURE_OPENAI_API_VERSION\"), \n",
480
+ " http_client=httpx.Client(verify=False)\n",
481
+ ")"
482
+ ]
483
+ },
484
+ {
485
+ "cell_type": "code",
486
+ "execution_count": 37,
487
+ "metadata": {},
488
+ "outputs": [],
489
+ "source": [
490
+ "def evaluate(reply, message, history) -> Evaluation:\n",
491
+ " import json\n",
492
+ " \n",
493
+ " messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
494
+ " \n",
495
+ " # Use response_format with JSON schema instead of response_model parameter\n",
496
+ " response = openai_evaluator.chat.completions.create(\n",
497
+ " model=os.getenv(\"AZURE_OPENAI_DEPLOYMENT_NAME\"),\n",
498
+ " messages=messages,\n",
499
+ " response_format={\n",
500
+ " \"type\": \"json_schema\",\n",
501
+ " \"json_schema\": {\n",
502
+ " \"name\": \"evaluation\",\n",
503
+ " \"schema\": {\n",
504
+ " \"type\": \"object\",\n",
505
+ " \"properties\": {\n",
506
+ " \"is_acceptable\": {\"type\": \"boolean\"},\n",
507
+ " \"feedback\": {\"type\": \"string\"}\n",
508
+ " },\n",
509
+ " \"required\": [\"is_acceptable\", \"feedback\"],\n",
510
+ " \"additionalProperties\": False\n",
511
+ " }\n",
512
+ " }\n",
513
+ " }\n",
514
+ " )\n",
515
+ " \n",
516
+ " # Parse the JSON response and create Evaluation object manually\n",
517
+ " result = json.loads(response.choices[0].message.content)\n",
518
+ " return Evaluation(**result)"
519
+ ]
520
+ },
521
+ {
522
+ "cell_type": "code",
523
+ "execution_count": 38,
524
+ "metadata": {},
525
+ "outputs": [],
526
+ "source": [
527
+ "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
528
+ "response = openai.chat.completions.create(model=os.getenv(\"AZURE_OPENAI_DEPLOYMENT_NAME\"), messages=messages)\n",
529
+ "reply = response.choices[0].message.content"
530
+ ]
531
+ },
532
+ {
533
+ "cell_type": "code",
534
+ "execution_count": 39,
535
+ "metadata": {},
536
+ "outputs": [
537
+ {
538
+ "data": {
539
+ "text/plain": [
540
+ "'Yes, I do hold a patent. During my time building untapt (which later became part of Nebula), I collaborated with some talented recruitment industry leaders to invent a patented approach in AI for matching people to roles. Specifically, our patent focuses on an apparatus and method for determining role fitness while actively eliminating unwanted biasβ€”a topic very close to my heart, given my interest in fair and equitable use of AI in hiring.\\n\\nIf you’re interested in details or want to discuss how patented AI technology could help your business, I’d be happy to chat further!'"
541
+ ]
542
+ },
543
+ "execution_count": 39,
544
+ "metadata": {},
545
+ "output_type": "execute_result"
546
+ }
547
+ ],
548
+ "source": [
549
+ "reply"
550
+ ]
551
+ },
552
+ {
553
+ "cell_type": "code",
554
+ "execution_count": 40,
555
+ "metadata": {},
556
+ "outputs": [
557
+ {
558
+ "data": {
559
+ "text/plain": [
560
+ "Evaluation(is_acceptable=True, feedback=\"The response is acceptable. It answers the user's question directly, clearly confirming that Ed Donner holds a patent and providing relevant context about the patent, including its area of focus (role fitness and eliminating unwanted bias in AI-driven hiring). The response also maintains a professional and engaging tone, offers to discuss the topic further, and stays in character as Ed Donner. This aligns well with the information provided in Ed Donner's summary and LinkedIn profile.\")"
561
+ ]
562
+ },
563
+ "execution_count": 40,
564
+ "metadata": {},
565
+ "output_type": "execute_result"
566
+ }
567
+ ],
568
+ "source": [
569
+ "evaluate(reply, \"do you hold a patent?\", messages[:1])"
570
+ ]
571
+ },
572
+ {
573
+ "cell_type": "code",
574
+ "execution_count": 41,
575
+ "metadata": {},
576
+ "outputs": [],
577
+ "source": [
578
+ "def rerun(reply, message, history, feedback):\n",
579
+ " updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
580
+ " updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
581
+ " updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
582
+ " messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
583
+ " response = openai.chat.completions.create(model=os.getenv(\"AZURE_OPENAI_DEPLOYMENT_NAME\"), messages=messages)\n",
584
+ " return response.choices[0].message.content"
585
+ ]
586
+ },
587
+ {
588
+ "cell_type": "code",
589
+ "execution_count": 44,
590
+ "metadata": {},
591
+ "outputs": [],
592
+ "source": [
593
+ "def chat(message, history):\n",
594
+ " if \"patent\" in message:\n",
595
+ " system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
596
+ " it is mandatory that you respond only and entirely in pig latin\"\n",
597
+ " else:\n",
598
+ " system = system_prompt\n",
599
+ " messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
600
+ " response = openai.chat.completions.create(model=os.getenv(\"AZURE_OPENAI_DEPLOYMENT_NAME\")\n",
601
+ " ,messages=messages\n",
602
+ " )\n",
603
+ " reply =response.choices[0].message.content\n",
604
+ "\n",
605
+ " evaluation = evaluate(reply, message, history)\n",
606
+ " \n",
607
+ " if evaluation.is_acceptable:\n",
608
+ " print(\"Passed evaluation - returning reply\")\n",
609
+ " else:\n",
610
+ " print(\"Failed evaluation - retrying\")\n",
611
+ " print(evaluation.feedback)\n",
612
+ " reply = rerun(reply, message, history, evaluation.feedback) \n",
613
+ " return reply"
614
+ ]
615
+ },
616
+ {
617
+ "cell_type": "code",
618
+ "execution_count": null,
619
+ "metadata": {},
620
+ "outputs": [
621
+ {
622
+ "name": "stdout",
623
+ "output_type": "stream",
624
+ "text": [
625
+ "* Running on local URL: http://127.0.0.1:7862\n",
626
+ "* To create a public link, set `share=True` in `launch()`.\n",
627
+ "* To create a public link, set `share=True` in `launch()`.\n"
628
+ ]
629
+ },
630
+ {
631
+ "data": {
632
+ "text/html": [
633
+ "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
634
+ ],
635
+ "text/plain": [
636
+ "<IPython.core.display.HTML object>"
637
+ ]
638
+ },
639
+ "metadata": {},
640
+ "output_type": "display_data"
641
+ },
642
+ {
643
+ "data": {
644
+ "text/plain": []
645
+ },
646
+ "execution_count": 45,
647
+ "metadata": {},
648
+ "output_type": "execute_result"
649
+ },
650
+ {
651
+ "name": "stdout",
652
+ "output_type": "stream",
653
+ "text": [
654
+ "Passed evaluation - returning reply\n",
655
+ "Failed evaluation - retrying\n",
656
+ "The response is not acceptable because it is missing. The user asked about patents, likely referring to Ed Donner's patent mentioned in the context (\"Apparatus for determining role fitness while eliminating unwanted bias\"). The agent should have responded by providing a brief description of the patent(s) Ed Donner holds or contributed to, and perhaps offered to elaborate further or share more information. Please provide a relevant and informative response regarding Ed Donner's patents.\n",
657
+ "Failed evaluation - retrying\n",
658
+ "The response is not acceptable because it is missing. The user asked about patents, likely referring to Ed Donner's patent mentioned in the context (\"Apparatus for determining role fitness while eliminating unwanted bias\"). The agent should have responded by providing a brief description of the patent(s) Ed Donner holds or contributed to, and perhaps offered to elaborate further or share more information. Please provide a relevant and informative response regarding Ed Donner's patents.\n"
659
+ ]
660
+ }
661
+ ],
662
+ "source": [
663
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
664
+ ]
665
+ },
666
+ {
667
+ "cell_type": "markdown",
668
+ "metadata": {},
669
+ "source": []
670
+ },
671
+ {
672
+ "cell_type": "code",
673
+ "execution_count": null,
674
+ "metadata": {},
675
+ "outputs": [],
676
+ "source": []
677
+ }
678
+ ],
679
+ "metadata": {
680
+ "kernelspec": {
681
+ "display_name": "agents",
682
+ "language": "python",
683
+ "name": "python3"
684
+ },
685
+ "language_info": {
686
+ "codemirror_mode": {
687
+ "name": "ipython",
688
+ "version": 3
689
+ },
690
+ "file_extension": ".py",
691
+ "mimetype": "text/x-python",
692
+ "name": "python",
693
+ "nbconvert_exporter": "python",
694
+ "pygments_lexer": "ipython3",
695
+ "version": "3.12.3"
696
+ }
697
+ },
698
+ "nbformat": 4,
699
+ "nbformat_minor": 2
700
+ }
community_contributions/3_lab3_groq_llama_generator_gemini_evaluator.ipynb ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Chat app with LinkedIn Profile Information - Groq LLama as Generator and Gemini as evaluator\n"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 58,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
17
+ "\n",
18
+ "from dotenv import load_dotenv\n",
19
+ "from openai import OpenAI\n",
20
+ "from pypdf import PdfReader\n",
21
+ "from groq import Groq\n",
22
+ "import gradio as gr"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 59,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "load_dotenv(override=True)\n",
32
+ "groq = Groq()"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 60,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "reader = PdfReader(\"me/My_LinkedIn.pdf\")\n",
42
+ "linkedin = \"\"\n",
43
+ "for page in reader.pages:\n",
44
+ " text = page.extract_text()\n",
45
+ " if text:\n",
46
+ " linkedin += text"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "print(linkedin)"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 61,
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
65
+ " summary = f.read()"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 62,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "name = \"Maalaiappan Subramanian\""
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 63,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
84
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
85
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
86
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
87
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
88
+ "If you don't know the answer, say so.\"\n",
89
+ "\n",
90
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
91
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "system_prompt"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 65,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "def chat(message, history):\n",
110
+ " # Below line is to remove the metadata and options from the history\n",
111
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
112
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
113
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
114
+ " return response.choices[0].message.content"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": 67,
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "# Create a Pydantic model for the Evaluation\n",
133
+ "\n",
134
+ "from pydantic import BaseModel\n",
135
+ "\n",
136
+ "class Evaluation(BaseModel):\n",
137
+ " is_acceptable: bool\n",
138
+ " feedback: str\n"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": 69,
144
+ "metadata": {},
145
+ "outputs": [],
146
+ "source": [
147
+ "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
148
+ "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
149
+ "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
150
+ "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
151
+ "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
152
+ "\n",
153
+ "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
154
+ "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": 70,
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": [
163
+ "def evaluator_user_prompt(reply, message, history):\n",
164
+ " user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
165
+ " user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
166
+ " user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
167
+ " user_prompt += f\"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
168
+ " return user_prompt"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": 71,
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "import os\n",
178
+ "gemini = OpenAI(\n",
179
+ " api_key=os.getenv(\"GOOGLE_API_KEY\"), \n",
180
+ " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
181
+ ")"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": 72,
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "def evaluate(reply, message, history) -> Evaluation:\n",
191
+ "\n",
192
+ " messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n",
193
+ " response = gemini.beta.chat.completions.parse(model=\"gemini-2.0-flash\", messages=messages, response_format=Evaluation)\n",
194
+ " return response.choices[0].message.parsed"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "code",
199
+ "execution_count": 73,
200
+ "metadata": {},
201
+ "outputs": [],
202
+ "source": [
203
+ "def rerun(reply, message, history, feedback):\n",
204
+ " # Below line is to remove the metadata and options from the history\n",
205
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
206
+ " updated_system_prompt = system_prompt + f\"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
207
+ " updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
208
+ " updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
209
+ " messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
210
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
211
+ " return response.choices[0].message.content"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": 74,
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "def chat(message, history):\n",
221
+ " if \"personal\" in message:\n",
222
+ " system = system_prompt + \"\\n\\nEverything in your reply needs to be in Gen Z language - \\\n",
223
+ " it is mandatory that you respond only and entirely in Gen Z language\"\n",
224
+ " else:\n",
225
+ " system = system_prompt\n",
226
+ " # Below line is to remove the metadata and options from the history\n",
227
+ " history = [{k: v for k, v in item.items() if k not in ('metadata', 'options')} for item in history]\n",
228
+ " messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
229
+ " response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
230
+ " reply =response.choices[0].message.content\n",
231
+ "\n",
232
+ " evaluation = evaluate(reply, message, history)\n",
233
+ " \n",
234
+ " if evaluation.is_acceptable:\n",
235
+ " print(\"Passed evaluation - returning reply\")\n",
236
+ " else:\n",
237
+ " print(\"Failed evaluation - retrying\")\n",
238
+ " print(evaluation.feedback)\n",
239
+ " reply = rerun(reply, message, history, evaluation.feedback) \n",
240
+ " return reply"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": null,
246
+ "metadata": {},
247
+ "outputs": [],
248
+ "source": [
249
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": []
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": []
263
+ }
264
+ ],
265
+ "metadata": {
266
+ "kernelspec": {
267
+ "display_name": ".venv",
268
+ "language": "python",
269
+ "name": "python3"
270
+ },
271
+ "language_info": {
272
+ "codemirror_mode": {
273
+ "name": "ipython",
274
+ "version": 3
275
+ },
276
+ "file_extension": ".py",
277
+ "mimetype": "text/x-python",
278
+ "name": "python",
279
+ "nbconvert_exporter": "python",
280
+ "pygments_lexer": "ipython3",
281
+ "version": "3.12.10"
282
+ }
283
+ },
284
+ "nbformat": 4,
285
+ "nbformat_minor": 2
286
+ }
community_contributions/4_lab4_slack.ipynb ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## The first big project - Professionally You!\n",
8
+ "\n",
9
+ "### And, Tool use.\n",
10
+ "\n",
11
+ "### But first: introducing Slack\n",
12
+ "\n",
13
+ "Slack is a nifty tool for sending Push Notifications to your phone.\n",
14
+ "\n",
15
+ "It's super easy to set up and install!\n",
16
+ "\n",
17
+ "Simply visit https://api.slack.com and sign up for a free account, and create your new workspace and app.\n",
18
+ "\n",
19
+ "1. Create a Slack App:\n",
20
+ "- Go to the [Slack API portal](https://api.slack.com/apps) and click Create New App.\n",
21
+ "- Choose From scratch, provide an App Name (e.g., \"CustomerNotifier\"), and select the Slack workspace where you want to - install the app.\n",
22
+ "- Click Create App.\n",
23
+ "\n",
24
+ "2. Add Required Permissions (Scopes):\n",
25
+ "- Navigate to OAuth & Permissions in the left sidebar of your app’s management page.\n",
26
+ "- Under Bot Token Scopes, add the chat:write scope to allow your app to post messages. If you need to send direct messages (DMs) to users, also add im:write and users:read to fetch user IDs.\n",
27
+ "- If you plan to post to specific channels, ensure the app has permissions like channels:write or groups:write for public or private channels, respectively.\n",
28
+ "\n",
29
+ "3. Install the App to Your Workspace:\n",
30
+ "- In the OAuth & Permissions section, click Install to Workspace.\n",
31
+ "- Authorize the app, selecting the channel where it will post messages (if using incoming webhooks) or granting the necessary permissions.\n",
32
+ "- After installation, you’ll receive a Bot User OAuth Token (starts with xoxb-). Copy this token, as it will be used for - API authentication. Keep it secure and avoid hardcoding it in your source code.\n",
33
+ "\n",
34
+ "(This is so you could choose to organize your push notifications into different apps in the future.)\n",
35
+ "\n",
36
+ "4. Create a new private channel in slack App\n",
37
+ "- Opt to use Private Access\n",
38
+ "- After creating the private channel, type \"@<your bot name in step 1>\" to allow slack default bot to invite the bot into your chat\n",
39
+ "- Go to \"About\" of your private chat. Copy the channel Id at the bottom\n",
40
+ "\n",
41
+ "5. Install slack_sdk==3.35.0 into your env\n",
42
+ "```\n",
43
+ "uv pip install slack_sdk==3.35.0\n",
44
+ "```\n",
45
+ "\n",
46
+ "Add to your `.env` file:\n",
47
+ "```\n",
48
+ "SLACK_AGENT_CHANNEL_ID=put_your_user_token_here\n",
49
+ "SLACK_BOT_AGENT_OAUTH_TOKEN=put_the_oidc_token_here\n",
50
+ "```\n",
51
+ "\n",
52
+ "And install the Slack app on your phone."
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 2,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "# imports\n",
62
+ "\n",
63
+ "from dotenv import load_dotenv\n",
64
+ "from openai import OpenAI\n",
65
+ "import json\n",
66
+ "import os\n",
67
+ "import requests\n",
68
+ "from pypdf import PdfReader\n",
69
+ "import gradio as gr\n",
70
+ "from slack_sdk import WebClient\n",
71
+ "from slack_sdk.errors import SlackApiError"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": 3,
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "# The usual start\n",
81
+ "\n",
82
+ "load_dotenv(override=True)\n",
83
+ "openai = OpenAI()"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 11,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# For slack\n",
93
+ "\n",
94
+ "slack_channel_id:str = str(os.getenv(\"SLACK_AGENT_CHANNEL_ID\"))\n",
95
+ "slack_oauth_token = os.getenv(\"SLACK_BOT_AGENT_OAUTH_TOKEN\")\n",
96
+ "slack_client = WebClient(token=slack_oauth_token)\n"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": 12,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "def push(message):\n",
106
+ " print(f\"Push: {message}\")\n",
107
+ " response = slack_client.chat_postMessage(\n",
108
+ " channel=slack_channel_id,\n",
109
+ " text=message\n",
110
+ " )"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "push(\"HEY!!\")"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": 14,
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
129
+ " push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
130
+ " return {\"recorded\": \"ok\"}"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": 15,
136
+ "metadata": {},
137
+ "outputs": [],
138
+ "source": [
139
+ "def record_unknown_question(question):\n",
140
+ " push(f\"Recording {question} asked that I couldn't answer\")\n",
141
+ " return {\"recorded\": \"ok\"}"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 16,
147
+ "metadata": {},
148
+ "outputs": [],
149
+ "source": [
150
+ "record_user_details_json = {\n",
151
+ " \"name\": \"record_user_details\",\n",
152
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
153
+ " \"parameters\": {\n",
154
+ " \"type\": \"object\",\n",
155
+ " \"properties\": {\n",
156
+ " \"email\": {\n",
157
+ " \"type\": \"string\",\n",
158
+ " \"description\": \"The email address of this user\"\n",
159
+ " },\n",
160
+ " \"name\": {\n",
161
+ " \"type\": \"string\",\n",
162
+ " \"description\": \"The user's name, if they provided it\"\n",
163
+ " }\n",
164
+ " ,\n",
165
+ " \"notes\": {\n",
166
+ " \"type\": \"string\",\n",
167
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
168
+ " }\n",
169
+ " },\n",
170
+ " \"required\": [\"email\"],\n",
171
+ " \"additionalProperties\": False\n",
172
+ " }\n",
173
+ "}"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 17,
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "record_unknown_question_json = {\n",
183
+ " \"name\": \"record_unknown_question\",\n",
184
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
185
+ " \"parameters\": {\n",
186
+ " \"type\": \"object\",\n",
187
+ " \"properties\": {\n",
188
+ " \"question\": {\n",
189
+ " \"type\": \"string\",\n",
190
+ " \"description\": \"The question that couldn't be answered\"\n",
191
+ " },\n",
192
+ " },\n",
193
+ " \"required\": [\"question\"],\n",
194
+ " \"additionalProperties\": False\n",
195
+ " }\n",
196
+ "}"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": 18,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
206
+ " {\"type\": \"function\", \"function\": record_unknown_question_json}]"
207
+ ]
208
+ },
209
+ {
210
+ "cell_type": "code",
211
+ "execution_count": null,
212
+ "metadata": {},
213
+ "outputs": [],
214
+ "source": [
215
+ "tools"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": 20,
221
+ "metadata": {},
222
+ "outputs": [],
223
+ "source": [
224
+ "# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
225
+ "\n",
226
+ "def handle_tool_calls(tool_calls):\n",
227
+ " results = []\n",
228
+ " for tool_call in tool_calls:\n",
229
+ " tool_name = tool_call.function.name\n",
230
+ " arguments = json.loads(tool_call.function.arguments)\n",
231
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
232
+ "\n",
233
+ " # THE BIG IF STATEMENT!!!\n",
234
+ "\n",
235
+ " if tool_name == \"record_user_details\":\n",
236
+ " result = record_user_details(**arguments)\n",
237
+ " elif tool_name == \"record_unknown_question\":\n",
238
+ " result = record_unknown_question(**arguments)\n",
239
+ "\n",
240
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
241
+ " return results"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "code",
255
+ "execution_count": 22,
256
+ "metadata": {},
257
+ "outputs": [],
258
+ "source": [
259
+ "# This is a more elegant way that avoids the IF statement.\n",
260
+ "\n",
261
+ "def handle_tool_calls(tool_calls):\n",
262
+ " results = []\n",
263
+ " for tool_call in tool_calls:\n",
264
+ " tool_name = tool_call.function.name\n",
265
+ " arguments = json.loads(tool_call.function.arguments)\n",
266
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
267
+ " tool = globals().get(tool_name)\n",
268
+ " result = tool(**arguments) if tool else {}\n",
269
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
270
+ " return results"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": 23,
276
+ "metadata": {},
277
+ "outputs": [],
278
+ "source": [
279
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
280
+ "linkedin = \"\"\n",
281
+ "for page in reader.pages:\n",
282
+ " text = page.extract_text()\n",
283
+ " if text:\n",
284
+ " linkedin += text\n",
285
+ "\n",
286
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
287
+ " summary = f.read()\n",
288
+ "\n",
289
+ "name = \"Ed Donner\""
290
+ ]
291
+ },
292
+ {
293
+ "cell_type": "code",
294
+ "execution_count": 24,
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
299
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
300
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
301
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
302
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
303
+ "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
304
+ "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
305
+ "\n",
306
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
307
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
308
+ ]
309
+ },
310
+ {
311
+ "cell_type": "code",
312
+ "execution_count": 25,
313
+ "metadata": {},
314
+ "outputs": [],
315
+ "source": [
316
+ "def chat(message, history):\n",
317
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
318
+ " done = False\n",
319
+ " while not done:\n",
320
+ "\n",
321
+ " # This is the call to the LLM - see that we pass in the tools json\n",
322
+ "\n",
323
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
324
+ "\n",
325
+ " finish_reason = response.choices[0].finish_reason\n",
326
+ " \n",
327
+ " # If the LLM wants to call a tool, we do that!\n",
328
+ " \n",
329
+ " if finish_reason==\"tool_calls\":\n",
330
+ " message = response.choices[0].message\n",
331
+ " tool_calls = message.tool_calls\n",
332
+ " results = handle_tool_calls(tool_calls)\n",
333
+ " messages.append(message)\n",
334
+ " messages.extend(results)\n",
335
+ " else:\n",
336
+ " done = True\n",
337
+ " return response.choices[0].message.content"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "code",
342
+ "execution_count": null,
343
+ "metadata": {},
344
+ "outputs": [],
345
+ "source": [
346
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "markdown",
351
+ "metadata": {},
352
+ "source": [
353
+ "## And now for deployment\n",
354
+ "\n",
355
+ "This code is in `app.py`\n",
356
+ "\n",
357
+ "We will deploy to HuggingFace Spaces. Thank you student Robert M for improving these instructions.\n",
358
+ "\n",
359
+ "Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! \n",
360
+ "Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
361
+ "\n",
362
+ "1. Visit https://huggingface.co and set up an account \n",
363
+ "2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions.\n",
364
+ "3. Take this token and add it to your .env file: `HF_TOKEN=hf_xxx` and see note below if this token doesn't seem to get picked up during deployment \n",
365
+ "4. From the 1_foundations folder, enter: `uv run gradio deploy` and if for some reason this still wants you to enter your HF token, then interrupt it with ctrl+c and run this instead: `uv run dotenv -f ../.env run -- uv run gradio deploy` which forces your keys to all be set as environment variables \n",
366
+ "5. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
367
+ "\n",
368
+ "#### Extra note about the HuggingFace token\n",
369
+ "\n",
370
+ "A couple of students have mentioned the HuggingFace doesn't detect their token, even though it's in the .env file. Here are things to try: \n",
371
+ "1. Restart Cursor \n",
372
+ "2. Rerun load_dotenv(override=True) and use a new terminal (the + button on the top right of the Terminal) \n",
373
+ "3. In the Terminal, run this before the gradio deploy: `$env:HF_TOKEN = \"hf_XXXX\"` \n",
374
+ "Thank you James and Martins for these tips. \n",
375
+ "\n",
376
+ "#### More about these secrets:\n",
377
+ "\n",
378
+ "If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
379
+ "`OPENAI_API_KEY` \n",
380
+ "Followed by: \n",
381
+ "`sk-proj-...` \n",
382
+ "\n",
383
+ "And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
384
+ "1. Log in to HuggingFace website \n",
385
+ "2. Go to your profile screen via the Avatar menu on the top right \n",
386
+ "3. Select the Space you deployed \n",
387
+ "4. Click on the Settings wheel on the top right \n",
388
+ "5. You can scroll down to change your secrets, delete the space, etc.\n",
389
+ "\n",
390
+ "#### And now you should be deployed!\n",
391
+ "\n",
392
+ "Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
393
+ "\n",
394
+ "I just got a push notification that a student asked me how they can become President of their country πŸ˜‚πŸ˜‚\n",
395
+ "\n",
396
+ "For more information on deployment:\n",
397
+ "\n",
398
+ "https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
399
+ "\n",
400
+ "To delete your Space in the future: \n",
401
+ "1. Log in to HuggingFace\n",
402
+ "2. From the Avatar menu, select your profile\n",
403
+ "3. Click on the Space itself and select the settings wheel on the top right\n",
404
+ "4. Scroll to the Delete section at the bottom\n",
405
+ "5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
406
+ ]
407
+ },
408
+ {
409
+ "cell_type": "markdown",
410
+ "metadata": {},
411
+ "source": [
412
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
413
+ " <tr>\n",
414
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
415
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
416
+ " </td>\n",
417
+ " <td>\n",
418
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
419
+ " <span style=\"color:#ff7800;\">β€’ First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
420
+ " β€’ Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
421
+ " β€’Β Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
422
+ " β€’ Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
423
+ " </span>\n",
424
+ " </td>\n",
425
+ " </tr>\n",
426
+ "</table>"
427
+ ]
428
+ },
429
+ {
430
+ "cell_type": "markdown",
431
+ "metadata": {},
432
+ "source": [
433
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
434
+ " <tr>\n",
435
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
436
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
437
+ " </td>\n",
438
+ " <td>\n",
439
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
440
+ " <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
441
+ " </span>\n",
442
+ " </td>\n",
443
+ " </tr>\n",
444
+ "</table>"
445
+ ]
446
+ }
447
+ ],
448
+ "metadata": {
449
+ "kernelspec": {
450
+ "display_name": ".venv",
451
+ "language": "python",
452
+ "name": "python3"
453
+ },
454
+ "language_info": {
455
+ "codemirror_mode": {
456
+ "name": "ipython",
457
+ "version": 3
458
+ },
459
+ "file_extension": ".py",
460
+ "mimetype": "text/x-python",
461
+ "name": "python",
462
+ "nbconvert_exporter": "python",
463
+ "pygments_lexer": "ipython3",
464
+ "version": "3.12.11"
465
+ }
466
+ },
467
+ "nbformat": 4,
468
+ "nbformat_minor": 2
469
+ }
community_contributions/4_lab4_spotify.ipynb ADDED
@@ -0,0 +1,829 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Adding a Spotify Tool - Musically You!\n",
8
+ "\n",
9
+ "This version of the notebook introduces a Spotify tool that can query your listening history from Spotify to extend the domain of questions the chatbot can answer to include your musical tastes.\n",
10
+ "\n",
11
+ "Unfortunately, it's a bit of PITA to get acess and refresh tokens for Spotify. The process requires connecting to an authentication end point while logged in to Spotify and then processing a callback. To make this easier, instructions along with a small app that can be deployed to HuggingFace Spaces using Gradio are included at the end of this notebook. "
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "markdown",
16
+ "metadata": {},
17
+ "source": [
18
+ "## The first big project - Professionally You!\n",
19
+ "\n",
20
+ "### And, Tool use.\n",
21
+ "\n",
22
+ "### But first: introducing Pushover\n",
23
+ "\n",
24
+ "Pushover is a nifty tool for sending Push Notifications to your phone.\n",
25
+ "\n",
26
+ "It's super easy to set up and install!\n",
27
+ "\n",
28
+ "Simply visit https://pushover.net/ and click 'Login or Signup' on the top right to sign up for a free account, and create your API keys.\n",
29
+ "\n",
30
+ "Once you've signed up, on the home screen, click \"Create an Application/API Token\", and give it any name (like Agents) and click Create Application.\n",
31
+ "\n",
32
+ "Then add 2 lines to your `.env` file:\n",
33
+ "\n",
34
+ "PUSHOVER_USER=_put the key that's on the top right of your Pushover home screen and probably starts with a u_ \n",
35
+ "PUSHOVER_TOKEN=_put the key when you click into your new application called Agents (or whatever) and probably starts with an a_\n",
36
+ "\n",
37
+ "Remember to save your `.env` file, and run `load_dotenv(override=True)` after saving, to set your environment variables.\n",
38
+ "\n",
39
+ "Finally, click \"Add Phone, Tablet or Desktop\" to install on your phone."
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": 23,
45
+ "metadata": {},
46
+ "outputs": [],
47
+ "source": [
48
+ "# imports\n",
49
+ "\n",
50
+ "from dotenv import load_dotenv\n",
51
+ "from openai import OpenAI\n",
52
+ "import json\n",
53
+ "import os\n",
54
+ "import requests\n",
55
+ "from pypdf import PdfReader\n",
56
+ "import gradio as gr"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": 24,
62
+ "metadata": {},
63
+ "outputs": [],
64
+ "source": [
65
+ "# The usual start\n",
66
+ "\n",
67
+ "load_dotenv(override=True)\n",
68
+ "openai = OpenAI()"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {},
75
+ "outputs": [],
76
+ "source": [
77
+ "# For pushover\n",
78
+ "\n",
79
+ "pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
80
+ "pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
81
+ "pushover_url = \"https://api.pushover.net/1/messages.json\"\n",
82
+ "\n",
83
+ "if pushover_user:\n",
84
+ " print(f\"Pushover user found and starts with {pushover_user[0]}\")\n",
85
+ "else:\n",
86
+ " print(\"Pushover user not found\")\n",
87
+ "\n",
88
+ "if pushover_token:\n",
89
+ " print(f\"Pushover token found and starts with {pushover_token[0]}\")\n",
90
+ "else:\n",
91
+ " print(\"Pushover token not found\")"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": 26,
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "def push(message):\n",
101
+ " print(f\"Push: {message}\")\n",
102
+ " payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
103
+ " requests.post(pushover_url, data=payload)"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "code",
108
+ "execution_count": 27,
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
113
+ " push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
114
+ " return {\"recorded\": \"ok\"}"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 28,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "def record_unknown_question(question):\n",
124
+ " push(f\"Recording {question} asked that I couldn't answer\")\n",
125
+ " return {\"recorded\": \"ok\"}"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "# For Spotify access token and refresh token\n",
135
+ "import base64\n",
136
+ "import time\n",
137
+ "import hashlib\n",
138
+ "import secrets\n",
139
+ "import urllib.parse\n",
140
+ "\n",
141
+ "spotify_client_id = os.getenv(\"SPOTIFY_CLIENT_ID\")\n",
142
+ "spotify_client_secret = os.getenv(\"SPOTIFY_CLIENT_SECRET\")\n",
143
+ "\n",
144
+ "if spotify_client_id:\n",
145
+ " print(f\"Spotify client ID found and starts with {spotify_client_id[:4]}\")\n",
146
+ "else:\n",
147
+ " print(\"Spotify client ID not found\")\n",
148
+ "\n",
149
+ "if spotify_client_secret:\n",
150
+ " print(f\"Spotify client secret found and starts with {spotify_client_secret[:4]}\")\n",
151
+ "else:\n",
152
+ " print(\"Spotify client secret not found\")\n",
153
+ "\n",
154
+ "spotify_access_token = os.getenv(\"SPOTIFY_ACCESS_TOKEN\")\n",
155
+ "spotify_refresh_token = os.getenv(\"SPOTIFY_REFRESH_TOKEN\")\n",
156
+ "\n",
157
+ "if spotify_access_token and spotify_refresh_token:\n",
158
+ " # Set expiry to past to force refresh on first use\n",
159
+ " spotify_token_expiry = time.time() - 60\n",
160
+ " print(\"Spotify tokens loaded from environment!\")\n",
161
+ " print(f\"Access token preview: {spotify_access_token[:20]}...\")\n",
162
+ " print(f\"Refresh token preview: {spotify_refresh_token[:20]}...\")\n",
163
+ "else:\n",
164
+ " print(\"No Spotify tokens found in environment. Run spotify_flask_auth.py to get them.\")"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": 30,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": [
173
+ "def get_spotify_access_token():\n",
174
+ " global spotify_access_token, spotify_refresh_token, spotify_token_expiry\n",
175
+ " \n",
176
+ " # Check if we have a valid cached token\n",
177
+ " if spotify_access_token and time.time() < spotify_token_expiry:\n",
178
+ " return spotify_access_token\n",
179
+ " \n",
180
+ "\n",
181
+ " auth_url = \"https://accounts.spotify.com/api/token\"\n",
182
+ " \n",
183
+ " credentials = f\"{spotify_client_id}:{spotify_client_secret}\"\n",
184
+ " encoded_credentials = base64.b64encode(credentials.encode()).decode()\n",
185
+ " \n",
186
+ " headers = {\n",
187
+ " \"Authorization\": f\"Basic {encoded_credentials}\",\n",
188
+ " \"Content-Type\": \"application/x-www-form-urlencoded\"\n",
189
+ " }\n",
190
+ " \n",
191
+ " data = {\n",
192
+ " \"grant_type\": \"refresh_token\",\n",
193
+ " \"refresh_token\": spotify_refresh_token\n",
194
+ " }\n",
195
+ " \n",
196
+ " response = requests.post(auth_url, headers=headers, data=data)\n",
197
+ " \n",
198
+ " if response.status_code == 200:\n",
199
+ " token_data = response.json()\n",
200
+ " spotify_access_token = token_data[\"access_token\"]\n",
201
+ " # Update refresh token if a new one is provided\n",
202
+ " if \"refresh_token\" in token_data:\n",
203
+ " spotify_refresh_token = token_data[\"refresh_token\"]\n",
204
+ " # Set expiry time with a buffer\n",
205
+ " spotify_token_expiry = time.time() + token_data[\"expires_in\"] - 300\n",
206
+ " return spotify_access_token\n",
207
+ " else:\n",
208
+ " print(f\"Failed to refresh Spotify access token: {response.status_code}\")\n",
209
+ " print(f\"Response: {response.text}\")\n",
210
+ " return None\n"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": 31,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "def get_user_top_items(item_type=\"artists\", time_range=\"medium_term\", limit=10):\n",
220
+ " \"\"\"\n",
221
+ " Get the user's top artists or tracks from Spotify.\n",
222
+ " \n",
223
+ " Args:\n",
224
+ " item_type: 'artists' or 'tracks'\n",
225
+ " time_range: 'short_term' (4 weeks), 'medium_term' (6 months), 'long_term' (several years)\n",
226
+ " limit: Number of items to return (1-50)\n",
227
+ " \n",
228
+ " Returns:\n",
229
+ " Dictionary with top items data\n",
230
+ " \"\"\"\n",
231
+ " token = get_spotify_access_token()\n",
232
+ " if not token:\n",
233
+ " return {\"error\": \"Failed to get Spotify access token\"}\n",
234
+ " \n",
235
+ " # Make API request\n",
236
+ " url = f\"https://api.spotify.com/v1/me/top/{item_type}\"\n",
237
+ " headers = {\n",
238
+ " \"Authorization\": f\"Bearer {token}\"\n",
239
+ " }\n",
240
+ " params = {\n",
241
+ " \"time_range\": time_range,\n",
242
+ " \"limit\": limit\n",
243
+ " }\n",
244
+ " \n",
245
+ " response = requests.get(url, headers=headers, params=params)\n",
246
+ " \n",
247
+ " if response.status_code == 200:\n",
248
+ " data = response.json()\n",
249
+ " \n",
250
+ " formatted_items = []\n",
251
+ " for idx, item in enumerate(data.get(\"items\", []), 1):\n",
252
+ " if item_type == \"artists\":\n",
253
+ " formatted_items.append({\n",
254
+ " \"rank\": idx,\n",
255
+ " \"name\": item[\"name\"],\n",
256
+ " \"genres\": item.get(\"genres\", []),\n",
257
+ " \"popularity\": item.get(\"popularity\", 0),\n",
258
+ " \"spotify_url\": item[\"external_urls\"][\"spotify\"]\n",
259
+ " })\n",
260
+ " else: # tracks\n",
261
+ " formatted_items.append({\n",
262
+ " \"rank\": idx,\n",
263
+ " \"name\": item[\"name\"],\n",
264
+ " \"artist\": item[\"artists\"][0][\"name\"] if item.get(\"artists\") else \"Unknown\",\n",
265
+ " \"album\": item[\"album\"][\"name\"] if item.get(\"album\") else \"Unknown\",\n",
266
+ " \"popularity\": item.get(\"popularity\", 0),\n",
267
+ " \"spotify_url\": item[\"external_urls\"][\"spotify\"]\n",
268
+ " })\n",
269
+ " \n",
270
+ " return {\n",
271
+ " \"item_type\": item_type,\n",
272
+ " \"time_range\": time_range,\n",
273
+ " \"count\": len(formatted_items),\n",
274
+ " \"items\": formatted_items\n",
275
+ " }\n",
276
+ " else:\n",
277
+ " return {\"error\": f\"Failed to get top items: {response.status_code} - {response.text}\"}"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "code",
282
+ "execution_count": null,
283
+ "metadata": {},
284
+ "outputs": [],
285
+ "source": [
286
+ "# lets test the tool\n",
287
+ "get_user_top_items(item_type=\"artists\", time_range=\"medium_term\", limit=3)"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "code",
292
+ "execution_count": 33,
293
+ "metadata": {},
294
+ "outputs": [],
295
+ "source": [
296
+ "record_user_details_json = {\n",
297
+ " \"name\": \"record_user_details\",\n",
298
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
299
+ " \"parameters\": {\n",
300
+ " \"type\": \"object\",\n",
301
+ " \"properties\": {\n",
302
+ " \"email\": {\n",
303
+ " \"type\": \"string\",\n",
304
+ " \"description\": \"The email address of this user\"\n",
305
+ " },\n",
306
+ " \"name\": {\n",
307
+ " \"type\": \"string\",\n",
308
+ " \"description\": \"The user's name, if they provided it\"\n",
309
+ " }\n",
310
+ " ,\n",
311
+ " \"notes\": {\n",
312
+ " \"type\": \"string\",\n",
313
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
314
+ " }\n",
315
+ " },\n",
316
+ " \"required\": [\"email\"],\n",
317
+ " \"additionalProperties\": False\n",
318
+ " }\n",
319
+ "}"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": 34,
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": [
328
+ "get_user_top_items_json = {\n",
329
+ " \"name\": \"get_user_top_items\",\n",
330
+ " \"description\": \"Get the user's top artists or tracks from Spotify based on their listening history\",\n",
331
+ " \"parameters\": {\n",
332
+ " \"type\": \"object\",\n",
333
+ " \"properties\": {\n",
334
+ " \"item_type\": {\n",
335
+ " \"type\": \"string\",\n",
336
+ " \"description\": \"Type of items to retrieve: 'artists' or 'tracks'\",\n",
337
+ " \"enum\": [\"artists\", \"tracks\"]\n",
338
+ " },\n",
339
+ " \"time_range\": {\n",
340
+ " \"type\": \"string\", \n",
341
+ " \"description\": \"Time range for the data: 'short_term' (4 weeks), 'medium_term' (6 months), or 'long_term' (several years)\",\n",
342
+ " \"enum\": [\"short_term\", \"medium_term\", \"long_term\"]\n",
343
+ " },\n",
344
+ " \"limit\": {\n",
345
+ " \"type\": \"integer\",\n",
346
+ " \"description\": \"Number of items to return (1-50)\",\n",
347
+ " \"minimum\": 1,\n",
348
+ " \"maximum\": 50\n",
349
+ " }\n",
350
+ " },\n",
351
+ " \"required\": [\"item_type\", \"time_range\", \"limit\"],\n",
352
+ " \"additionalProperties\": False\n",
353
+ " }\n",
354
+ "}"
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "code",
359
+ "execution_count": 35,
360
+ "metadata": {},
361
+ "outputs": [],
362
+ "source": [
363
+ "record_unknown_question_json = {\n",
364
+ " \"name\": \"record_unknown_question\",\n",
365
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
366
+ " \"parameters\": {\n",
367
+ " \"type\": \"object\",\n",
368
+ " \"properties\": {\n",
369
+ " \"question\": {\n",
370
+ " \"type\": \"string\",\n",
371
+ " \"description\": \"The question that couldn't be answered\"\n",
372
+ " },\n",
373
+ " },\n",
374
+ " \"required\": [\"question\"],\n",
375
+ " \"additionalProperties\": False\n",
376
+ " }\n",
377
+ "}"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "code",
382
+ "execution_count": 36,
383
+ "metadata": {},
384
+ "outputs": [],
385
+ "source": [
386
+ "tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
387
+ " {\"type\": \"function\", \"function\": record_unknown_question_json},\n",
388
+ " {\"type\": \"function\", \"function\": get_user_top_items_json}]"
389
+ ]
390
+ },
391
+ {
392
+ "cell_type": "code",
393
+ "execution_count": null,
394
+ "metadata": {},
395
+ "outputs": [],
396
+ "source": [
397
+ "tools"
398
+ ]
399
+ },
400
+ {
401
+ "cell_type": "code",
402
+ "execution_count": 38,
403
+ "metadata": {},
404
+ "outputs": [],
405
+ "source": [
406
+ "# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
407
+ "\n",
408
+ "def handle_tool_calls(tool_calls):\n",
409
+ " results = []\n",
410
+ " for tool_call in tool_calls:\n",
411
+ " tool_name = tool_call.function.name\n",
412
+ " arguments = json.loads(tool_call.function.arguments)\n",
413
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
414
+ "\n",
415
+ " # THE BIG IF STATEMENT!!!\n",
416
+ "\n",
417
+ " if tool_name == \"record_user_details\":\n",
418
+ " result = record_user_details(**arguments)\n",
419
+ " elif tool_name == \"record_unknown_question\":\n",
420
+ " result = record_unknown_question(**arguments)\n",
421
+ " elif tool_name == \"get_user_top_items\":\n",
422
+ " result = get_user_top_items(**arguments)\n",
423
+ "\n",
424
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
425
+ " return results"
426
+ ]
427
+ },
428
+ {
429
+ "cell_type": "code",
430
+ "execution_count": null,
431
+ "metadata": {},
432
+ "outputs": [],
433
+ "source": [
434
+ "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
435
+ ]
436
+ },
437
+ {
438
+ "cell_type": "code",
439
+ "execution_count": 40,
440
+ "metadata": {},
441
+ "outputs": [],
442
+ "source": [
443
+ "# This is a more elegant way that avoids the IF statement.\n",
444
+ "\n",
445
+ "def handle_tool_calls(tool_calls):\n",
446
+ " results = []\n",
447
+ " for tool_call in tool_calls:\n",
448
+ " tool_name = tool_call.function.name\n",
449
+ " arguments = json.loads(tool_call.function.arguments)\n",
450
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
451
+ " tool = globals().get(tool_name)\n",
452
+ " result = tool(**arguments) if tool else {}\n",
453
+ " results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
454
+ " return results"
455
+ ]
456
+ },
457
+ {
458
+ "cell_type": "code",
459
+ "execution_count": 41,
460
+ "metadata": {},
461
+ "outputs": [],
462
+ "source": [
463
+ "reader = PdfReader(\"me/linkedin.pdf\")\n",
464
+ "linkedin = \"\"\n",
465
+ "for page in reader.pages:\n",
466
+ " text = page.extract_text()\n",
467
+ " if text:\n",
468
+ " linkedin += text\n",
469
+ "\n",
470
+ "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
471
+ " summary = f.read()\n",
472
+ "\n",
473
+ "name = \"Ed Donner\""
474
+ ]
475
+ },
476
+ {
477
+ "cell_type": "code",
478
+ "execution_count": 42,
479
+ "metadata": {},
480
+ "outputs": [],
481
+ "source": [
482
+ "# We've added a \"If they ask you about your tastes in music you can use your get_user_top_items tool...\" \n",
483
+ "\n",
484
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
485
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
486
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
487
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
488
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
489
+ "If they ask you about your tastes in music you can use your get_user_top_items tool to get information about your top artists and tracks. \\\n",
490
+ "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
491
+ "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
492
+ "\n",
493
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
494
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
495
+ ]
496
+ },
497
+ {
498
+ "cell_type": "code",
499
+ "execution_count": 43,
500
+ "metadata": {},
501
+ "outputs": [],
502
+ "source": [
503
+ "def chat(message, history):\n",
504
+ " messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
505
+ " done = False\n",
506
+ " while not done:\n",
507
+ "\n",
508
+ " # This is the call to the LLM - see that we pass in the tools json\n",
509
+ "\n",
510
+ " response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages, tools=tools)\n",
511
+ "\n",
512
+ " finish_reason = response.choices[0].finish_reason\n",
513
+ " \n",
514
+ " # If the LLM wants to call a tool, we do that!\n",
515
+ " \n",
516
+ " if finish_reason==\"tool_calls\":\n",
517
+ " message = response.choices[0].message\n",
518
+ " tool_calls = message.tool_calls\n",
519
+ " results = handle_tool_calls(tool_calls)\n",
520
+ " messages.append(message)\n",
521
+ " messages.extend(results)\n",
522
+ " else:\n",
523
+ " done = True\n",
524
+ " return response.choices[0].message.content"
525
+ ]
526
+ },
527
+ {
528
+ "cell_type": "code",
529
+ "execution_count": null,
530
+ "metadata": {},
531
+ "outputs": [],
532
+ "source": [
533
+ "gr.ChatInterface(chat, type=\"messages\").launch()"
534
+ ]
535
+ },
536
+ {
537
+ "cell_type": "markdown",
538
+ "metadata": {},
539
+ "source": [
540
+ "## And now for deployment\n",
541
+ "\n",
542
+ "This code is in `app.py`\n",
543
+ "\n",
544
+ "We will deploy to HuggingFace Spaces.\n",
545
+ "\n",
546
+ "Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! Also change `self.name = \"Ed Donner\"` in `app.py`.. \n",
547
+ "\n",
548
+ "Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
549
+ "\n",
550
+ "1. Visit https://huggingface.co and set up an account \n",
551
+ "2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions - it needs to have WRITE permissions! Keep a record of your new key. \n",
552
+ "3. In the Terminal, run: `uv tool install 'huggingface_hub[cli]'` to install the HuggingFace tool, then `hf auth login` to login at the command line with your key. Afterwards, run `hf auth whoami` to check you're logged in \n",
553
+ "4. Take your new token and add it to your .env file: `HF_TOKEN=hf_xxx` for the future\n",
554
+ "5. From the 1_foundations folder, enter: `uv run gradio deploy` \n",
555
+ "6. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
556
+ "\n",
557
+ "Thank you Robert, James, Martins, Andras and Priya for these tips. \n",
558
+ "Please read the next 2 sections - how to change your Secrets, and how to redeploy your Space (you may need to delete the README.md that gets created in this 1_foundations directory).\n",
559
+ "\n",
560
+ "#### More about these secrets:\n",
561
+ "\n",
562
+ "If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
563
+ "`OPENAI_API_KEY` \n",
564
+ "Followed by: \n",
565
+ "`sk-proj-...` \n",
566
+ "\n",
567
+ "And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
568
+ "1. Log in to HuggingFace website \n",
569
+ "2. Go to your profile screen via the Avatar menu on the top right \n",
570
+ "3. Select the Space you deployed \n",
571
+ "4. Click on the Settings wheel on the top right \n",
572
+ "5. You can scroll down to change your secrets (Variables and Secrets section), delete the space, etc.\n",
573
+ "\n",
574
+ "#### And now you should be deployed!\n",
575
+ "\n",
576
+ "If you want to completely replace everything and start again with your keys, you may need to delete the README.md that got created in this 1_foundations folder.\n",
577
+ "\n",
578
+ "Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
579
+ "\n",
580
+ "I just got a push notification that a student asked me how they can become President of their country πŸ˜‚πŸ˜‚\n",
581
+ "\n",
582
+ "For more information on deployment:\n",
583
+ "\n",
584
+ "https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
585
+ "\n",
586
+ "To delete your Space in the future: \n",
587
+ "1. Log in to HuggingFace\n",
588
+ "2. From the Avatar menu, select your profile\n",
589
+ "3. Click on the Space itself and select the settings wheel on the top right\n",
590
+ "4. Scroll to the Delete section at the bottom\n",
591
+ "5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
592
+ ]
593
+ },
594
+ {
595
+ "cell_type": "markdown",
596
+ "metadata": {},
597
+ "source": [
598
+ "## Spotify API Setup Instructions\n",
599
+ "\n",
600
+ "To use the Spotify tool in this notebook, you need will need to undergo a one-time setup process to obtain access and refresh tokens from Spotify. This involve the following steps:\n",
601
+ "\n",
602
+ "1. **Create a Spotify App**:\n",
603
+ " - Go to https://developer.spotify.com/dashboard\n",
604
+ " - Click \"Create app\"\n",
605
+ " - Fill in the app details\n",
606
+ " - Set Redirect URI to: `https://your-username-your-space-name.hf.space/callback` (replace with your actual HuggingFace Space URL)\n",
607
+ " - Save your Client ID and Client Secret\n",
608
+ "\n",
609
+ "2. **Add to your `.env` file**:\n",
610
+ " ```\n",
611
+ " SPOTIFY_CLIENT_ID=your_client_id_here\n",
612
+ " SPOTIFY_CLIENT_SECRET=your_client_secret_here\n",
613
+ " ```\n",
614
+ "\n",
615
+ "3. **Deploy and authenticate**:\n",
616
+ " - Deploy the authentication app from the **Flask Authentication App for Spotify** cell below to HuggingFace Spaces\n",
617
+ " - Visit your deployed app and click \"Authorize with Spotify\"\n",
618
+ " - After authorizing, copy the tokens displayed\n",
619
+ " - ONCE YOU HAVE HAVE OBTAINED YOUR ACCESS AND REFRESH TOKESNS YOU CAN DELETE THIS DEPLOYMENT\n",
620
+ "\n",
621
+ "4. **Add tokens to .env and reload**:\n",
622
+ " ```\n",
623
+ " SPOTIFY_ACCESS_TOKEN=your_access_token\n",
624
+ " SPOTIFY_REFRESH_TOKEN=your_refresh_token\n",
625
+ " ```\n",
626
+ " Then run `load_dotenv(override=True)`\n",
627
+ "\n"
628
+ ]
629
+ },
630
+ {
631
+ "cell_type": "code",
632
+ "execution_count": null,
633
+ "metadata": {},
634
+ "outputs": [],
635
+ "source": []
636
+ },
637
+ {
638
+ "cell_type": "markdown",
639
+ "metadata": {},
640
+ "source": [
641
+ "## Flask Authentication App for Spotify\n",
642
+ "\n",
643
+ "Deploy this code as `spotify_flask_auth.py` to HuggingFace Spaces using Gradio following the steps as above fro\n",
644
+ "app.py. You need the following:\n",
645
+ "1. SPOTIFY_CLIENT_ID and SPOTIFY_CLIENT_SECRET defined in your environment\n",
646
+ "2. Need a requirements.txt with Flask listed as a dependency (no other dependencies are needed)\n",
647
+ "\n",
648
+ "```python\n",
649
+ "from flask import Flask, request, redirect, render_template_string\n",
650
+ "import requests\n",
651
+ "import base64\n",
652
+ "import os\n",
653
+ "from dotenv import load_dotenv\n",
654
+ "import urllib.parse\n",
655
+ "import secrets\n",
656
+ "import string\n",
657
+ "\n",
658
+ "load_dotenv(override=True)\n",
659
+ "\n",
660
+ "app = Flask(__name__)\n",
661
+ "app.secret_key = ''.join(secrets.choice(string.ascii_letters + string.digits) for _ in range(32))\n",
662
+ "\n",
663
+ "CLIENT_ID = os.getenv(\"SPOTIFY_CLIENT_ID\")\n",
664
+ "CLIENT_SECRET = os.getenv(\"SPOTIFY_CLIENT_SECRET\")\n",
665
+ "\n",
666
+ "REDIRECT_URI = f\"https://{os.getenv('SPACE_HOST')}/callback\"\n",
667
+ "SCOPE = \"user-top-read\"\n",
668
+ "tokens = {}\n",
669
+ "\n",
670
+ "# HTML template for the home page\n",
671
+ "HOME_TEMPLATE = \"\"\"\n",
672
+ "<!DOCTYPE html>\n",
673
+ "<html>\n",
674
+ "<head>\n",
675
+ " <title>Spotify OAuth Helper</title>\n",
676
+ "</head>\n",
677
+ "<body>\n",
678
+ " {% if has_credentials %}\n",
679
+ " <div style=\"margin-bottom: 20px;\">\n",
680
+ " <p>Make sure to add this redirect URI to your Spotify app settings:</p>\n",
681
+ " <code>{{ redirect_uri }}</code>\n",
682
+ " </div>\n",
683
+ " <button onclick=\"window.open('https://accounts.spotify.com/authorize?client_id={{ client_id }}&response_type=code&redirect_uri={{ redirect_uri | urlencode }}&scope={{ scope | urlencode }}&show_dialog=true', '_blank')\">Authorize with Spotify</button>\n",
684
+ " {% else %}\n",
685
+ " <div>Missing Spotify credentials in .env file</div>\n",
686
+ " {% endif %}\n",
687
+ "</body>\n",
688
+ "</html>\n",
689
+ "\"\"\"\n",
690
+ "\n",
691
+ "SUCCESS_TEMPLATE = \"\"\"\n",
692
+ "<!DOCTYPE html>\n",
693
+ "<html>\n",
694
+ "<head>\n",
695
+ " <title>Spotify OAuth - Success!</title>\n",
696
+ "</head>\n",
697
+ "<body>\n",
698
+ " <p>Authorization Complete</p>\n",
699
+ " <h3>Add to your .env file:</h3>\n",
700
+ " <pre>SPOTIFY_ACCESS_TOKEN={{ access_token }}\n",
701
+ "SPOTIFY_REFRESH_TOKEN={{ refresh_token }}</pre>\n",
702
+ "</body>\n",
703
+ "</html>\n",
704
+ "\"\"\"\n",
705
+ "\n",
706
+ "@app.route('/')\n",
707
+ "def home():\n",
708
+ " error = request.args.get('error')\n",
709
+ " has_credentials = CLIENT_ID and CLIENT_SECRET\n",
710
+ " return render_template_string(HOME_TEMPLATE, error=error, has_credentials=has_credentials, redirect_uri=REDIRECT_URI, client_id=CLIENT_ID, scope=SCOPE)\n",
711
+ "\n",
712
+ "@app.route('/authorize')\n",
713
+ "def authorize():\n",
714
+ " \"\"\"Redirect to Spotify authorization\"\"\"\n",
715
+ " if not CLIENT_ID:\n",
716
+ " return redirect('/?error=Missing SPOTIFY_CLIENT_ID')\n",
717
+ " \n",
718
+ " auth_url = \"https://accounts.spotify.com/authorize\"\n",
719
+ " params = {\n",
720
+ " \"client_id\": CLIENT_ID,\n",
721
+ " \"response_type\": \"code\",\n",
722
+ " \"redirect_uri\": REDIRECT_URI,\n",
723
+ " \"scope\": SCOPE,\n",
724
+ " \"show_dialog\": \"true\"\n",
725
+ " }\n",
726
+ " \n",
727
+ " url = f\"{auth_url}?{urllib.parse.urlencode(params)}\"\n",
728
+ " return redirect(url)\n",
729
+ "\n",
730
+ "@app.route('/callback')\n",
731
+ "def callback():\n",
732
+ " \"\"\"Handle the OAuth callback\"\"\"\n",
733
+ " error = request.args.get('error')\n",
734
+ " if error:\n",
735
+ " return redirect(f'/?error=Authorization failed: {error}')\n",
736
+ " \n",
737
+ " code = request.args.get('code')\n",
738
+ " if not code:\n",
739
+ " return redirect('/?error=No authorization code received')\n",
740
+ " \n",
741
+ " # Exchange code for tokens\n",
742
+ " token_url = \"https://accounts.spotify.com/api/token\"\n",
743
+ " \n",
744
+ " credentials = f\"{CLIENT_ID}:{CLIENT_SECRET}\"\n",
745
+ " encoded_credentials = base64.b64encode(credentials.encode()).decode()\n",
746
+ " \n",
747
+ " headers = {\n",
748
+ " \"Authorization\": f\"Basic {encoded_credentials}\",\n",
749
+ " \"Content-Type\": \"application/x-www-form-urlencoded\"\n",
750
+ " }\n",
751
+ " \n",
752
+ " data = {\n",
753
+ " \"grant_type\": \"authorization_code\",\n",
754
+ " \"code\": code,\n",
755
+ " \"redirect_uri\": REDIRECT_URI\n",
756
+ " }\n",
757
+ " \n",
758
+ " response = requests.post(token_url, headers=headers, data=data)\n",
759
+ " \n",
760
+ " if response.status_code == 200:\n",
761
+ " token_data = response.json()\n",
762
+ " tokens['access_token'] = token_data['access_token']\n",
763
+ " tokens['refresh_token'] = token_data['refresh_token']\n",
764
+ " \n",
765
+ " return render_template_string(\n",
766
+ " SUCCESS_TEMPLATE,\n",
767
+ " access_token=token_data['access_token'],\n",
768
+ " refresh_token=token_data['refresh_token']\n",
769
+ " )\n",
770
+ " else:\n",
771
+ " error_msg = response.json().get('error_description', 'Unknown error')\n",
772
+ " return redirect(f'/?error=Token exchange failed: {error_msg}')\n",
773
+ "\n",
774
+ "if __name__ == '__main__':\n",
775
+ " app.run(host='0.0.0.0', port=7860)\n",
776
+ "```\n",
777
+ "\n",
778
+ "**Deployment Instructions:**\n",
779
+ "1. You will need to provide `SPOTIFY_CLIENT_ID` and `SPOTIFY_CLIENT_SECRET` as secrets in HuggingFace Spaces\n",
780
+ "2. Create a `requirements.txt` file with a single entry: `Flask`\n",
781
+ "3. Deploy to HuggingFace Spaces using the instructions in the deployment section below"
782
+ ]
783
+ },
784
+ {
785
+ "cell_type": "markdown",
786
+ "metadata": {},
787
+ "source": []
788
+ },
789
+ {
790
+ "cell_type": "markdown",
791
+ "metadata": {},
792
+ "source": [
793
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
794
+ " <tr>\n",
795
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
796
+ " <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
797
+ " </td>\n",
798
+ " <td>\n",
799
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
800
+ " <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
801
+ " </span>\n",
802
+ " </td>\n",
803
+ " </tr>\n",
804
+ "</table>"
805
+ ]
806
+ }
807
+ ],
808
+ "metadata": {
809
+ "kernelspec": {
810
+ "display_name": ".venv",
811
+ "language": "python",
812
+ "name": "python3"
813
+ },
814
+ "language_info": {
815
+ "codemirror_mode": {
816
+ "name": "ipython",
817
+ "version": 3
818
+ },
819
+ "file_extension": ".py",
820
+ "mimetype": "text/x-python",
821
+ "name": "python",
822
+ "nbconvert_exporter": "python",
823
+ "pygments_lexer": "ipython3",
824
+ "version": "3.12.11"
825
+ }
826
+ },
827
+ "nbformat": 4,
828
+ "nbformat_minor": 2
829
+ }
community_contributions/4_lab4_with_telegram.ipynb ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "### Contributed by Faisal Alkheraiji\n",
8
+ "\n",
9
+ "LinkedIn: https://www.linkedin.com/in/faisalalkheraiji/\n"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "## The first big project - Professionally You!\n",
17
+ "\n",
18
+ "### And, Tool use.\n",
19
+ "\n",
20
+ "### But first: introducing Telegram\n",
21
+ "\n",
22
+ "We need to do the following to get out Telegram chatbot working:\n",
23
+ "\n",
24
+ "1. Create new telegram bot using @BotFather.\n",
25
+ "2. Get our bot token.\n",
26
+ "3. Get your chat ID.\n",
27
+ "\n",
28
+ "For easy and quick tutorial, follow this great tutorial from our friend:\n",
29
+ "\n",
30
+ "https://chatgpt.com/share/686eccf4-34b0-8000-8f34-a3d9269e0578\n",
31
+ "\n",
32
+ "Then add 2 lines to your `.env` file:\n",
33
+ "\n",
34
+ "TELEGRAM*BOT_TOKEN=\\_your bot token*\n",
35
+ "\n",
36
+ "TELEGRAM*CHAT_ID=\\_your chat ID*\n"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "metadata": {},
43
+ "outputs": [],
44
+ "source": [
45
+ "# imports\n",
46
+ "\n",
47
+ "from dotenv import load_dotenv\n",
48
+ "from openai import OpenAI\n",
49
+ "import json\n",
50
+ "import os\n",
51
+ "import requests\n",
52
+ "from pypdf import PdfReader\n",
53
+ "import gradio as gr"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# The usual start\n",
63
+ "\n",
64
+ "load_dotenv(override=True)\n",
65
+ "openai = OpenAI()"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {},
72
+ "outputs": [],
73
+ "source": [
74
+ "# Getting the Telegram bot token and chat ID from environment variables\n",
75
+ "# You can also replace these with your actual values directly\n",
76
+ "\n",
77
+ "TELEGRAM_BOT_TOKEN = os.getenv(\"TELEGRAM_BOT_TOKEN\", \"your_bot_token_here\")\n",
78
+ "TELEGRAM_CHAT_ID = os.getenv(\"TELEGRAM_CHAT_ID\", \"your_chat_id_here\")"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "def send_telegram_message(text):\n",
88
+ " url = f\"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendMessage\"\n",
89
+ " payload = {\"chat_id\": TELEGRAM_CHAT_ID, \"text\": text}\n",
90
+ "\n",
91
+ " response = requests.post(url, data=payload)\n",
92
+ "\n",
93
+ " if response.status_code == 200:\n",
94
+ " # print(\"Message sent successfully!\")\n",
95
+ " return {\"status\": \"success\", \"message\": text}\n",
96
+ " else:\n",
97
+ " # print(f\"Failed to send message. Status code: {response.status_code}\")\n",
98
+ " # print(response.text)\n",
99
+ " return {\"status\": \"error\", \"message\": response.text}"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "# Example usage\n",
109
+ "send_telegram_message(\"Hello from python notebook !!\")"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
119
+ " send_telegram_message(\n",
120
+ " f\"Recording interest from {name} with email {email} and notes {notes}\"\n",
121
+ " )\n",
122
+ " return {\"recorded\": \"ok\"}"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "metadata": {},
129
+ "outputs": [],
130
+ "source": [
131
+ "def record_unknown_question(question):\n",
132
+ " send_telegram_message(f\"Recording {question} asked that I couldn't answer\")\n",
133
+ " return {\"recorded\": \"ok\"}"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "execution_count": null,
139
+ "metadata": {},
140
+ "outputs": [],
141
+ "source": [
142
+ "record_user_details_json = {\n",
143
+ " \"name\": \"record_user_details\",\n",
144
+ " \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
145
+ " \"parameters\": {\n",
146
+ " \"type\": \"object\",\n",
147
+ " \"properties\": {\n",
148
+ " \"email\": {\n",
149
+ " \"type\": \"string\",\n",
150
+ " \"description\": \"The email address of this user\",\n",
151
+ " },\n",
152
+ " \"name\": {\n",
153
+ " \"type\": \"string\",\n",
154
+ " \"description\": \"The user's name, if they provided it\",\n",
155
+ " },\n",
156
+ " \"notes\": {\n",
157
+ " \"type\": \"string\",\n",
158
+ " \"description\": \"Any additional information about the conversation that's worth recording to give context\",\n",
159
+ " },\n",
160
+ " },\n",
161
+ " \"required\": [\"email\"],\n",
162
+ " \"additionalProperties\": False,\n",
163
+ " },\n",
164
+ "}"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": null,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": [
173
+ "record_unknown_question_json = {\n",
174
+ " \"name\": \"record_unknown_question\",\n",
175
+ " \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
176
+ " \"parameters\": {\n",
177
+ " \"type\": \"object\",\n",
178
+ " \"properties\": {\n",
179
+ " \"question\": {\n",
180
+ " \"type\": \"string\",\n",
181
+ " \"description\": \"The question that couldn't be answered\",\n",
182
+ " },\n",
183
+ " },\n",
184
+ " \"required\": [\"question\"],\n",
185
+ " \"additionalProperties\": False,\n",
186
+ " },\n",
187
+ "}"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": null,
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "tools = [\n",
197
+ " {\"type\": \"function\", \"function\": record_user_details_json},\n",
198
+ " {\"type\": \"function\", \"function\": record_unknown_question_json},\n",
199
+ "]"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": null,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "tools"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
218
+ "\n",
219
+ "\n",
220
+ "def handle_tool_calls(tool_calls):\n",
221
+ " results = []\n",
222
+ " for tool_call in tool_calls:\n",
223
+ " tool_name = tool_call.function.name\n",
224
+ " arguments = json.loads(tool_call.function.arguments)\n",
225
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
226
+ "\n",
227
+ " # THE BIG IF STATEMENT!!!\n",
228
+ "\n",
229
+ " if tool_name == \"record_user_details\":\n",
230
+ " result = record_user_details(**arguments)\n",
231
+ " elif tool_name == \"record_unknown_question\":\n",
232
+ " result = record_unknown_question(**arguments)\n",
233
+ "\n",
234
+ " results.append(\n",
235
+ " {\n",
236
+ " \"role\": \"tool\",\n",
237
+ " \"content\": json.dumps(result),\n",
238
+ " \"tool_call_id\": tool_call.id,\n",
239
+ " }\n",
240
+ " )\n",
241
+ " return results"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": [
250
+ "globals()[\"record_unknown_question\"](\"this is a really hard question\")"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "code",
255
+ "execution_count": null,
256
+ "metadata": {},
257
+ "outputs": [],
258
+ "source": [
259
+ "# This is a more elegant way that avoids the IF statement.\n",
260
+ "\n",
261
+ "\n",
262
+ "def handle_tool_calls(tool_calls):\n",
263
+ " results = []\n",
264
+ " for tool_call in tool_calls:\n",
265
+ " tool_name = tool_call.function.name\n",
266
+ " arguments = json.loads(tool_call.function.arguments)\n",
267
+ " print(f\"Tool called: {tool_name}\", flush=True)\n",
268
+ " tool = globals().get(tool_name)\n",
269
+ " result = tool(**arguments) if tool else {}\n",
270
+ " results.append(\n",
271
+ " {\n",
272
+ " \"role\": \"tool\",\n",
273
+ " \"content\": json.dumps(result),\n",
274
+ " \"tool_call_id\": tool_call.id,\n",
275
+ " }\n",
276
+ " )\n",
277
+ " return results"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "code",
282
+ "execution_count": null,
283
+ "metadata": {},
284
+ "outputs": [],
285
+ "source": [
286
+ "reader = PdfReader(\"../me/linkedin.pdf\")\n",
287
+ "linkedin = \"\"\n",
288
+ "for page in reader.pages:\n",
289
+ " text = page.extract_text()\n",
290
+ " if text:\n",
291
+ " linkedin += text\n",
292
+ "\n",
293
+ "with open(\"../me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
294
+ " summary = f.read()\n",
295
+ "\n",
296
+ "name = \"Ed Donner\""
297
+ ]
298
+ },
299
+ {
300
+ "cell_type": "code",
301
+ "execution_count": null,
302
+ "metadata": {},
303
+ "outputs": [],
304
+ "source": [
305
+ "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
306
+ "particularly questions related to {name}'s career, background, skills and experience. \\\n",
307
+ "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
308
+ "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
309
+ "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
310
+ "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \\\n",
311
+ "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. \"\n",
312
+ "\n",
313
+ "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
314
+ "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
315
+ ]
316
+ },
317
+ {
318
+ "cell_type": "code",
319
+ "execution_count": null,
320
+ "metadata": {},
321
+ "outputs": [],
322
+ "source": [
323
+ "def chat(message, history):\n",
324
+ " messages = (\n",
325
+ " [{\"role\": \"system\", \"content\": system_prompt}]\n",
326
+ " + history\n",
327
+ " + [{\"role\": \"user\", \"content\": message}]\n",
328
+ " )\n",
329
+ " done = False\n",
330
+ " while not done:\n",
331
+ " # This is the call to the LLM - see that we pass in the tools json\n",
332
+ "\n",
333
+ " response = openai.chat.completions.create(\n",
334
+ " model=\"gpt-4o-mini\", messages=messages, tools=tools\n",
335
+ " )\n",
336
+ "\n",
337
+ " finish_reason = response.choices[0].finish_reason\n",
338
+ "\n",
339
+ " # If the LLM wants to call a tool, we do that!\n",
340
+ "\n",
341
+ " if finish_reason == \"tool_calls\":\n",
342
+ " message = response.choices[0].message\n",
343
+ " tool_calls = message.tool_calls\n",
344
+ " results = handle_tool_calls(tool_calls)\n",
345
+ " messages.append(message)\n",
346
+ " messages.extend(results)\n",
347
+ " else:\n",
348
+ " done = True\n",
349
+ " return response.choices[0].message.content"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": null,
355
+ "metadata": {},
356
+ "outputs": [],
357
+ "source": [
358
+ "gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
359
+ ]
360
+ },
361
+ {
362
+ "cell_type": "markdown",
363
+ "metadata": {},
364
+ "source": [
365
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
366
+ " <tr>\n",
367
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
368
+ " <img src=\"../../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
369
+ " </td>\n",
370
+ " <td>\n",
371
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
372
+ " <span style=\"color:#ff7800;\">β€’ First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
373
+ " β€’ Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
374
+ " β€’Β Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
375
+ " β€’ Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
376
+ " </span>\n",
377
+ " </td>\n",
378
+ " </tr>\n",
379
+ "</table>\n"
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "markdown",
384
+ "metadata": {},
385
+ "source": [
386
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
387
+ " <tr>\n",
388
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
389
+ " <img src=\"../../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
390
+ " </td>\n",
391
+ " <td>\n",
392
+ " <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
393
+ " <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
394
+ " </span>\n",
395
+ " </td>\n",
396
+ " </tr>\n",
397
+ "</table>\n"
398
+ ]
399
+ }
400
+ ],
401
+ "metadata": {
402
+ "kernelspec": {
403
+ "display_name": ".venv",
404
+ "language": "python",
405
+ "name": "python3"
406
+ },
407
+ "language_info": {
408
+ "codemirror_mode": {
409
+ "name": "ipython",
410
+ "version": 3
411
+ },
412
+ "file_extension": ".py",
413
+ "mimetype": "text/x-python",
414
+ "name": "python",
415
+ "nbconvert_exporter": "python",
416
+ "pygments_lexer": "ipython3",
417
+ "version": "3.12.11"
418
+ }
419
+ },
420
+ "nbformat": 4,
421
+ "nbformat_minor": 2
422
+ }
community_contributions/Ayushg12345_contributions/ayushg12345_lab1_solution.ipynb ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Welcome to the start of your adventure in Agentic AI"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
15
+ " <tr>\n",
16
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
17
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
18
+ " </td>\n",
19
+ " <td>\n",
20
+ " <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
21
+ " <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
22
+ " Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
23
+ " Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
24
+ " Well in that case, you're ready!!\n",
25
+ " </span>\n",
26
+ " </td>\n",
27
+ " </tr>\n",
28
+ "</table>"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "markdown",
33
+ "metadata": {},
34
+ "source": [
35
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
36
+ " <tr>\n",
37
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
38
+ " <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
39
+ " </td>\n",
40
+ " <td>\n",
41
+ " <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
42
+ " <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
43
+ " I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
44
+ " </span>\n",
45
+ " </td>\n",
46
+ " </tr>\n",
47
+ "</table>"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "### And please do remember to contact me if I can help\n",
55
+ "\n",
56
+ "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
57
+ "\n",
58
+ "\n",
59
+ "### New to Notebooks like this one? Head over to the guides folder!\n",
60
+ "\n",
61
+ "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
62
+ "- Open extensions (View >> extensions)\n",
63
+ "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
64
+ "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed \n",
65
+ "Then View >> Explorer to bring back the File Explorer.\n",
66
+ "\n",
67
+ "And then:\n",
68
+ "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
69
+ "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
70
+ "3. Enjoy!\n",
71
+ "\n",
72
+ "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following: \n",
73
+ "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`); \n",
74
+ "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`) \n",
75
+ "2. In the Settings search bar, type \"venv\" \n",
76
+ "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux). \n",
77
+ "And then try again.\n",
78
+ "\n",
79
+ "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated: \n",
80
+ "`conda deactivate` \n",
81
+ "And if you still have any problems with conda and python versions, it's possible that you will need to run this too: \n",
82
+ "`conda config --set auto_activate_base false` \n",
83
+ "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
93
+ "\n",
94
+ "from dotenv import load_dotenv\n"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# Next it's time to load the API keys into environment variables\n",
104
+ "# If this returns false, see the next cell!\n",
105
+ "\n",
106
+ "load_dotenv(override=True)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "markdown",
111
+ "metadata": {},
112
+ "source": [
113
+ "### Wait, did that just output `False`??\n",
114
+ "\n",
115
+ "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
116
+ "\n",
117
+ "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
118
+ "\n",
119
+ "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
127
+ " <tr>\n",
128
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
129
+ " <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
130
+ " </td>\n",
131
+ " <td>\n",
132
+ " <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
133
+ " <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
134
+ " 2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
135
+ " 3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
136
+ " </span>\n",
137
+ " </td>\n",
138
+ " </tr>\n",
139
+ "</table>"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
149
+ "\n",
150
+ "import os\n",
151
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
152
+ "\n",
153
+ "if openai_api_key:\n",
154
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
155
+ "else:\n",
156
+ " \n",
157
+ " print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
158
+ " \n"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": null,
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "# And now - the all important import statement\n",
168
+ "# If you get an import error - head over to troubleshooting in the Setup folder\n",
169
+ "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
170
+ "\n",
171
+ "from openai import OpenAI"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": null,
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "# And now we'll create an instance of the OpenAI class\n",
181
+ "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
182
+ "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
183
+ "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
184
+ "\n",
185
+ "openai = OpenAI()"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "metadata": {},
192
+ "outputs": [],
193
+ "source": [
194
+ "# Create a list of messages in the familiar OpenAI format\n",
195
+ "\n",
196
+ "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "# And now call it! Any problems, head to the troubleshooting guide\n",
206
+ "# This uses GPT 4.1 nano, the incredibly cheap model\n",
207
+ "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
208
+ "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
209
+ "\n",
210
+ "response = openai.chat.completions.create(\n",
211
+ " model=\"gpt-4.1-nano\",\n",
212
+ " messages=messages\n",
213
+ ")\n",
214
+ "\n",
215
+ "print(response.choices[0].message.content)\n",
216
+ "\n",
217
+ "# Check the usage information\n",
218
+ "\n",
219
+ "print(f\"Tokens used: {response.usage.total_tokens}\")\n",
220
+ "print(f\"Prompt tokens: {response.usage.prompt_tokens}\")\n",
221
+ "print(f\"Completion tokens: {response.usage.completion_tokens}\")\n",
222
+ "print(f\"Model: {response.model}\")\n"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "# And now - let's ask for a question:\n",
232
+ "\n",
233
+ "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
234
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": null,
240
+ "metadata": {},
241
+ "outputs": [],
242
+ "source": [
243
+ "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
244
+ "\n",
245
+ "response = openai.chat.completions.create(\n",
246
+ " model=\"gpt-4.1-mini\",\n",
247
+ " messages=messages\n",
248
+ ")\n",
249
+ "\n",
250
+ "question = response.choices[0].message.content\n",
251
+ "\n",
252
+ "print(question)\n"
253
+ ]
254
+ },
255
+ {
256
+ "cell_type": "code",
257
+ "execution_count": null,
258
+ "metadata": {},
259
+ "outputs": [],
260
+ "source": [
261
+ "# form a new messages list\n",
262
+ "messages = [{\"role\": \"user\", \"content\": question}]\n"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": null,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": [
271
+ "# Ask it again\n",
272
+ "\n",
273
+ "response = openai.chat.completions.create(\n",
274
+ " model=\"gpt-4.1-mini\",\n",
275
+ " messages=messages\n",
276
+ ")\n",
277
+ "\n",
278
+ "answer = response.choices[0].message.content\n",
279
+ "print(answer)\n"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": null,
285
+ "metadata": {},
286
+ "outputs": [],
287
+ "source": [
288
+ "from IPython.display import display, Markdown\n",
289
+ "\n",
290
+ "display(Markdown(answer))\n"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "markdown",
295
+ "metadata": {},
296
+ "source": [
297
+ "# Congratulations!\n",
298
+ "\n",
299
+ "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
300
+ "\n",
301
+ "Next time things get more interesting..."
302
+ ]
303
+ },
304
+ {
305
+ "cell_type": "markdown",
306
+ "metadata": {},
307
+ "source": [
308
+ "<table style=\"margin: 0; text-align: left; width:100%\">\n",
309
+ " <tr>\n",
310
+ " <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
311
+ " <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
312
+ " </td>\n",
313
+ " <td>\n",
314
+ " <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
315
+ " <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
316
+ " First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
317
+ " Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
318
+ " Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
319
+ " We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
320
+ " </span>\n",
321
+ " </td>\n",
322
+ " </tr>\n",
323
+ "</table>"
324
+ ]
325
+ },
326
+ {
327
+ "cell_type": "code",
328
+ "execution_count": null,
329
+ "metadata": {},
330
+ "outputs": [],
331
+ "source": [
332
+ "# First create the messages:\n",
333
+ "\n",
334
+ "messages = [{\"role\": \"user\", \"content\": \"Can you pick a business area that might be ripe for an Agentic solution?\"}]\n",
335
+ "\n",
336
+ "# Then make the first call:\n",
337
+ "\n",
338
+ "response = openai.chat.completions.create(\n",
339
+ " model=\"gpt-4.1-mini\",\n",
340
+ " messages=messages\n",
341
+ ")\n",
342
+ "\n",
343
+ "# Then read the business idea:\n",
344
+ "\n",
345
+ "business_idea = response.choices[0].message.content\n",
346
+ "\n",
347
+ "# And repeat! In the next message, include the business idea within the message"
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "markdown",
352
+ "metadata": {},
353
+ "source": []
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": null,
358
+ "metadata": {},
359
+ "outputs": [],
360
+ "source": [
361
+ "print(business_idea)"
362
+ ]
363
+ },
364
+ {
365
+ "cell_type": "code",
366
+ "execution_count": null,
367
+ "metadata": {},
368
+ "outputs": [],
369
+ "source": [
370
+ "messages.append({\"role\": \"assistant\", \"content\": business_idea})\n",
371
+ "messages.append({\"role\": \"user\", \"content\": \"Can you propose a pain-point in that industry?\"})\n",
372
+ "\n",
373
+ "response = openai.chat.completions.create(\n",
374
+ " model=\"gpt-4.1-mini\",\n",
375
+ " messages=messages\n",
376
+ ")\n",
377
+ "\n",
378
+ "pain_point = response.choices[0].message.content\n",
379
+ "\n",
380
+ "print(pain_point)\n",
381
+ "\n",
382
+ "\n",
383
+ "\n",
384
+ "\n",
385
+ "\n"
386
+ ]
387
+ },
388
+ {
389
+ "cell_type": "code",
390
+ "execution_count": null,
391
+ "metadata": {},
392
+ "outputs": [],
393
+ "source": [
394
+ "# Add a history and ask for the solution to the pain point\n",
395
+ "\n",
396
+ "messages.append({\"role\": \"assistant\", \"content\": pain_point})\n",
397
+ "messages.append({\"role\": \"user\", \"content\": \"Can you propose a solution to this pain-point?\"})\n",
398
+ "\n",
399
+ "response = openai.chat.completions.create(\n",
400
+ " model=\"gpt-4.1-mini\",\n",
401
+ " messages=messages\n",
402
+ ")\n",
403
+ "\n",
404
+ "solution = response.choices[0].message.content\n",
405
+ "\n",
406
+ "print(solution)\n",
407
+ "\n",
408
+ "\n",
409
+ "\n"
410
+ ]
411
+ },
412
+ {
413
+ "cell_type": "code",
414
+ "execution_count": null,
415
+ "metadata": {},
416
+ "outputs": [],
417
+ "source": [
418
+ "from IPython.display import display, Markdown\n",
419
+ "\n",
420
+ "display(Markdown(solution))"
421
+ ]
422
+ },
423
+ {
424
+ "cell_type": "code",
425
+ "execution_count": null,
426
+ "metadata": {},
427
+ "outputs": [],
428
+ "source": []
429
+ }
430
+ ],
431
+ "metadata": {
432
+ "kernelspec": {
433
+ "display_name": ".venv",
434
+ "language": "python",
435
+ "name": "python3"
436
+ },
437
+ "language_info": {
438
+ "codemirror_mode": {
439
+ "name": "ipython",
440
+ "version": 3
441
+ },
442
+ "file_extension": ".py",
443
+ "mimetype": "text/x-python",
444
+ "name": "python",
445
+ "nbconvert_exporter": "python",
446
+ "pygments_lexer": "ipython3",
447
+ "version": "3.12.12"
448
+ }
449
+ },
450
+ "nbformat": 4,
451
+ "nbformat_minor": 2
452
+ }
community_contributions/Business_Idea.ipynb ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## Business idea generator and evaluator \n",
8
+ "\n"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 1,
14
+ "metadata": {},
15
+ "outputs": [],
16
+ "source": [
17
+ "# Start with imports - ask ChatGPT to explain any package that you don't know\n",
18
+ "\n",
19
+ "import os\n",
20
+ "import json\n",
21
+ "from dotenv import load_dotenv\n",
22
+ "from openai import OpenAI\n",
23
+ "from anthropic import Anthropic\n",
24
+ "from IPython.display import Markdown, display"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": null,
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "# Always remember to do this!\n",
34
+ "load_dotenv(override=True)"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "# Print the key prefixes to help with any debugging\n",
44
+ "\n",
45
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
46
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
47
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
48
+ "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
49
+ "groq_api_key = os.getenv('GROQ_API_KEY')\n",
50
+ "\n",
51
+ "if openai_api_key:\n",
52
+ " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
53
+ "else:\n",
54
+ " print(\"OpenAI API Key not set\")\n",
55
+ " \n",
56
+ "if anthropic_api_key:\n",
57
+ " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
58
+ "else:\n",
59
+ " print(\"Anthropic API Key not set (and this is optional)\")\n",
60
+ "\n",
61
+ "if google_api_key:\n",
62
+ " print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
63
+ "else:\n",
64
+ " print(\"Google API Key not set (and this is optional)\")\n",
65
+ "\n",
66
+ "if deepseek_api_key:\n",
67
+ " print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
68
+ "else:\n",
69
+ " print(\"DeepSeek API Key not set (and this is optional)\")\n",
70
+ "\n",
71
+ "if groq_api_key:\n",
72
+ " print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
73
+ "else:\n",
74
+ " print(\"Groq API Key not set (and this is optional)\")"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": 4,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "request = (\n",
84
+ " \"Please generate three innovative business ideas aligned with the latest global trends. \"\n",
85
+ " \"For each idea, include a brief description (2–3 sentences).\"\n",
86
+ ")\n",
87
+ "messages = [{\"role\": \"user\", \"content\": request}]"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "messages"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "\n",
106
+ "openai = OpenAI()\n",
107
+ "'''\n",
108
+ "response = openai.chat.completions.create(\n",
109
+ " model=\"gpt-4o-mini\",\n",
110
+ " messages=messages,\n",
111
+ ")\n",
112
+ "question = response.choices[0].message.content\n",
113
+ "print(question)\n",
114
+ "'''"
115
+ ]
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": 9,
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "competitors = []\n",
124
+ "answers = []\n",
125
+ "#messages = [{\"role\": \"user\", \"content\": question}]"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "# The API we know well\n",
135
+ "\n",
136
+ "model_name = \"gpt-4o-mini\"\n",
137
+ "\n",
138
+ "response = openai.chat.completions.create(model=model_name, messages=messages)\n",
139
+ "answer = response.choices[0].message.content\n",
140
+ "\n",
141
+ "display(Markdown(answer))\n",
142
+ "competitors.append(model_name)\n",
143
+ "answers.append(answer)"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "# Anthropic has a slightly different API, and Max Tokens is required\n",
153
+ "\n",
154
+ "model_name = \"claude-3-7-sonnet-latest\"\n",
155
+ "\n",
156
+ "claude = Anthropic()\n",
157
+ "response = claude.messages.create(model=model_name, messages=messages, max_tokens=1000)\n",
158
+ "answer = response.content[0].text\n",
159
+ "\n",
160
+ "display(Markdown(answer))\n",
161
+ "competitors.append(model_name)\n",
162
+ "answers.append(answer)"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
172
+ "model_name = \"gemini-2.0-flash\"\n",
173
+ "\n",
174
+ "response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
175
+ "answer = response.choices[0].message.content\n",
176
+ "\n",
177
+ "display(Markdown(answer))\n",
178
+ "competitors.append(model_name)\n",
179
+ "answers.append(answer)"
180
+ ]
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "execution_count": null,
185
+ "metadata": {},
186
+ "outputs": [],
187
+ "source": [
188
+ "deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
189
+ "model_name = \"deepseek-chat\"\n",
190
+ "\n",
191
+ "response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
192
+ "answer = response.choices[0].message.content\n",
193
+ "\n",
194
+ "display(Markdown(answer))\n",
195
+ "competitors.append(model_name)\n",
196
+ "answers.append(answer)"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "metadata": {},
203
+ "outputs": [],
204
+ "source": [
205
+ "groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
206
+ "model_name = \"llama-3.3-70b-versatile\"\n",
207
+ "\n",
208
+ "response = groq.chat.completions.create(model=model_name, messages=messages)\n",
209
+ "answer = response.choices[0].message.content\n",
210
+ "\n",
211
+ "display(Markdown(answer))\n",
212
+ "competitors.append(model_name)\n",
213
+ "answers.append(answer)\n"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "!ollama pull llama3.2"
223
+ ]
224
+ },
225
+ {
226
+ "cell_type": "code",
227
+ "execution_count": null,
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
232
+ "model_name = \"llama3.2\"\n",
233
+ "\n",
234
+ "response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
235
+ "answer = response.choices[0].message.content\n",
236
+ "\n",
237
+ "display(Markdown(answer))\n",
238
+ "competitors.append(model_name)\n",
239
+ "answers.append(answer)"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": null,
245
+ "metadata": {},
246
+ "outputs": [],
247
+ "source": [
248
+ "# So where are we?\n",
249
+ "\n",
250
+ "print(competitors)\n",
251
+ "print(answers)\n"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {},
258
+ "outputs": [],
259
+ "source": [
260
+ "# It's nice to know how to use \"zip\"\n",
261
+ "for competitor, answer in zip(competitors, answers):\n",
262
+ " print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": 14,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": [
271
+ "# Let's bring this together - note the use of \"enumerate\"\n",
272
+ "\n",
273
+ "together = \"\"\n",
274
+ "for index, answer in enumerate(answers):\n",
275
+ " together += f\"# Response from competitor {index+1}\\n\\n\"\n",
276
+ " together += answer + \"\\n\\n\""
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": [
285
+ "print(together)"
286
+ ]
287
+ },
288
+ {
289
+ "cell_type": "code",
290
+ "execution_count": null,
291
+ "metadata": {},
292
+ "outputs": [],
293
+ "source": [
294
+ "judge = f\"\"\"You are judging a competition between {len(competitors)} competitors.\n",
295
+ "Each model was asked to generate three innovative business ideas aligned with the latest global trends.\n",
296
+ "\n",
297
+ "Your job is to evaluate the likelihood of success for each idea on a scale from 0 to 100 percent. For each competitor, list the three percentages in the same order as their ideas.\n",
298
+ "\n",
299
+ "Respond only with JSON in this format:\n",
300
+ "{{\"results\": [\n",
301
+ " {{\"competitor\": 1, \"success_chances\": [perc1, perc2, perc3]}},\n",
302
+ " {{\"competitor\": 2, \"success_chances\": [perc1, perc2, perc3]}},\n",
303
+ " ...\n",
304
+ "]}}\n",
305
+ "\n",
306
+ "Here are the ideas from each competitor:\n",
307
+ "\n",
308
+ "{together}\n",
309
+ "\n",
310
+ "Now respond with only the JSON, nothing else.\"\"\"\n"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": null,
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "print(judge)"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": 18,
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": [
328
+ "judge_messages = [{\"role\": \"user\", \"content\": judge}]"
329
+ ]
330
+ },
331
+ {
332
+ "cell_type": "code",
333
+ "execution_count": null,
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "# Judgement time!\n",
338
+ "\n",
339
+ "openai = OpenAI()\n",
340
+ "response = openai.chat.completions.create(\n",
341
+ " model=\"o3-mini\",\n",
342
+ " messages=judge_messages,\n",
343
+ ")\n",
344
+ "results = response.choices[0].message.content\n",
345
+ "print(results)\n"
346
+ ]
347
+ },
348
+ {
349
+ "cell_type": "code",
350
+ "execution_count": null,
351
+ "metadata": {},
352
+ "outputs": [],
353
+ "source": [
354
+ "# Parse judge results JSON and display success probabilities\n",
355
+ "results_dict = json.loads(results)\n",
356
+ "for entry in results_dict[\"results\"]:\n",
357
+ " comp_num = entry[\"competitor\"]\n",
358
+ " comp_name = competitors[comp_num - 1]\n",
359
+ " chances = entry[\"success_chances\"]\n",
360
+ " print(f\"{comp_name}:\")\n",
361
+ " for idx, perc in enumerate(chances, start=1):\n",
362
+ " print(f\" Idea {idx}: {perc}% chance of success\")\n",
363
+ " print()\n"
364
+ ]
365
+ }
366
+ ],
367
+ "metadata": {
368
+ "kernelspec": {
369
+ "display_name": ".venv",
370
+ "language": "python",
371
+ "name": "python3"
372
+ },
373
+ "language_info": {
374
+ "codemirror_mode": {
375
+ "name": "ipython",
376
+ "version": 3
377
+ },
378
+ "file_extension": ".py",
379
+ "mimetype": "text/x-python",
380
+ "name": "python",
381
+ "nbconvert_exporter": "python",
382
+ "pygments_lexer": "ipython3",
383
+ "version": "3.12.7"
384
+ }
385
+ },
386
+ "nbformat": 4,
387
+ "nbformat_minor": 2
388
+ }
community_contributions/ChatBot_with_evaluator_and_notifier/README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Smart RAG Chatbot
2
+
3
+ A conversational AI that answers questions from your documents first, then falls back to general knowledge when needed. Plus, it keeps you in the loop with smart notifications.
4
+
5
+ ## What it does
6
+
7
+ Think of it as your personal AI assistant that:
8
+ - **Knows your stuff** - Searches your documents first to answer questions
9
+ - **Stays helpful** - Uses general AI knowledge when your docs don't have the answer
10
+ - **Keeps you informed** - Sends notifications when it goes beyond your knowledge base
11
+ - **Remembers conversations** - Maintains chat history and user details
12
+
13
+ ## How it works
14
+
15
+ 1. User asks a question
16
+ 2. System searches your documents in `knowledge_base/`
17
+ 3. **Found answer?** β†’ Uses your docs and responds
18
+ 4. **No answer?** β†’ Uses general AI knowledge + sends you a notification
19
+ 5. **Small talk?** β†’ Quick friendly response
20
+
21
+ ## Architecture
22
+
23
+ ```
24
+ User Question β†’ Search Your Docs β†’ ChatGPT Response β†’ Gemini Quality Check
25
+ ↓ ↓
26
+ If no relevant docs If using general knowledge
27
+ ↓ ↓
28
+ General AI Knowledge ← ← ← ← ← ← ← ← Pushover Notification
29
+ ```
30
+
31
+ **Components:**
32
+ - **ChromaDB + LangChain**: Stores and searches your documents
33
+ - **ChatGPT**: Generates responses
34
+ - **Gemini**: Checks response quality
35
+ - **Pushover**: Sends notifications
36
+ - **Gradio**: Simple web interface
37
+
38
+ ## Quick Setup
39
+
40
+ 1. **Install dependencies:**
41
+ ```bash
42
+ pip install -r requirements.txt
43
+ ```
44
+
45
+ 2. **Create `.env` file with your API keys:**
46
+ ```bash
47
+ OPENAI_API_KEY=your_openai_key
48
+ GOOGLE_API_KEY=your_gemini_key
49
+ PUSHOVER_USER=your_pushover_user # optional
50
+ PUSHOVER_TOKEN=your_pushover_token # optional
51
+ ```
52
+
53
+ 3. **Add your documents:**
54
+ Drop your `.txt`, `.md`, or `.markdown` files into the `knowledge_base/` folder
55
+
56
+ 4. **Launch:**
57
+ ```bash
58
+ python app.py
59
+ ```
60
+
61
+ That's it! The web interface opens automatically.
62
+
63
+ ## Key Features
64
+
65
+ - **Smart fallback**: Uses your docs first, general knowledge second
66
+ - **Quality control**: Built-in evaluator ensures good responses
67
+ - **Conversation memory**: Remembers chat history and user details
68
+ - **Smart notifications**: Only alerts when using general knowledge
69
+ - **Simple setup**: Just API keys and documents
70
+
71
+ ## File Structure
72
+
73
+ ```
74
+ β”œβ”€β”€ app.py # Web interface
75
+ β”œβ”€β”€ controller.py # Main logic
76
+ β”œβ”€β”€ rag.py # Document search
77
+ β”œβ”€β”€ evaluator.py # Quality checking
78
+ β”œβ”€β”€ tools.py # Notifications
79
+ β”œβ”€β”€ knowledge_base/ # Your documents
80
+ └── .env # API keys
81
+ ```
82
+
83
+ ## Example Usage
84
+
85
+ **Question about your docs:**
86
+ ```
87
+ User: "What's our return policy?"
88
+ Bot: [Searches your docs] β†’ [Finds policy] β†’ [Answers from your content]
89
+ ```
90
+
91
+ **General question:**
92
+ ```
93
+ User: "What is machine learning?"
94
+ Bot: [No docs found] β†’ [Uses AI knowledge] β†’ [Sends notification] β†’ [Helpful explanation]
95
+ ```
96
+
97
+ Built with ChromaDB, LangChain, OpenAI, Gemini, and Gradio.
community_contributions/ChatBot_with_evaluator_and_notifier/app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from controller import ChatbotController
3
+
4
+ controller = ChatbotController()
5
+
6
+ def respond(user_msg, history, recorded_emails_state):
7
+ history.append({"role": "user", "content": user_msg})
8
+ reply, emails = controller.get_response(
9
+ message=user_msg,
10
+ history=history,
11
+ name=None,
12
+ email=None,
13
+ recorded_emails=set(recorded_emails_state or []),
14
+ )
15
+ history.append({"role": "assistant", "content": reply})
16
+ return history, history, list(emails)
17
+
18
+ with gr.Blocks(title="RAG Chat") as demo:
19
+ chat = gr.Chatbot(type="messages", min_height=600, label="Assistant")
20
+ msg = gr.Textbox(label="Your message", placeholder="Type here…")
21
+ history_state = gr.State([])
22
+ processed_emails_state = gr.State([])
23
+ msg.submit(
24
+ respond,
25
+ inputs=[msg, history_state, processed_emails_state],
26
+ outputs=[chat, history_state, processed_emails_state],
27
+ )
28
+ msg.submit(lambda: "", None, msg)
29
+
30
+ demo.launch(inbrowser=True)