Spaces:
Sleeping
Sleeping
| # AdamW implementation | |
| from .adam import AdamOptimizer | |
| class AdamWOptimizer(AdamOptimizer): | |
| """ | |
| AdamW optimizer implementation. | |
| This optimizer decouples weight decay from the optimization steps. | |
| """ | |
| def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.01): | |
| super().__init__(params, lr, betas, eps) | |
| self.weight_decay = weight_decay | |
| def step(self): | |
| for p in self.params: | |
| if p.grad is None: | |
| continue | |
| state = self.state[p] | |
| state['t'] += 1 | |
| # Update biased first moment estimate | |
| state['m'] = self.betas[0] * state['m'] + (1 - self.betas[0]) * p.grad | |
| # Update biased second raw moment estimate | |
| state['v'] = self.betas[1] * state['v'] + (1 - self.betas[1]) * (p.grad ** 2) | |
| # Compute bias-corrected first moment estimate | |
| m_hat = state['m'] / (1 - self.betas[0] ** state['t']) | |
| # Compute bias-corrected second raw moment estimate | |
| v_hat = state['v'] / (1 - self.betas[1] ** state['t']) | |
| # Update parameters with weight decay | |
| p.data -= self.lr * (m_hat / (v_hat.sqrt() + self.eps) + self.weight_decay * p.data) | |
| def __repr__(self): | |
| return f"AdamWOptimizer(lr={self.lr}, betas={self.betas}, eps={self.eps}, weight_decay={self.weight_decay})" | |