Spaces:
Sleeping
Sleeping
Update App.py
Browse files
App.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
| 4 |
-
import os
|
| 5 |
from Engine import Engine
|
| 6 |
|
| 7 |
def run_study(mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate):
|
| 8 |
# Ensure optimizers is a list
|
| 9 |
-
if
|
| 10 |
-
optimizers = [optimizers] if optimizers else []
|
| 11 |
|
| 12 |
if not optimizers:
|
| 13 |
raise gr.Error("Please select at least one optimizer.")
|
|
@@ -17,10 +15,10 @@ def run_study(mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size
|
|
| 17 |
raise gr.Error("Please select a dataset.")
|
| 18 |
|
| 19 |
config = {
|
| 20 |
-
'mode': 'benchmark' if mode ==
|
| 21 |
'benchmark_func': benchmark_func,
|
| 22 |
'optimizers': optimizers,
|
| 23 |
-
'dim': int(dim),
|
| 24 |
'dataset': dataset,
|
| 25 |
'epochs': int(epochs) if epochs else 10,
|
| 26 |
'batch_size': int(batch_size) if batch_size else 32,
|
|
@@ -35,16 +33,17 @@ def run_study(mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size
|
|
| 35 |
|
| 36 |
if config['mode'] == 'benchmark':
|
| 37 |
metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
|
| 38 |
-
return results['plot'], None, metrics_df,
|
| 39 |
else:
|
| 40 |
metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
|
| 41 |
-
return results['plot_acc'], results['plot_loss'], metrics_df,
|
| 42 |
|
| 43 |
def export_results(results_json):
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def toggle_azure_settings(optimizers):
|
| 47 |
-
# Handle case where optimizers is a single value or None
|
| 48 |
optimizers = [optimizers] if isinstance(optimizers, str) else optimizers or []
|
| 49 |
return gr.update(visible='AzureSky' in optimizers)
|
| 50 |
|
|
@@ -59,7 +58,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Nexa R&D Studio", css="""
|
|
| 59 |
Select a mode, configure your study, and analyze results with interactive plots and metrics.
|
| 60 |
""")
|
| 61 |
|
| 62 |
-
with gr.Tabs()
|
| 63 |
with gr.TabItem("Study Configuration"):
|
| 64 |
mode = gr.Radio(
|
| 65 |
['Benchmark Optimization', 'ML Task Training'],
|
|
@@ -140,28 +139,31 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Nexa R&D Studio", css="""
|
|
| 140 |
with gr.Row():
|
| 141 |
plot1 = gr.Plot(label='Main Plot (Benchmark or Accuracy)')
|
| 142 |
plot2 = gr.Plot(label='Loss Plot (ML Mode)')
|
| 143 |
-
metrics_df = gr.Dataframe(label='Metrics Table'
|
| 144 |
-
'distance', 'final_loss', 'convergence_rate',
|
| 145 |
-
'final_train_acc', 'final_val_acc', 'generalization_gap',
|
| 146 |
-
'final_train_loss', 'final_val_loss', 'best_epoch'
|
| 147 |
-
])
|
| 148 |
metrics_json = gr.JSON(label='Detailed Metrics')
|
| 149 |
-
export_data = gr.State()
|
| 150 |
export_button = gr.Button('Export Results as JSON')
|
| 151 |
export_file = gr.File(label='Download Results')
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
run_button.click(
|
| 159 |
-
run_study,
|
| 160 |
inputs=[mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate],
|
| 161 |
-
outputs=[plot1, plot2, metrics_df, metrics_json,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
)
|
| 163 |
-
export_button.click(export_results, inputs=[export_data], outputs=[export_file, gr.File()])
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
app.launch(share=True, server_name="0.0.0.0" if is_huggingface else None)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
from Engine import Engine
|
| 5 |
|
| 6 |
def run_study(mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate):
|
| 7 |
# Ensure optimizers is a list
|
| 8 |
+
optimizers = [optimizers] if isinstance(optimizers, str) else optimizers or []
|
|
|
|
| 9 |
|
| 10 |
if not optimizers:
|
| 11 |
raise gr.Error("Please select at least one optimizer.")
|
|
|
|
| 15 |
raise gr.Error("Please select a dataset.")
|
| 16 |
|
| 17 |
config = {
|
| 18 |
+
'mode': 'benchmark' if mode == "Benchmark Optimization" else 'ml_task',
|
| 19 |
'benchmark_func': benchmark_func,
|
| 20 |
'optimizers': optimizers,
|
| 21 |
+
'dim': int(dim) if dim else 2,
|
| 22 |
'dataset': dataset,
|
| 23 |
'epochs': int(epochs) if epochs else 10,
|
| 24 |
'batch_size': int(batch_size) if batch_size else 32,
|
|
|
|
| 33 |
|
| 34 |
if config['mode'] == 'benchmark':
|
| 35 |
metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
|
| 36 |
+
return results['plot'], None, metrics_df, json.dumps(results, indent=2), "Study completed successfully."
|
| 37 |
else:
|
| 38 |
metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
|
| 39 |
+
return results['plot_acc'], results['plot_loss'], metrics_df, json.dumps(results, indent=2), "Study completed successfully."
|
| 40 |
|
| 41 |
def export_results(results_json):
|
| 42 |
+
with open("results.json", "w") as f:
|
| 43 |
+
f.write(results_json)
|
| 44 |
+
return "results.json"
|
| 45 |
|
| 46 |
def toggle_azure_settings(optimizers):
|
|
|
|
| 47 |
optimizers = [optimizers] if isinstance(optimizers, str) else optimizers or []
|
| 48 |
return gr.update(visible='AzureSky' in optimizers)
|
| 49 |
|
|
|
|
| 58 |
Select a mode, configure your study, and analyze results with interactive plots and metrics.
|
| 59 |
""")
|
| 60 |
|
| 61 |
+
with gr.Tabs():
|
| 62 |
with gr.TabItem("Study Configuration"):
|
| 63 |
mode = gr.Radio(
|
| 64 |
['Benchmark Optimization', 'ML Task Training'],
|
|
|
|
| 139 |
with gr.Row():
|
| 140 |
plot1 = gr.Plot(label='Main Plot (Benchmark or Accuracy)')
|
| 141 |
plot2 = gr.Plot(label='Loss Plot (ML Mode)')
|
| 142 |
+
metrics_df = gr.Dataframe(label='Metrics Table')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
metrics_json = gr.JSON(label='Detailed Metrics')
|
|
|
|
| 144 |
export_button = gr.Button('Export Results as JSON')
|
| 145 |
export_file = gr.File(label='Download Results')
|
| 146 |
|
| 147 |
+
mode.change(
|
| 148 |
+
fn=toggle_tabs,
|
| 149 |
+
inputs=mode,
|
| 150 |
+
outputs=[benchmark_tab, ml_task_tab]
|
| 151 |
+
)
|
| 152 |
+
optimizers.change(
|
| 153 |
+
fn=toggle_azure_settings,
|
| 154 |
+
inputs=optimizers,
|
| 155 |
+
outputs=azure_settings
|
| 156 |
+
)
|
| 157 |
run_button.click(
|
| 158 |
+
fn=run_study,
|
| 159 |
inputs=[mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate],
|
| 160 |
+
outputs=[plot1, plot2, metrics_df, metrics_json, status_message]
|
| 161 |
+
)
|
| 162 |
+
export_button.click(
|
| 163 |
+
fn=export_results,
|
| 164 |
+
inputs=metrics_json,
|
| 165 |
+
outputs=export_file
|
| 166 |
)
|
|
|
|
| 167 |
|
| 168 |
+
# Launch without share parameter for Hugging Face Spaces
|
| 169 |
+
app.launch()
|
|
|