Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,524 Bytes
35d68ae 34ce01e 35d68ae 34ce01e 35d68ae 34ce01e 35d68ae a83f1cc 35d68ae 34ce01e 35d68ae 34ce01e 7ed3898 34ce01e 7ed3898 34ce01e 7ed3898 34ce01e 35d68ae 34ce01e 4e24d26 34ce01e 7ed3898 34ce01e 7ed3898 34ce01e fb0ad83 34ce01e 35d68ae 34ce01e 35d68ae 34ce01e 1910748 34ce01e d758381 34ce01e 7ed3898 34ce01e 7ed3898 34ce01e 7ed3898 34ce01e 7ed3898 91a200a 34ce01e 7ed3898 c12ff5b 34ce01e 7ed3898 d758381 7ed3898 34ce01e 91a200a 34ce01e 7ed3898 c12ff5b 34ce01e 7ed3898 c12ff5b 7ed3898 34ce01e 7ed3898 91a200a 7ed3898 91a200a 34ce01e 91a200a 34ce01e 91a200a 34ce01e 7ed3898 34ce01e 7ed3898 d16d09d 34ce01e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import time
import gc
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import spaces # Import spaces early to enable ZeroGPU support
# Configuration
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "600"))
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.2"))
DEFAULT_TOP_P = float(os.environ.get("DEFAULT_TOP_P", "0.9"))
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_ID = "Alovestocode/router-gemma3-merged"
# Global model cache
_MODEL = None
_TOKENIZER = None
ACTIVE_STRATEGY = None
# Detect ZeroGPU environment
IS_ZEROGPU = os.environ.get("SPACE_RUNTIME_STATELESS", "0") == "1"
if os.environ.get("SPACES_ZERO_GPU") is not None:
IS_ZEROGPU = True
def load_model():
"""Load the model on CPU. GPU movement happens inside @spaces.GPU decorated function."""
global _MODEL, _TOKENIZER, ACTIVE_STRATEGY
if _MODEL is None:
print(f"Loading model {MODEL_ID}...")
_TOKENIZER = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False, token=HF_TOKEN)
if IS_ZEROGPU:
# ZeroGPU: load on CPU with device_map=None
try:
kwargs = {
"device_map": None, # Stay on CPU for ZeroGPU
"quantization_config": BitsAndBytesConfig(load_in_8bit=True),
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
_MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
ACTIVE_STRATEGY = "8bit"
except Exception:
# Fallback to bf16 on CPU
kwargs = {
"device_map": None,
"torch_dtype": torch.bfloat16,
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
_MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
ACTIVE_STRATEGY = "bf16"
else:
# Local environment: use GPU if available
if torch.cuda.is_available():
try:
kwargs = {
"device_map": "auto",
"quantization_config": BitsAndBytesConfig(load_in_8bit=True),
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
_MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
ACTIVE_STRATEGY = "8bit"
except Exception:
kwargs = {
"device_map": "auto",
"torch_dtype": torch.bfloat16,
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
_MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
ACTIVE_STRATEGY = "bf16"
else:
kwargs = {
"device_map": "cpu",
"torch_dtype": torch.float32,
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
_MODEL = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
ACTIVE_STRATEGY = "cpu"
_MODEL = _MODEL.eval()
print(f"Loaded {MODEL_ID} with strategy='{ACTIVE_STRATEGY}' (ZeroGPU={IS_ZEROGPU})")
return _MODEL, _TOKENIZER
def get_duration(prompt, max_new_tokens, temperature, top_p):
"""Estimate generation duration for ZeroGPU scheduling."""
# Base time + token generation time
base_duration = 20
token_duration = max_new_tokens * 0.005 # ~200 tokens/second
return base_duration + token_duration
@spaces.GPU(duration=get_duration)
def generate_response(prompt, max_new_tokens=MAX_NEW_TOKENS, temperature=DEFAULT_TEMPERATURE, top_p=DEFAULT_TOP_P):
"""
Generate response using the router model.
In ZeroGPU mode: model is loaded on CPU, moved to GPU here, then back to CPU after.
"""
if not prompt.strip():
return "ERROR: Prompt must not be empty."
global _MODEL
model, tokenizer = load_model()
# In ZeroGPU: move model to GPU inside this @spaces.GPU function
current_device = torch.device("cpu")
if IS_ZEROGPU and torch.cuda.is_available():
current_device = torch.device("cuda")
model = model.to(current_device)
elif torch.cuda.is_available() and not IS_ZEROGPU:
current_device = torch.device("cuda")
inputs = tokenizer(prompt, return_tensors="pt").to(current_device)
eos = tokenizer.eos_token_id
try:
with torch.inference_mode():
output_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
eos_token_id=eos,
pad_token_id=eos,
)
text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
result = text[len(prompt):].strip() or text.strip()
finally:
# In ZeroGPU: move model back to CPU to free GPU memory
if IS_ZEROGPU and torch.cuda.is_available():
_MODEL = model.to(torch.device("cpu"))
torch.cuda.empty_cache()
return result
# Gradio UI
with gr.Blocks(
title="Router Model API - ZeroGPU",
theme=gr.themes.Soft(
primary_hue="indigo",
secondary_hue="purple",
neutral_hue="slate",
radius_size="lg",
),
css="""
.main-header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 20px;
}
.info-box {
background: #f0f0f0;
padding: 15px;
border-radius: 8px;
margin-bottom: 20px;
}
"""
) as demo:
# Header
gr.Markdown("""
<div class="main-header">
<h1>π Router Model API - ZeroGPU</h1>
<p>Intelligent routing agent for coordinating specialized AI agents</p>
</div>
""")
with gr.Row():
# Left Panel - Input
with gr.Column(scale=1):
gr.Markdown("### π Input")
prompt_input = gr.Textbox(
label="Router Prompt",
lines=10,
placeholder="Enter your router prompt here...\n\nExample:\nYou are the Router Agent coordinating Math, Code, and General-Search specialists.\nUser query: Solve the integral of x^2 from 0 to 1",
)
with gr.Accordion("βοΈ Generation Parameters", open=True):
max_tokens_input = gr.Slider(
minimum=64,
maximum=2048,
value=MAX_NEW_TOKENS,
step=16,
label="Max New Tokens",
info="Maximum number of tokens to generate"
)
temp_input = gr.Slider(
minimum=0.0,
maximum=2.0,
value=DEFAULT_TEMPERATURE,
step=0.05,
label="Temperature",
info="Controls randomness: lower = more deterministic"
)
top_p_input = gr.Slider(
minimum=0.0,
maximum=1.0,
value=DEFAULT_TOP_P,
step=0.05,
label="Top-p (Nucleus Sampling)",
info="Probability mass to consider for sampling"
)
generate_btn = gr.Button("π Generate", variant="primary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
# Right Panel - Output
with gr.Column(scale=1):
gr.Markdown("### π€ Output")
output = gr.Textbox(
label="Generated Response",
lines=25,
placeholder="Generated response will appear here...",
show_copy_button=True,
)
with gr.Accordion("π Model Information", open=False):
gr.Markdown(f"""
**Model:** `{MODEL_ID}`
**Strategy:** `{ACTIVE_STRATEGY or 'pending'}`
**ZeroGPU:** `{IS_ZEROGPU}`
**Max Tokens:** `{MAX_NEW_TOKENS}`
**Default Temperature:** `{DEFAULT_TEMPERATURE}`
**Default Top-p:** `{DEFAULT_TOP_P}`
""")
# Event handlers
generate_btn.click(
fn=generate_response,
inputs=[prompt_input, max_tokens_input, temp_input, top_p_input],
outputs=output,
)
clear_btn.click(
fn=lambda: ("", ""),
inputs=None,
outputs=[prompt_input, output],
)
# Launch the app
if __name__ == "__main__":
print("Warm start skipped for ZeroGPU. Model will load on first request.")
demo.queue(max_size=8).launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|