File size: 3,649 Bytes
ef17ebc
5c19816
 
 
 
 
 
 
 
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
 
 
 
8c44361
ef17ebc
8c44361
ef17ebc
 
 
 
8c44361
ef17ebc
8c44361
ef17ebc
 
 
 
 
8c44361
ef17ebc
8c44361
ef17ebc
 
 
 
 
 
 
 
8c44361
ef17ebc
8c44361
5c19816
8c44361
ef17ebc
5c19816
 
 
8c44361
5c19816
 
 
 
8c44361
 
5c19816
 
ef17ebc
5c19816
ef17ebc
5c19816
ef17ebc
 
 
 
5c19816
ef17ebc
 
 
 
5c19816
ef17ebc
 
 
 
5c19816
ef17ebc
5c19816
ef17ebc
5c19816
ef17ebc
 
 
 
 
5c19816
ef17ebc
 
5c19816
ef17ebc
 
 
5c19816
ef17ebc
5c19816
ef17ebc
 
 
5c19816
ef17ebc
 
5c19816
ef17ebc
5c19816
ef17ebc
 
 
 
8c44361
ef17ebc
 
 
 
8c44361
ef17ebc
 
 
 
8c44361
ef17ebc
 
 
 
8c44361
ef17ebc
8c44361
ef17ebc
 
 
 
 
 
 
 
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
ef17ebc
8c44361
5c19816
ef17ebc
 
 
8c44361
ef17ebc
8c44361
ef17ebc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
title: LLM Data Analyzer
emoji: πŸ“Š
colorFrom: blue
colorTo: indigo
sdk: docker
sdk_version: latest
app_file: app.py
pinned: false
---

# πŸ“Š LLM Data Analyzer

An AI-powered tool for analyzing data and having conversations with an intelligent assistant powered by Llama 2.

## Features

- **πŸ“€ Upload & Analyze**: Upload CSV or Excel files and get instant analysis
- **πŸ’¬ Chat**: Have conversations with Llama 2 AI assistant
- **πŸ“Š Data Statistics**: View comprehensive data summaries and insights
- **πŸš€ Fast**: Runs on free Hugging Face CPU tier

## How to Use

1. **Upload Data** - Start by uploading a CSV or Excel file
2. **Preview** - Review your data and statistics
3. **Ask Questions** - Get AI-powered analysis and insights
4. **Chat** - Have follow-up conversations with the AI

## Technology Stack

- **Model**: Llama 2 7B (quantized to 4-bit)
- **Framework**: Streamlit
- **Inference Engine**: Llama.cpp
- **Hosting**: Hugging Face Spaces
- **Language**: Python 3.10+

## Performance

| Metric | Value |
|--------|-------|
| Speed | ~5-10 tokens/second (free CPU) |
| Model Size | 4GB (quantized) |
| Context Window | 2048 tokens |
| First Load | ~30 seconds (model download) |
| Subsequent Responses | ~5-15 seconds |
| Hardware | Free Hugging Face CPU |

## Local Development (Faster)

For faster local development with GPU acceleration on Apple Silicon Mac:

```bash
# Clone the repository
git clone https://github.com/Arif-Badhon/LLM-Data-Analyzer
cd LLM-Data-Analyzer

# Switch to huggingface-deployment branch
git checkout huggingface-deployment

# Install dependencies
pip install -r requirements.txt

# Run with MLX (Apple Silicon GPU - ~70 tokens/second)
streamlit run app.py
```

## Deployment Options

### Option 1: Hugging Face Space (Free)
- CPU-based inference
- Speed: 5-10 tokens/second
- Cost: Free

### Option 2: Local with MLX (Fastest)
- GPU-accelerated on Apple Silicon
- Speed: 70+ tokens/second
- Cost: Free (uses your Mac)

### Option 3: Hugging Face PRO (Fast)
- GPU-accelerated inference
- Speed: 50+ tokens/second
- Cost: $9/month

## Getting Started

### Quick Start (3 minutes)

```bash
# 1. Install Python 3.10+
# 2. Clone repo
git clone https://github.com/Arif-Badhon/LLM-Data-Analyzer
cd LLM-Data-Analyzer

# 3. Install dependencies
pip install -r requirements.txt

# 4. Run Streamlit app
streamlit run app.py
```

### With Docker (Local Development)

```bash
# Make sure Docker Desktop is running
docker-compose up --build

# Access at http://localhost:8501
```

## Troubleshooting

### "Model download failed"
- Check internet connection
- HF Spaces need internet to download models from Hugging Face Hub
- Wait and refresh the page

### "App takes too long to load"
- Normal on first request (10-30 seconds)
- Model is being downloaded and cached
- Subsequent requests are much faster

### "Out of memory"
- Free tier CPU is limited
- Unlikely with quantized 4GB model
- If it happens, upgrade to HF PRO

### "Slow responses"
- Free tier CPU is slower than GPU
- Expected: 5-10 tokens/second
- For faster responses: use local MLX (70 t/s) or upgrade HF tier

## Technologies Used

- **Python** - Core language
- **Streamlit** - Web UI framework
- **Llama 2** - Large language model
- **Llama.cpp** - CPU inference
- **MLX** - Apple Silicon GPU inference
- **Pandas** - Data processing
- **Docker** - Containerization
- **Hugging Face Hub** - Model hosting

## License

MIT License

## Author

**Arif Badhon**

## Support

If you encounter any issues:
1. Check the Troubleshooting section above
2. Review Hugging Face Spaces Docs
3. Open an issue on GitHub

---

**Happy analyzing! πŸš€**