Spaces:
Runtime error
Runtime error
File size: 3,058 Bytes
eb27e3e 905b294 935ef2f eb27e3e dad1d2b eb27e3e 935ef2f eb27e3e 905b294 a044f17 b3f79da 905b294 935ef2f 905b294 0931b5b b3f79da 0931b5b 905b294 935ef2f a044f17 b3f79da 0931b5b b3f79da a044f17 b3f79da 0931b5b a044f17 0931b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import os
import cv2
import numpy as np
import onnxruntime as ort
import gradio as gr
from huggingface_hub import hf_hub_download
# Ensure the Hugging Face token is retrieved from environment variables
huggingface_token = os.getenv("HF_TOKEN")
if huggingface_token is None:
raise ValueError("HUGGINGFACE_TOKEN environment variable not set.")
# Download the model file from Hugging Face using the token
model_id = "Arrcttacsrks/netrunner-exe_Insight-Swap-models-onnx"
model_file = hf_hub_download(repo_id=model_id, filename="simswap_512_unoff.onnx", token=huggingface_token)
def load_and_preprocess_image(image):
if image is None or not isinstance(image, np.ndarray):
raise ValueError("Input image is not valid.")
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img = cv2.resize(img, (512, 512))
img = img / 255.0 # Normalize to [0, 1]
return img.astype(np.float32)
def swap_faces(source_image, target_image):
try:
# Load the ONNX model
session = ort.InferenceSession(model_file)
# Get input names
input_names = [input.name for input in session.get_inputs()]
# Print input shapes for debugging
for input in session.get_inputs():
print(f"Input '{input.name}' expects shape: {input.shape}")
# Preprocess the images
source_img = load_and_preprocess_image(source_image)
target_img = load_and_preprocess_image(target_image)
# Reshape inputs according to model requirements
# For the first input (assuming it's the image input)
source_input = source_img.transpose(2, 0, 1)[np.newaxis, ...] # Shape: (1, 3, 512, 512)
# For the second input (onnx::Gemm_1), reshape to rank 2 as required by the error message
target_features = target_img.transpose(2, 0, 1).reshape(-1, 512) # Reshape to 2D array
# Create input dictionary
input_dict = {
input_names[0]: source_input.astype(np.float32),
input_names[1]: target_features.astype(np.float32)
}
# Run inference
result = session.run(None, input_dict)[0]
# Post-process the result
result = result[0].transpose(1, 2, 0) # Convert from NCHW to HWC format
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) # Convert back to RGB
return np.clip(result * 255, 0, 255).astype(np.uint8)
except Exception as e:
print(f"Error during face swapping: {str(e)}")
raise
# Create Gradio interface
interface = gr.Interface(
fn=swap_faces,
inputs=[
gr.Image(label="Source Face", type="numpy"),
gr.Image(label="Target Image", type="numpy")
],
outputs=gr.Image(label="Result"),
title="Face Swap using SimSwap",
description="Upload a source face and a target image to swap faces. The source face will be transferred onto the target image.",
allow_flagging="never"
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |