Arrcttacsrks commited on
Commit
4c38b91
·
verified ·
1 Parent(s): 1630af2

Update requirements.txt

Browse files
Files changed (1) hide show
  1. requirements.txt +82 -5
requirements.txt CHANGED
@@ -1,5 +1,82 @@
1
- onnxruntime
2
- gradio
3
- opencv-python
4
- huggingface-hub
5
- numpy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime as ort
5
+ import gradio as gr
6
+ from huggingface_hub import hf_hub_download
7
+
8
+ # Ensure the Hugging Face token is retrieved from environment variables
9
+ huggingface_token = os.getenv("HF_TOKEN")
10
+ if huggingface_token is None:
11
+ raise ValueError("HUGGINGFACE_TOKEN environment variable not set.")
12
+
13
+ # Download the model file from Hugging Face using the token
14
+ model_id = "Arrcttacsrks/netrunner-exe_Insight-Swap-models-onnx"
15
+ model_file = hf_hub_download(repo_id=model_id, filename="simswap_512_unoff.onnx", token=huggingface_token)
16
+
17
+ def load_and_preprocess_image(image):
18
+ if image is None or not isinstance(image, np.ndarray):
19
+ raise ValueError("Input image is not valid.")
20
+
21
+ img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
22
+ img = cv2.resize(img, (512, 512))
23
+ img = img / 255.0 # Normalize to [0, 1]
24
+ return img.astype(np.float32)
25
+
26
+ def swap_faces(source_image, target_image):
27
+ try:
28
+ # Load the ONNX model
29
+ session = ort.InferenceSession(model_file)
30
+
31
+ # Get input names
32
+ input_names = [input.name for input in session.get_inputs()]
33
+
34
+ # Print input shapes for debugging
35
+ for input in session.get_inputs():
36
+ print(f"Input '{input.name}' expects shape: {input.shape}")
37
+
38
+ # Preprocess the images
39
+ source_img = load_and_preprocess_image(source_image)
40
+ target_img = load_and_preprocess_image(target_image)
41
+
42
+ # Reshape inputs according to model requirements
43
+ # For the first input (assuming it's the image input)
44
+ source_input = source_img.transpose(2, 0, 1)[np.newaxis, ...] # Shape: (1, 3, 512, 512)
45
+
46
+ # For the second input (onnx::Gemm_1), reshape to rank 2 as required by the error message
47
+ target_features = target_img.transpose(2, 0, 1).reshape(-1, 512) # Reshape to 2D array
48
+
49
+ # Create input dictionary
50
+ input_dict = {
51
+ input_names[0]: source_input.astype(np.float32),
52
+ input_names[1]: target_features.astype(np.float32)
53
+ }
54
+
55
+ # Run inference
56
+ result = session.run(None, input_dict)[0]
57
+
58
+ # Post-process the result
59
+ result = result[0].transpose(1, 2, 0) # Convert from NCHW to HWC format
60
+ result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) # Convert back to RGB
61
+ return np.clip(result * 255, 0, 255).astype(np.uint8)
62
+
63
+ except Exception as e:
64
+ print(f"Error during face swapping: {str(e)}")
65
+ raise
66
+
67
+ # Create Gradio interface
68
+ interface = gr.Interface(
69
+ fn=swap_faces,
70
+ inputs=[
71
+ gr.Image(label="Source Face", type="numpy"),
72
+ gr.Image(label="Target Image", type="numpy")
73
+ ],
74
+ outputs=gr.Image(label="Result"),
75
+ title="Face Swap using SimSwap",
76
+ description="Upload a source face and a target image to swap faces. The source face will be transferred onto the target image.",
77
+ allow_flagging="never"
78
+ )
79
+
80
+ # Launch the interface
81
+ if __name__ == "__main__":
82
+ interface.launch()